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Abstract

Despite a heated debate on the perceived increasing complexity of financial regula-

tion, a comprehensive framework to study regulatory complexity is lacking. We pro-

pose one inspired by the analysis of algorithmic complexity in computer science. We use

this framework to distinguish different dimensions of complexity, classify existing com-

plexity measures, develop new ones, compute them on two examples—Basel I and the

Dodd-Frank Act—and validate them using novel experiments that involve the compu-

tation of risk-weighted assets under various rules. Our framework offers a quantitative

approach to the policy trade-off between the precision and the complexity of regula-

tion. The toolkit we develop is freely available and allows researchers to measure the

complexity of any normative text as well as test alternative measures of complexity.
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The regulatory overhaul that followed the global financial crisis has triggered a hefty de-

bate about the complexity of financial regulation. Haldane and Madouros (2012), for in-

stance, articulate the view that bank capital regulation has become so complex as to be

counter-productive and likely to favor regulatory arbitrage. The Basel Committee on Bank-

ing Supervision itself is aware of the issue, and considers simplicity as a desirable objective,

to be traded off against the precision of regulation (Basel Committee on Banking Supervi-

sion (2013)). In the United States, similar concerns have led to the exemption of smaller

banks from several provisions of the 2010 Dodd-Frank Act.1

While there is a widespread concern that regulation has become too complex, “regulatory

complexity" remains an elusive concept. Debates about the complexity of different rules and

contracts have come up in other contexts, such as structured products (Célérier and Vallée,

2017), securitizations (Ghent et al., 2017), loan contracts (Ganglmair and Wardlaw, 2017),

compensation contracts (Bennett et al., 2019), and corporate taxes (Zwick, 2021). A grow-

ing number of papers propose measures and theories of the complexity of rules, but they

focus on different dimensions of complexity and a unifying framework is lacking. We pro-

pose such a framework and develop a toolkit including measures of complexity, validation

experiments, and normative analyses. We show that with these three ingredients one can

approach the trade-off studied by the Basel Committee on Banking Supervision (2013) in a

quantitative manner.2

We hypothesize that a regulation can be seen as an algorithm: it is a sequence of instruc-

tions that are applied to an economic agent and return a regulatory action. Previous research

has used this analogy and focused on adapting some measures of algorithmic complexity to

the study of law (see, e.g., Li et al. (2015)). We go further and use this approach to distinguish

between different dimensions of complexity, derive six measures of regulatory complexity in

a unified model of regulation, test the validity of these measures experimentally, compute

them on a large scale regulatory text (the Dodd-Frank Act), and include them in a normative

model of the trade-off between precision and complexity.

1See Gai et al. (2019) provide a comprehensive discussion of the policy issues at stake, and Calomiris (2018)
for the case of the United States.

2To encourage further work within the same framework, we make the toolkit we developed available online:
https://github.com/cogeorg/RegulatoryComplexity_Public.
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We first use our framework to formally define measures of regulatory complexity, and

distinguish between the different dimensions of complexity that can be captured. In par-

ticular, we make a distinction between: (i) “problem complexity"—a regulation is complex

because it aims at imposing many different rules on the regulated entities, independently of

the language used; (ii) “psychological complexity"—a regulation is complex because it is dif-

ficult for a human reader to understand; and (iii) “computational complexity"—a regulation

is complex because it is long to implement.

We then turn to precise measures of complexity, for which we need a stylized representa-

tion of a regulation. We use the representation developed by Halstead (1977) for measuring

algorithmic complexity. As we detail in Section 1, this approach represents an algorithm as

a sequence of “operators" (e.g., +, −, logical connectors) and “operands" (variables, param-

eters), and the measures of complexity aim at capturing the number of operations and the

number of operands used in those operations. In the context of regulation, these measures

can capture the number of different rules (“operations") in a regulatory text, whether these

rules are repetitive or different, whether they apply to different economic entities or to the

same ones, etc. We show that within this model we can encompass three measures of regula-

tory complexity that have already been proposed in the literature, and go on to define three

new ones.

As a proof of concept, we show how to measure the complexity of a regulation in practice

by considering the design of risk weights in the Basel I Accords. This regulation is a suitable

testing ground because it is very close to being an actual algorithm. We compare two dif-

ferent methods: (i) We write a computer code corresponding to the instructions of Basel I

and measure the algorithmic complexity of this code directly; and (ii) We analyze the text of

the regulation and classify words according to whether they correspond to what would be an

operand or an operator in an algorithm, and compute the same measures, this time trying

to adapt them from the realm of computer science to an actual text. In particular, we ob-

serve that the measures of “problem complexity", which by definition do not depend on the

language used, are indeed very close in the text and the algorithm versions.

An important gap in the existing literature on regulatory complexity is the validation of
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complexity measures: how does one show that a proposed measure indeed captures some

dimension of complexity? Here again the parallel with algorithms suggests an answer. The

literature in computer science tests the validity of different measures of algorithmic com-

plexity by testing their ability to forecast mistakes made by programmers or the time they

need to code the program (see, e.g., Canfora et al. (2005)). We apply the same idea to the

context of regulation. Participants to an experiment are given a regulation consisting in (ran-

domly generated) Basel-I type rules, and the balance sheet of a bank. They have to compute

the bank’s risk-weighted assets. We analyze how different measures of complexity forecast

whether a participant returns a wrong value, and the time taken to give a correct answer. In

both cases we also test whether a given measure improves the forecast relative to the mere

length of the regulation. We propose four criteria a suitable measure of complexity should

satisfy: the measure is negatively correlated with the number of correct answers, the mea-

sure is positively correlated with the time taken to answer, and either correlation still obtains

after controlling for the length of the regulation. Only one of the five measures we consider

satisfies these four criteria, suggesting that our experimental design is a powerful touchstone

to test the validity of new measures. Importantly, all the material is online and can be directly

used to validate any measure of regulatory complexity based on the text of a regulation, not

only ours, thus opening the path to comparing the performance of different measures within

a unified framework.

To show that our approach can be adopted at scale, we apply our text analysis approach

to the 2010 Dodd-Frank Act. Because the Dodd-Frank Act covers many different aspects of

financial regulation, by doing so we created a large dictionary of 5,872 operands and 429

operators. We make this dictionary available online, so that interested researchers can com-

pute our measures on other regulatory texts. We expect that a large fraction of words found

in other texts will already be in our dictionary. To show this, we look at the fraction of words

in each of the 16 titles of the Dodd-Frank Act that would have already been included in a dic-

tionary obtained using only the other 15 titles. We find that, on average across all titles, 88%

of operands and 96% of operators would have already been in this counterfactual dictionary.

Finally, we show how building on our approach could eventually lead to a quantitative
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model of the trade-off between the precision and the complexity of regulation mentioned

in Basel Committee on Banking Supervision (2013). To explore this possibility, we build a

simple model of a bank capital regulation relying on risk buckets, as in Basel I. We can use

our measures and the experimental estimates to compute the complexity cost of additional

buckets, and hence study the optimal trade-off between these costs and the benefits of addi-

tional precision. More generally, this example shows that our measure can be used in norma-

tive models of regulation. For instance, in the context of a model this allows us to compare a

complex regulation achieving the first-best to a simpler one that still achieves a high level of

welfare.

We review the literature on measures of regulatory complexity in the next section, where

we show how different measures fit into our framework, or explain why they do not.3 As

mentioned above, a growing number of papers have studied the complexity of various fi-

nancial products and contracts more generally. We provide a unifying framework for these

different applications, to the extent that they consider rules describing how to perform a

certain operation.4

A growing number of recent theory papers have implications for the complexity of reg-

ulation. Hakenes and Schnabel (2012) develop a model of “capture by sophistication" in

which some regulators cannot understand complex arguments and “rubber-stamp" some

claims made by the industry so as not to reveal their lack of sophistication. Oehmke and

Zawadowski (2019) develop a model which, applied to regulation, would assume that regu-

latory complexity is in itself desirable (e.g., it allows for more risk-sensitivity), but that regu-

lators neglect that a more complex regulation consumes the limited attention of agents, and

crowds out other activities. A striking prediction from the model is that observing that reg-

ulations are well understood by regulators and market participants is a sign that their com-

plexity is suboptimally high. In Asriyan et al. (2021), a policymaker proposes a regulation

that then needs to be accepted, e.g., by Parliament. Making the regulation more complex

3We do not include measures of algorithmic complexity more generally, and refer the interested reader to
Zuse (1990), and Yu and Zhou (2010) for a more recent survey.

4For example, we have applied our framework to study the complexity of the OECD’s blueprints on the tax
challenges arising from digitalization (Colliard et al., 2021). In contrast, our approach does not in principle
apply to the complexity of objects that are not rules, for instance firm disclosures, where complexity is probably
better captured by stylistic or linguistic measures (e.g., Loughran and McDonald (2014)).
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makes the regulation more complicated to study, so that members of parliament will rely

more on their prior regarding the regulator’s competence and less on their own understand-

ing of the proposed regulation. Applied to post-crisis regulatory reforms, the model suggests

that the increased demand for regulation led to more complex and lower quality regulations,

while a potentially better alignment between regulators and politicians led to more com-

plex but higher quality regulations. Foarta and Morelli (2021) also model the dynamics of

legal complexity over time, and make predictions regarding these dynamics. We hope that

by proposing new measures of regulatory complexity our paper will make it possible to test

these theories, which to our knowledge has not been done yet.5

There is a broader theoretical literature on complexity in product markets, developing

the idea that complexity can be used by firms to “obfuscate" and gain market power (see in

particular Gabaix and Laibson (2006) and Carlin (2009), and Ellison (2016) for a survey). The

economic mechanisms studied in this literature are not easy to transpose to the complex-

ity of regulation, although there is a similarity with the idea of “capture by sophistication".

In addition, Arora et al. (2009) argue that computational complexity creates a new form of

asymmetric information when one agent is able to solve a computational problem and the

other is not, an interesting example being the sale of derivatives. Carlin et al. (2013) find

support for this idea in a trading experiment, with adverse selection being larger for more

complex assets.

Further from finance applications but also related to our study is a literature that tries

to measure the complexity of solving mathematical problems for humans. In particular, the

experimental approach we use in Section 3 is related to Murawski and Bossaerts (2016) and

Franco et al. (2021). They ask participants to solve different versions of the knapsack prob-

lem, and study how the participants’ performance correlates with measures of the complex-

ity of the problem and measures of the complexity of different algorithms used to solve it.

Our approach is conceptually similar, but the Halstead model we use is a more flexible rep-

resentation of an algorithm, allowing us to apply our approach to entire regulatory texts and

5Some empirical papers study the increase in the stringency or quantity of regulations. For instance,
Kalmenovitz (2021) shows that increased regulatory intensity leads to a significant reduction in firm-level in-
vestment and hiring. Gutiérrez and Philippon (2019) argue that the increase in regulation can account for the
decline in the elasticity of entry with respect to Tobin’s Q since the late 1990s.
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not only to well-identified mathematical problems and algorithms.

Finally, a literature in behavioral economics dating back to Rubinstein (1986) models the

strategies and decision procedures of economic agents as automata, and associates mea-

sures of the complexity of these automata (in particular, the number of states involved) to

the cognitive costs that following these strategies imposes on agents. Recently, Oprea (2020)

used an experimental approach to measure the cognitive costs of following different proce-

dures (“implementation complexity"), and showed that these costs correlate well with com-

plexity measures of the associated automata.6 Our approach differs in that we do not repre-

sent regulation as an automaton. This is in principle possible but extremely costly to do on

a large scale text, so that we believe the Halstead representation of an algorithm is a more

promising approach for the study of regulatory complexity.

1 A unifying framework

1.1 Dimensions of complexity

Because the term “complexity" is used somewhat vaguely in the social sciences, different au-

thors, policymakers, and industry participants have different concepts in mind when refer-

ring to “regulatory complexity". In this section, we provide preliminary definitions to clarify

different dimensions of complexity, notably those we are measuring in this paper.

We start by formalizing the analogy between regulations and algorithms. Knuth (1973)

describes an algorithm as:7 “a finite set of rules that gives a sequence of operations for solving

a specific type of problem.” Surprisingly, a formal definition of an algorithm beyond the in-

formal characterization provided above is not without difficulty, but for the purpose of our

paper, this somewhat informal description of an algorithm is sufficient.

In the case of regulation, the “input" is a regulated entity and the output a regulatory ac-

6See also Kendall and Oprea (2021) who study experimentally the computational complexity of inferring the
process that generated a particular data sequence.

7Knuth (1973) identifies five features an algorithm must satisfy. First, an algorithm must terminate after a
finite number of steps. Second, each step of the algorithm must be precisely defined—be it verbally or through
formal use of programming languages. Third, an algorithm has zero or more inputs, taken from a well specified
set of objects. Fourth, it has one or more outputs, quantities that have a specified relationship to the inputs.
Lastly, an algorithm should use sufficiently simple operations so that it can be computed, in principle, “by
someone using pencil and paper.”
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tion. A regulated entity could be for example an individual financial institution, or the entire

financial system. Examples of regulatory actions are imposing a fine on a bank, imposing

higher capital requirements, or simply allowing the bank to continue operating. Formally,

we define:

Definition 1. A regulatory problem is a mapping f : E →Σ from the set of regulated entities E

to a set of regulatory actions Σ.

An algorithm is a set of rules, such that by following them we can compute f (x) given any

input x. Similarly, a regulation is a sequence of instructions that implement an appropriate

regulatory action to any regulated entity:

Definition 2. A regulation f̃ is a sequence of elements taken in a vocabulary V . This sequence

of elements is interpreted through a language, and implements f .

It is important to note that the same problem can be solved by different algorithms. Sim-

ilarly, the same regulatory problem f can be solved by different regulations f̃ .

Finally, once a particular algorithm to solve a problem has been chosen, the last step

is to actually run the algorithm, which may take more or less time and computing power.

Similarly, following the rules set in a given regulation may be more or less complicated for

the regulatory authority and/or for the regulated entity. We call this last step “supervision":

Definition 3. Supervision is the act of following f̃ to evaluate f (e) for a given entity e ∈ E .

We can now define properties of measures of regulatory complexity corresponding to

different dimensions of complexity. Assume we have a set F̃ = { f̃1, f̃2..., f̃n} of regulations

solving the same regulatory problem f , and a set E = {e1,e2, ...,em} of regulated entities. El-

ements of these sets could be empirically observed (actual regulatory texts, actual banks) or

hypothetical (variants on the text, hypothetical banks). Following the previous definitions,

we can define a measure of regulatory complexity and give necessary conditions for different

types of measures as follows:

Definition 4. A measure of regulatory complexity µ is a mapping µ : F̃ × E → R. If µ is a

measure of problem complexity, then µ( f̃ ,e) is constant in f̃ and e. If µ is a measure of psy-
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chological complexity, then µ( f̃ ,e) is constant in e but not necessarily in f̃ . If µ is a measure

of computational complexity, then µ( f̃ ,e) may depend both on e and f̃ .

These properties characterize an important distinction between three forms of regula-

tory complexity:

(i) Regulatory complexity may mean that the regulatory problem is complex, e.g., it deals

with many different aspects of a bank’s business, or foresees a large number of regulatory

actions. We call this the problem complexity of regulation. Problem complexity depends on

f , but is independent of which regulation f̃ implements f .

(ii) Regulatory complexity may also mean that the actual regulation used to solve the

regulatory problem is complex, which may be due both to the complexity of the problem f

and to the complexity of the particular f̃ that solves the problem. Following the computer

science literature (e.g., Zuse (1990)), we call this dimension the psychological complexity of

regulation, as it reflects the difficulty of understanding a particular solution to a problem.

(iii) Finally, regulatory complexity may mean that applying a regulation to a particular

entity is costly in terms of time and resources. The cost can be incurred by the supervisor

(supervision costs) and by the regulated entities (compliance costs). Imagine for instance

a regulation that exempts small banks from most rules. It could then be the case that the

regulatory text is complex, that applying it to large banks is costly, but that applying it to

small banks is simple. Thus, this dimension depends on the entity to which the regulation is

applied. Following again the computer science literature, we call this dimension the compu-

tational complexity of regulation.

An example: The length of bank capital regulation. In the example of capital regula-

tion, a regulated entity is a bank, represented for instance by a list B of balance sheet items

and values. The regulatory problem is to associate any possible bank balance sheet B to an

action, the simplest ones being for instance "pass" or "fail". Regulation is then a series of

operations on balance sheet items that ends with an outcomeσ ∈Σ. Haldane and Madouros

(2012) for instance measure the complexity of banking regulation by the number of pages of

the different Basel Accords. In our framework, the exact text of the Basel Accords is a par-

ticular regulation f̃ to solve an underlying regulatory problem. The length of the text is a
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particular measure. Clearly, this measure depends on how the text is written, but not on

which bank we apply the regulation to. It is thus a measure of psychological complexity, but

not of problem complexity or computational complexity.

1.2 Extending the Halstead framework

In this section we show how several measures of regulatory complexity can be derived by

modeling a regulation like an algorithm in Halstead (1977). We consider regulation f̃ as

an sequence of “n-grams" (expressions of length n that are elements in a language) f̃ =
{w1, w2...wN }, from which we extract two sequences: a sequence of NOR operators and a

sequence of NOD operands, with NOR +NOD = N . The sets {o1,o2...oηOR } and {ω1,ω2...ωηOD }

are the sets of all operators and operands that appear in f̃ , where ηOR is the total number of

unique operators, and ηOD the total number of unique operands.

Using Halstead’s definition, operands in an algorithm are “variables or constants" and

operators are “symbols or combinations of symbols that affect the value or ordering of an

operand". Consider, for instance, the following “pseudo-code" to compute the vector norm

of an n-dimensional vector x = (x1, x2...xn) which can be written as:

y = sqrt(x_1^2+x_2^2...+x_n^2) (1)

Here, the operators are =, sqr t ,+, ,̂ and the operands y, xi ,2. So we have ηOR = 4, NOR =
2n +1, ηOD = n +2, NOD = 2n +2.

To better take into account some differences between regulations and generic algorithms,

we propose a slightly finer partition than Halstead’s. Already in Halstead’s work, the as-

signment operator (the = sign in (1)) plays a different role from other operators. Similarly,

a regulation will necessarily contain words that indicate a rule, an obligation, a permis-

sion, etc. We call such words “regulatory operators". Operators that are not regulatory

operators fall into two categories: “logical operators" represent logical operations such as

“if", “when", etc., while “mathematical operators" represent operations like addition, prod-

uct, substraction, and so on. We denote NR ,ηR , NL ,ηL , NM ,ηM the number of total regula-

9

Electronic copy available at: https://ssrn.com/abstract=3523824



tory operators, unique regulatory operators, total logical operators, unique logical operators,

total mathematical operators, and unique mathematical operators, respectively. We have

NR +NL +NM = NOR and ηR +ηL +ηM = ηOR .

1.3 Measures of complexity

We now derive six measures of complexity within our extended framework. We also briefly

survey other measures that have been proposed but do not readily fit in our framework.

First, the simplest measure of regulatory complexity is the total number of words N in

a regulation, which we denote leng th. This measure is used for instance in Haldane and

Madouros (2012).

Second, a popular measure in computer science is cyclomatic complexity (McCabe, 1976),

which is the number of different paths an algorithm can follow. We denote it c yclomati c.

This is measured in practice by the number NL of different logical operators, as in, e.g., Li

et al. (2015).

Third, the quantity of regulations, denoted quanti t y , can be measured by counting the

total number of regulatory operators, NR . This corresponds to the RegData measure of Al-

Ubaydli and McLaughlin (2017), who count the number of words indicating a binding con-

straint in the U.S. Code of Federal Regulations.8 A related example is Herring (2018), who

measures complexity through the number of different capital ratios Global Systemically Im-

portant Banks need to comply with.

Fourth and fifth, Halstead (1977) suggests two additional measures, new to the literature

on regulatory complexity. The three measures above depend on the representation f̃ of reg-

ulation f . How can one obtain a measure of problem complexity, that depends only on f ?

Halstead’s answer to this question is to look at the shortest possible program that can solve

the problem, in the best possible programming language. Defining this algorithm is trivial.

For example, the shortest possible program to compute the vector norm is:

y = vecnorm(x_1,x_2...x_n) (2)

8See also McLaughlin et al. (2021) for a recent study using this measure.
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where vecnorm is a function returning the vector norm. This is the shortest possible program

because any program to compute the norm of a vector would need to specify the input, the

output, an assignment rule, and an operation (which in our example already exists in the

programming language). More generally, for any problem, the shortest program would still

contain a minimum number of operands η∗OD that represent the number of inputs and out-

puts of the program. All the operations transforming the inputs into outputs would already

be part of the language as a single built-in function. The number of operators is then η∗OR = 2.

If one assumes that the list of inputs and outputs never includes some unnecessary ones,

then we also have η∗OD = ηOD . The volume of this minimal program, equal to 2+ηOD , is a

measure of problem complexity called potential volume and denoted potenti al .

Similarly, we propose to also consider the number of unique operators ηOR , or operator

diversity, denoted di ver si t y , as a measure of psychological complexity. Intuitively, there

might be increasing returns to scale in always processing the same operations, whereas a

regulation that describes many distinct operations or relies on different types of logical tests

could be more difficult to understand.

Finally, an interesting question to ask is whether an algorithm is close to the shortest

possible algorithm. Adapting Halstead (1977), we define the level of an algorithm as level =
potenti al/l eng th. The measure level has an intuitive interpretation in the context of reg-

ulatory complexity. If level is high (close to 1) this means that the regulation has a very spe-

cific vocabulary—a technical jargon opaque to outsiders. Conversely, a low value of level

means that the regulation starts from elementary concepts and operations.

For completeness, we briefly review other types of measures that have been proposed

in the literature but do not directly fit within our framework and probably capture different

dimension of complexity.

Amadxarif et al. (2019) use a number of measures from the linguistics literature, in par-

ticular average word length, the Maas’ index of lexical diversity (Maas, 1972), and the Flesch-

Kincaid grade level readability metric (Kincaid et al., 1975). Katz and Bommarito (2014) and

Li et al. (2015) also use Shannon’s entropy as an alternative measure of lexical diversity. All

these measures do not rely on a partition of words between operands and operators, and ap-
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ply equally well to texts that have no normative or operational content. These measures aim

at capturing the complexity of the style used by an author, which can be part of psychological

complexity, rather than the complexity of the underlying ideas.

Boulet et al. (2011), Katz and Bommarito (2014), Li et al. (2015), and Amadxarif et al.

(2019) propose to analyze the network formed by different legal texts or regulations that ref-

erence each other. Network measures such as the in-degree (how often a legal text is cited by

other legal texts), out-degree (how often a legal text cites other legal texts), or different net-

work centralities can then be interpreted as measures of psychological complexity.9 These

network-based measures of complexity are quite different from our approach because they

are based on references between different legal texts in a corpus.

Finally, some papers follow a very different approach by estimating how much effort reg-

ulated entities spend on understanding or complying with regulations. They thus propose

measures of computational complexity. For instance, Simkovic and Zhang (2020) propose a

Regulation Index based on the proportion of regulation-related employees in different sec-

tors, as measured in the Occupational Employment Statistics data from the U.S. Bureau of

Labor Statistics. Kalmenovitz (2021) proposes four RegIn indexes of regulatory intensity,

based on the number of forms required by Federal regulatory agencies in the U.S., the num-

ber of completed forms they receive, and the associated time costs and dollar costs.

Table 1 summarizes the different measures surveyed in this section. The table also serves

to illustrate how different measures can be classified according to the dimension of com-

plexity they capture, following Section 1.1. This is different from other classifications we are

aware of (e.g., in Amadxarif et al. (2019)), which are based on how the different measures

are computed. In particular, our classification illustrates the special role of potential volume

and quantity, the only measures of problem complexity.

[Insert Table 1 here.]
9Amadxarif et al. (2019), for example, discuss the use of PageRank centrality, which measures how often a

node in a network is cited by nodes that themselves are cited often.
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2 Basel I

We now apply our measure empirically to an actual text, the 1988 Basel I Accords (Basel

Committee on Banking Supervision (1988)). We focus on Annex 2, “Risk weights by category

of on-balance-sheet asset". As we will illustrate below, this is a natural starting point because

this part of the regulation can easily be described as an algorithm. This allows us to compute

our measures based both on an algorithmic representation of Basel I and on the actual text.

We then compare the results obtained in both cases.

2.1 Basel I as an algorithm

The Basel I Accords are a 30-page long text specifying how to compute a bank’s capital ratio.

This is done by mapping different asset classes to different risk buckets, and different capital

instruments to different weights. The regulation then compares the risk-weighted sum of

assets to the weighted sum of capital, and the ratio has to be higher than 8%. As this succinct

description makes clear, Basel I is easily described as an algorithm. We write a “pseudo-

code" that implements the computation of risk-weighted assets described in the Annex 2 of

the text, i.e., our code maps a bank balance sheet to total risk-weighted assets under Basel

I. We give this program in Appendix C. In this section, we briefly explain the structure of the

program and give the associated measures.

Annex 2 of the Basel I text is a list of balance sheet items associated with 5 different risk

weights. For instance, in the 20% risk-weight category we have “Claims on banks incorpo-

rated in the OECD and loans guaranteed by OECD incorporated banks". In our code this is

translated into:

IF (ASSET_CLASS == "claims" AND ISSUER == "bank" AND ISSUER_COUNTRY == "oecd") THEN:

risk_weight = 0.2;

We can easily identify the operands and operators in such a piece of code, and compute

our measures of complexity. For instance here the operands are the different asset classes

(e.g., ASSET_CLASS), characteristics (e.g., ISSUER_COUNTRY), values of these characteristics

(e.g., oecd), and risk-weights (e.g., risk_weight, 0.2). The logical operators are IF, AND,
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THEN, and we distinguish between the mathematical operator == and the regulatory operator

=. We thus obtain ηOD = NOD = 8, ηR = NR = 1, ηL = 3, NL = 4, ηM = 1, NM = 3.

We conduct the same exercise for each of the 19 items covered by Basel I. We can then

compute our six measures of regulatory complexity for each item, as well as for the entire

regulation. We report these measures in Table 2. In addition, Table 3 gives the pair-wise cor-

relation coefficients between the different measures, across the 19 regulatory instructions.

We report both the Pearson and Spearman correlation coefficients.

[Insert Tables 2 and 3 here.]

Since each item between (1a) and (5h) contains by construction exactly one regulatory

instruction, the measure quanti t y is always equal to 1 and its correlation with other mea-

sures is undefined. The measures leng th, c yclomati c, and level are highly correlated with

each other, while potenti al and di ver si t y are less correlated and thus potentially bring in-

formation not captured before.

2.2 Text analysis

We now repeat the same analysis of the Appendix 2 of Basel I, but relying this time on the

actual text and not on our “translation" into code. Our objective is to test whether our ap-

proach can meaningfully be applied to a text directly, and hence more easily and on a wider

scale than if one first has to translate a regulation into an algorithm.

A drawback of the text of Basel I’s Appendix 2 is that some words are left implicit. In par-

ticular, the mapping between different asset classes and their respective risk weights is only

indicated by the layout of the page. To circumvent this issue, we wrote a more explicit text in

which each item ends with “shall have an x% risk weight". This is the only modification we

made to the original text.10 We then classify as “operands" the words or word combinations

that have the same function as operands in the program, more precisely economic entities

(e.g., “bank” or “OECD”), concepts (e.g., “maturity" or “counterparty"), and values (e.g., “one

year”). We classify as regulatory operators words that indicate an obligation or regulatory

10We report this modified text in Appendix C.
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requirement, which are “shall" and “have". Logical operators are words that correspond to

logical operations, such as “and” or “excluding”. Mathematical operators are for instance “up

to" and “above". Using this approach, we classify 81 unique words out of the 86-word vocab-

ulary used by the text. The remaining words are used for grammatical reasons and do not

really correspond to operands or operators (e.g., “by”, “on”, “the”, etc.), hence we don’t take

them into account. Table 4 gives the top 5 words in each category. We then reproduce Tables

2 and 3 using the measures based on our text analysis.

[Insert Tables 4, 5, and 6 here.]

We observe that the text-based measures tend to be less correlated with each other than

the algorithm-based measures. The algorithm always uses the same logical structure to de-

fine the risk-weight in a particular rule. In contrast, the text version is sometimes ambiguous

or leaves some elements implicit, it is then up to the reader to interpret the text. A good ex-

ample is item (2a), which has l eng th = 43 in the algorithmic version but leng th = 22 only

in the text version. Interestingly, in both versions this item stands out as one of the most

complex according to c yclomati c, compl exi t y , and potenti al , but the compact way it is

drafted gives it a low value of leng th in the text version. Accordingly, this is also one of the

rules with the highest level in the text version.

Finally, we compute the correlations between the text-based measures and their algorithm-

based counterparts. Table 7 gives the correlation coefficients.11 The correlation coefficients

we obtain are quite high, with the exception of di ver si t y , which shows that the text-based

analysis and the algorithm-based analysis are capturing similar patterns. Moreover, the cor-

relation is particularly high for measures of problem complexity (quanti t y and potenti al ),

which indeed should theoretically not depend on whether the regulation is expressed in En-

glish or in code.

Overall, we conclude from this comparison that measures of regulatory complexity rely-

ing on a text analysis can be a good proxy for the more theoretically founded measures based

on the algorithmic version. This supports our adoption of the text-based approach for a full-

scale regulatory text in Section 4.1. In addition, this analysis confirms that quanti t y and

11Formally the coefficients are not defined for quanti t y . However, since quanti t y is constant in both the
algorithm version and the text version we adopt the convention that the correlation coefficients are equal to 1.
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potenti al are indeed capturing problem complexity, as they are less affected by a change in

the language used.

[Insert Table 7 here.]

3 Experiments

3.1 Validation of the measures

While the different measures we have studied are intuitive, they are necessarily somewhat

arbitrary, and one may wonder whether they are good measures of regulatory complexity.

The parallel with computer science suggests a methodology to test the relevance of the dif-

ferent measures: in computer science, complexity measures are tested by asking different

programmers to write the same code. One then checks whether the mistakes they make or

the time they take to perform the task are correlated with a measure of algorithmic com-

plexity. We follow this idea and ask subjects to evaluate a regulatory action by computing

regulatory quantities based on different regulations. We then measure to what extent the

correctness of their output and how quickly subjects have computed it is correlated with dif-

ferent measures of regulatory complexity.

Generating a sample of test regulations. For our experiment we continue to rely on the

Basel I regulation, this time as a testing ground. We generate a number of artificial “Basel-

I like" instructions to compute risk-weighted assets based on a balance sheet, where the

instructions vary in the number of asset classes to be considered, the different conditions

attached to each asset class, and the number of different risk-weights, so that they will also

have different measures of regulatory complexity.

There is obviously a lot of flexibility and arbitrariness in writing artificial regulations. In

order to tie our hands and avoid introducing potential biases by manually writing them, we

generate a sample of randomized instructions for computing risk-weighted assets, all fol-

lowing the template of Basel I, but with random variations. More precisely, for our random

regulation to have the same structure as the Basel I regulation text (see Section 2.1), we de-
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cide upfront on the number of IF-THEN-ELSE clauses we want to have. As with the actual

Basel I regulation, we use 6 clauses in total. Within each clause, the algorithm then selects a

number of random conditions (smaller or equal than some fixed positive bound, in our case

10). Each condition consists of operators and operands, e.g. ASSET_CLASS == "cash" that

can be combined by AND and OR statements. We use only operands and operators that also

exist in the Basel I regulation. Operands in our random regulation generator can take exactly

the values they can take in the original Basel I text. For example, ASSET_CLASS can take the

values {cash, claim, loan, premises, plant, equipment, real_estate,

other_fixed_assets, other_investments, capital_instruments}. Different assets can

have attributes, e.g., a claim can have (among other attributes) a ISSUER and a DENOMINATION.

Fig. 9 shows a flowchart of the algorithm we use.

[Insert Fig. 9 here.]

As a last step, we manually check that the instructions make sense, e.g., they do not con-

tain contradictory rules, and we make some minor manual changes to avoid ambiguities,

grammar mistakes, etc.12 At the end of this process, we obtain 38 regulations that we use in

our experiment. As shown in Table 8 below, there is significant variation in all the complexity

measures across the different regulations (in this section, all measures are computed based

on the actual texts seen by the participants to the experiment). A limitation of our sample

of randomly generated regulations is that several measures are quite correlated with each

other, as seen in Table 9. Such a high correlation is to be expected: there is a natural correla-

tion between the number of operands and operators, which we can also observe in the Basel

I instructions (Table 6).

[Insert Tables 8 and 9 here.]

Participants. In order to find participants able to read the regulations and compute reg-

ulatory quantities, we asked the students of the MSc in International Finance of HEC Paris,

class of 2020-2021, to volunteer for taking part in the experiment. The students had taken

12The Appendix D shows an example of such a randomly generated regulation. In addition, the replication
files of this paper give: (i) the program used to generate the random regulations; (ii) the raw regulations gener-
ated by the program; (iii) the final regulations we used in the experiment.
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an 18-hour course on “Economics of Financial Regulation", which included in particular a

description of the Basel I framework and a short example of how to compute risk-weighted

capital requirements. Importantly, the course did not discuss how to measure regulatory

complexity, so that there was no “priming" of the students.

Students were offered (i) 2 bonus points for completing the experiment, regardless of

performance and (ii) 1/3 bonus point for each correct computation. Since there were 9 com-

putations in total, students could obtain up to 5 bonus points, compared to 100 points for

the final exam. This scheme served as an incentive to participate in the experiment and try

to get a correct answer. As a result, 125 out of 191 students participated in the experiment,

and 67.9% of their answers were correct.

Experiment. Given the sanitary situation in early 2021, our experiment was conducted

online. Each participant had to register on a website designed for conducting the experi-

ment (https://regulatorycomplexity.org/). After an introductory page (Figure 1), the

participant registers and gives some background information (Figure 2). The participant is

then shown a screen with explanations about the experiment and how to compute capital

requirements (Figure 3). The next screen is a “test-round", which is the same for all partici-

pants (Figure 4). The computer screen is split vertically in two. On the right-hand side, there

is a series of instructions that mimick a Basel-I like capital regulation. On the left-hand side,

there is a simplified bank balance sheet with details about the different assets of the bank

that correspond to the regulation. The participant has to compute the risk-weighted assets

of the bank following the instructions. We record the answer given by the participant (and

hence whether it is correct), as well as the time taken to answer.

If the answer to the test-round is correct, the participant is notified that he/she found the

correct answer. If the answer is wrong, the participant is told so. In both cases, the partici-

pant is given an explanations on how to compute the correct answer (Figures 5 and 6), and

then moves to the second round. The second round is similar to the first one, except that the

regulation is drawn randomly from our set of randomly generated regulations. Moreover, the

participant doesn’t receive any feedback on his/her answer. The experiment is then repeated
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for a total of 10 rounds (including the first training round). The balance sheet displayed on

the left-hand side is constant across rounds and across students.

[Insert Fig. 1 to 6 here.]

Results. We want to test the ability of our complexity measures to forecast the difficulty

of computing risk-weighted assets depending on the regulation considered. A natural way to

proceed is to create a measure of “difficulty" at the regulation level and see how it correlates

with measures of complexity. Thus, for each randomly generated regulation j ∈ 1,2, ...38 we

create the variable cor r ect j , the percentage of correct answers for regulation j , and t i me j ,

the average time taken to solve regulation j . In both cases we exclude from the analysis 7

students who took the test several times, and whose answers are potentially affected by a

learning effect. To compute t i me j , we exclude incorrect answers and answers with time

below 7 seconds (1st percentile) or above 579 (99th percentile). We thus drop 342 of our 1062

observations.

We then run simple OLS regressions of cor r ect j and t i me j on our measures of com-

plexity, either on each measure individually, on each measure and length, on all measures

at the same time except level (which is the ratio of two other measures).13 We propose the

following four criteria to judge the quality of a complexity measure X other than length:

(i) X is negatively correlated with the percentage of correct answers: When regressing

cor r ect j over X j only, the coefficient on X j is negative and significant at the 10% level.

(i’) X explains the percentage of correct answers beyond length: When regressing cor r ect j

over l eng th j and X j , the coefficient on X j is negative and significant at the 10% level.

(ii) X is positively correlated with the time taken to give a good answer: When regressing

t i me j over X j only, the coefficient on X j is positive and significant at the 10% level.

(ii’) X explains the time taken to give a good answer beyond length: When regressing

t i me j over leng th j and X j , the coefficient on X j is positive and significant at the 10% level.

Ideally, a good measure of complexity should be negatively correlated with the probabil-

ity of finding a correct answer and positively with the time taken to provide a good answer.

13In Appendix G, we also run panel regressions at the student-question level to further investigate the deter-
minants of providing a correct answer and the time taken to provide it.
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Moreover, given that l eng th is easy to compute and widely used, it is natural to ask that a

new measure captures something which is not already captured by leng th. Tables 10, 11, 12,

and 13 show the results of the different regressions used to test our four criteria. In addition,

Table 14 summarizes which criteria are satisfied for each measure.

[Insert Tables 10 to 14 here.]

Our four criteria allow us to significantly discriminate among the different measures. The

measure quanti t y stands out, as it is the only one to pass the four criteria. The measure

potenti al only fails criterion (i’). The measure c yclomati c is significantly correlated with

cor r ect and t i me with the expected signs, but not once we control for leng th, it thus fails

criteria (i’) and (ii’). di ver si t y and level fail all but one criterion.

These results have natural interpretations. c yclomati c is a measure of psychological

complexity, like leng th, which may be why it does not capture anything beyond what is

already captured by l eng th. In contrast, quanti t y and potenti al are both measures of

problem complexity and were hence expected to capture a dimension not already reflected

in leng th. di ver si t y was introduced by symmetry with potenti al , but it does not rely on

any theoretical foundation, and accordingly it performs poorly. level is a special case, as it is

closely related to the ratio of potenti al over leng th. It seems that the impact of leng th is

stronger than the impact of potenti al , so that in univariate regressions level has the wrong

sign. For criterion (ii’) the sign of level is correct once we control for leng th, but in that case

level essentially brings the same information as potenti al .

It is also instructive to look at the R2 of the different regressions we conducted. l eng th

alone explains 27% of the variation of cor r ect across the 38 regulations. If we add quanti t y

the R2 jumps to 42%, confirming that quanti t y brings information not already included

in l eng th. potenti al instead does not seem to bring additional information relative to

leng th. If one looks at t i me instead, the roles of potenti al and quanti t y are flipped:

leng th alone captures 58% of the variation of t i me, adding potenti al increases this num-

ber to 67%, but adding quantity brings it to 62% only. While potenti al and quanti t y are

both measures of problem complexity, it seems they are capturing different subdimensions,

20

Electronic copy available at: https://ssrn.com/abstract=3523824



one seems more associated with making mistakes and the other one with taking a longer

time to answer.

While we believe these results are interesting in their own right, our main conclusion is

broader: our methodology, inspired by the validation of algorithmic complexity measures in

computer science, provides a powerful touchstone for testing novel measures of regulatory

complexity. Indeed, out of five measures we tested, only one passed all four criteria, and a

second one passed three of them. As we provide the texts of the regulations we used and the

results of the experiments online, other researchers have a tool to test any other measure of

complexity and compare it to the five we considered. The only restriction is that the measure

has to be text-based.

4 Applications

4.1 A dictionary for positive analysis: The Dodd-Frank Act

In order to apply the Halstead approach at scale on a variety of actual regulatory texts, one

needs a dictionary of regulatory terms, with a classification of words into operators and

operands. To start building such a dictionary and prove that our measures can be imple-

mented on a larger scale, we compute our complexity measures for the different titles of the

2010 Dodd-Frank Act. There are two reasons for this choice. First, the Dodd-Frank Act is

one of the key regulations introduced after the financial crisis. It has triggered a lot of de-

bate, in particular regarding its perceived complexity. Second, the Dodd-Frank Act touches

upon a wide range of issues in finance, so that by classifying the words of the Dodd-Frank

Act we hope to create a comprehensive dictionary that can be used for a broad range of other

regulatory texts.

The scale and scope of the Dodd-Frank Act also creates three new challenges compared

to the more limited example of Basel I.

First, a lot of operands in the Dodd-Frank Act are “n-grams", expressions made of n dis-

tinct words. For instance, “Consumer Financial Protection Bureau" should be considered as

one operand, not four distinct words. To take this into account, we read the entire Act and
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manually made a list of all such n-grams (for details see Appendix E). We classified each n-

gram into a category, and then removed them from further counts. That is, we made sure

that “Consumer Financial Protection Bureau" is counted only once as an operand, not once

as an operand and then again as four distinct words.

Second, some words in the text can sometimes be used as an operand and sometimes

as an operator. The most prominent example is the word “is". In principle, “is" could be a

regulatory operator (as in, e.g., “the risk-weight is 20%"). However, it could have a merely

grammatical function to indicate the passive voice (e.g., “at the time at which each report is

submitted", Sec. 112 (b)). We classify such ambiguous words in the category “other", and

hence don’t count them in our different measures.14

Third, the Act uses a lot of external references. As an example, Section 201 (5) reads “The

term “company" has the same meaning as in section 2(b) of the Bank Holding Company Act

of 1956 (12 U.S.C. 1841(b)) [...]" How should one deal with such a case? A possible solution

would be to include the text referenced in the example as being implicitly part of the Act.

However, with such an approach we would quickly run into the “dictionary paradox" (every

reference refers to other texts). Instead, and more consistent with the Halstead approach, we

consider that if a legal reference is mentioned it is part of the “vocabulary" one has to master

in order to read the Act, similar to a program calling a pre-programmed function. The role

of legal references is ambiguous, they are sometimes used as operators and sometimes as

operands. Thus, we include them in the “other" category.

These difficulties require us to classify the words manually. We created an online dash-

board to help with this task, shown in Fig. 7. The main function of this dashboard is to

highlight words that have already been classified, so that we never have to classify the same

word twice. After classifying words in the 16 Titles of the Dodd-Frank Act plus its introduc-

tion, we create a dictionary containing: 429 operators (230 logical operators, 161 regulatory

operators, 38 mathematical operators), 5,872 operands, as well as 2,799 “other" words (2,450

legal references, 222 function words, and 127 ambiguous words). Table 15 shows the top 10

14There is necessarily some judgement involved in this decision. One could consider other possibilities, such
as estimating the fraction of occurrences in which “is" is a regulatory operator, an operand, etc., but we believe
these estimates would not necessarily carry over to other regulatory texts, thus running against the objective of
building a reusable dictionary.
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words in each category as well as the number of occurrences. Similarly to what we did in

Section 2.2, we then compute different measures for the different titles of the Dodd-Frank

Act, and the entire act separately. The results are reported in Table 16.

[Insert Tables 15 and 16, and Fig. 7 here.]

The objective of building this dictionary is that it can be used on other regulatory texts.

To test whether the dictionary is rich enough, we conduct the following exercise. For each

title i between 1 and 16 of the Dodd-Frank Act, we create an alternative dictionary based

on all the words classified outside of title i . We then treat title i as a new regulation, and

count what percentage of words we are not able to classify based on the alternative dictio-

nary. In addition, we also count the proportion of these unclassified words that are actually

operands, operators of different types, and other words. As shown in Table 17, on average

across all titles we are able to retrieve 86% of all words. Moreover, many of the words we

cannot find are in the “Other" category and would not be used in the complexity measures

anyway. We also find more than 96% of operators of all categories, so that measures rely-

ing on operators (cyclomatic, potential, and diversity) seem the easiest to compute on other

texts without having to expand the dictionary.

[Insert Table 17 here.]

We made the dictionary of all the classified words in the Dodd-Rank Act available online.

In addition, the code for the dashboard we used is available, and can be used to enrich our

dictionary with words from other regulatory texts. We hope that through this collaborative

tool other studies of regulatory complexity will be conducted, so that for instance the com-

plexity of different types of regulation or regulations in different countries can be compared.

4.2 Towards a normative analysis: “balancing risk-Sensitivity and sim-

plicity"

The length and perceived complexity of the Basel II and Basel III Accords have led to an

intense debate in policy circles about the complexity of banking regulation. This led in par-

ticular the Basel Committee to publish a discussion paper on the trade-offs between “risk
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sensitivity, simplicity and comparability" (Basel Committee on Banking Supervision, 2013).

8 years later, the right trade-off remains elusive, in particular due to the lack of a normative

framework to think about regulatory complexity. In this section, we sketch how our frame-

work could (after suitable extensions) eventually serve such a normative purpose and be

used to think about the optimal level of complexity.

As a starting point, one needs a model of the economy or the financial system that can ac-

commodate different regulations with different levels of complexity. In addition, this model

ought to be quantitative. This is precisely where the literature on bank capital requirements

is heading.15 As a simple illustration, assume a bank invests in assets that have a certain

“asset class" x ∈ [0,1]. Consider then the following family of bank capital regulations:

if x < x̄1 then E ≡ E∗
1

else if x < x̄2 then E ≡ E∗
2

...

else if x < x̄I−1 then E ≡ E∗
I−1

else E ≡ E∗
I

where E is the amount of equity the bank is required to have for an asset belonging to

class x, the x̄i are thresholds chosen by the regulator, the E∗
i are capital levels chosen by the

regulator, and I is the number of distinct asset classes considered by the regulation.

In Appendix F, we propose for illustration a simple model of bank risk-shifting in which

such a capital regulation improves welfare. Moreover, the optimal welfare the regulator can

achieve for a given number of asset classes I , denoted W (I ), increases in I . This captures in

a stylized way the benefits of risk-sensitivity, the first leg of the trade-off described in Basel

Committee on Banking Supervision (2013).

The second leg, simplicity, the opposite of complexity, can be captured by our complexity

measures. In the regulation above, the logical operators are “if", “else", and “then", ≡ is a

regulatory operator, and < is a mathematical operator. The operands are x, E , the x̄i , and the

E∗
i . We have ηR = NR = 1, ηL = 3 and NL = 3(I −1), ηM = 1 and NM = I −1, ηOD = 2I +1 and

NOD = 4I−2. Given the number I of intervals used, we can then easily compute the measures

15See for instance Begenau and Landvoigt (2021), or the BIS’ “Financial Regulation Assessment: Meta Exer-
cise" (https://www.bis.org/frame/) for a meta-analysis of the quantitative impact of capital requirements.
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leng th(I ), c yclomati c(I ), quanti t y(I ), potenti al (I ), di ver si t y(I ), and l evel (I ) using

the formulas in Table 1 and see how they vary with the number of asset classes I .

We can then use experiments such as those in Section 3 to translate the measures into

a predicted cost of complexity, measured either as the frequency p̂(I ) with which the reg-

ulation is misunderstood or as the average time t̂ (I ) taken to apply the regulation. More

specifically, we use the estimates from Tables 11 and 13 to compute, for every I :

p̂(I ) = 0.951+0.001l eng th(I )+0.000c yclomati c(I ) (3)

−0.106quanti t y(I )−0.013potenti al (I )+0.101di ver si t y(I ),

t̂ (I ) = 9.587+1.493l eng th(I )−3.750c yclomati c(I ) (4)

+10.431quanti t y(I )+6.581potenti al (I )−13.109di ver si t y(I ).

We can now quantitatively measure how increasing the number of distinct asset classes

affects both social welfare and measures of the cost of complexity. Figure 8 displays the re-

sults for the particular welfare function derived in Appendix F. The last step would be for

the policymaker designing the regulation to formulate explicit preferences over social wel-

fare and complexity. With such preferences, the policymaker would be able to compute the

optimal number of distinct asset classes and hence arrive at the optimal trade-off between

“risk-sensitivity" (which improves welfare in this example) and “simplicity".

[Insert Fig. 8 here.]

The method we outline here is only a proof of concept, but to our knowledge this is the

first proposal offering policymakers a scientific and quantitative approach to the trade-off

between regulatory complexity and other policy objectives. The actual implementation of

this approach for policy would require policymakers to complete three additional tasks: (i)

develop quantitative models of regulation, rich enough to estimate the welfare impact of

different regulatory alternatives; (ii) formulate an explicit trade-off between welfare and reg-

ulatory simplicity; (iii) run richer and more robust experiments to have a more precise view

of the costs of psychological complexity for different audiences.16

16More specifically, the type of experiment we consider in Section 3 should ideally be reproduced with regula-
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5 Conclusion

We propose a comprehensive framework, inspired by the computer science literature, to an-

alyze regulatory complexity. Our framework allows us to distinguish different dimensions of

regulatory complexity, to derive six measures of regulatory complexity that can be applied

to large scale regulatory texts, to conduct a validation test that can be applied to any text-

based measure, and to study the trade-off between the costs and benefits of more complex

regulations in a normative model.

The present work is only a first step in applying this new approach to the study of reg-

ulatory complexity, and is meant as a “proof of concept". We believe our first results are

encouraging and highlight several promising avenues for future research.

First, the dictionary that we created will allow other interested researchers to compute

various complexity measures for other regulatory texts and compare them to those we pro-

duced for Basel I and the Dodd-Frank Act. Moreover, the dictionary can be enriched in a

collaborative way. Such a process would make the measures more robust over time and al-

low to compare the complexity of different regulatory topics, different updates of the same

regulation, different national implementations, etc. A rich database of the complexity of dif-

ferent regulations could eventually be used in empirical studies aiming at testing what is the

impact of regulatory complexity, and in particular testing some of the mechanisms that have

been proposed in the theoretical literature.

Second, the experiments we conducted and the validation criteria we propose allow in-

terested researchers to test any alternative text-based measure and compare it to the six

measures considered in this study. They could also serve as a useful benchmarking tool for

policymakers drafting new regulations.

Finally, the measures of complexity we propose can be computed also on models of reg-

ulation, opening the possibility for policymakers to conduct the trade-off between the pre-

cision and the complexity of regulation under the guidance of a quantitative model.

tions actually under discussion, and with participants closer to the actual audience of regulatory texts (bankers,
lawyers, regulators, etc.).
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A Tables

Table 1: Summary of Complexity Measures.

Name Source Formula Complexity Dimension

Length e.g., Haldane and Madouros (2012) N Psychological
Cyclomatic complexity McCabe (1976) NL Psychological
Quantity of regulations Al-Ubaydli and McLaughlin (2017) NR Problem
Potential volume This paper and Halstead (1977) 2+ηOD Problem
Operator diversity This paper ηOR Psychological

Level This paper and Halstead (1977) 2+ηOD
N Psychological

Average word length e.g., Amadxarif et al. (2019) - Psychological
Lexical diversity Maas (1972) - Psychological
Readability metric (Kincaid et al., 1975) - Psychological
Shannon’s entropy e.g., Katz and Bommarito (2014) - Psychological

PageRank Amadxarif et al. (2019) - Psychological
Network Centralities Boulet et al. (2011) - Psychological
(Eigenvector, Betweenness, Closeness)

Regulation Index Simkovic and Zhang (2020) - Computational
RegIn Kalmenovitz (2021) - Computational

Table 2: Complexity measures of the 19 items of Basel I (algorithmic version).

Regulation leng th c ycl omati c quanti t y potenti al di ver si t y level

1a 8 2 1 6 4 0.75
1b 24 6 1 12 6 0.5
1c 20 5 1 11 6 0.55
1d 16 4 1 9 6 0.56
2a 43 11 1 14 7 0.33
3a 68 17 1 14 6 0.21
3b 26 7 1 12 6 0.46
3c 34 9 1 14 8 0.41
3d 44 11 1 15 7 0.34
3e 12 3 1 8 5 0.67
4a 20 5 1 11 6 0.55
5a 12 3 1 8 5 0.67
5b 20 5 1 12 7 0.6
5c 22 6 1 12 6 0.55
5d 16 4 1 10 5 0.63
5e 21 6 1 9 5 0.43
5f 13 4 1 7 5 0.54
5g 16 4 1 10 6 0.63
5h 5 2 1 4 3 0.8

Total 440 114 19 54 10 0.12
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Table 3: Pairwise correlations between complexity measures, across the 19 items of Basel I
(algorithmic version). quanti t y is not included, as it is constant across items.

Panel A: Pearson Correlation Coefficients

leng th c ycl omati c potenti al di ver si t y l evel

leng th 1 1 0.81 0.6 -0.93
c yclomati c 1 1 0.8 0.58 -0.94
potenti al 0.81 0.8 1 0.9 -0.83
di ver si t y 0.6 0.58 0.9 1 -0.67
level -0.93 -0.94 -0.83 -0.67 1

Panel B: Spearman Rank Correlation Coefficients

leng th c ycl omati c potenti al di ver si t y l evel

leng th 1 0.99 0.94 0.78 -0.93
c yclomati c 0.99 1 0.92 0.76 -0.95
potenti al 0.94 0.92 1 0.89 -0.79
di ver si t y 0.78 0.76 0.89 1 -0.65
level -0.93 -0.95 -0.79 -0.65 1

Table 4: Top 5 words in each category in Basel I (text version).

Operands Operators:
Regulatory Logical Mathematical

risk weight 19 have 19 and 12 up to 2
claims 15 shall 19 other 6 above 1
banks 10 or 5 all 1
OECD 10 outside 4 over 1
central 9 excluding 2
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Table 5: Complexity measures of the 19 items of Basel I (text version).

Regulation leng th c ycl omati c quanti t y potenti al di ver si t y level

1a 5 0 2 5 2 1
1b 16 2 2 12 3 0.75
1c 12 2 2 9 4 0.75
1d 16 1 2 13 3 0.81
2a 22 3 2 18 5 0.82
3a 21 2 2 17 4 0.81
3b 14 1 2 9 3 0.64
3c 26 3 2 13 5 0.5
3d 18 3 2 14 5 0.78
3e 8 0 2 8 2 1
4a 15 2 2 13 3 0.87
5a 7 0 2 7 2 1
5b 13 1 2 11 4 0.85
5c 17 3 2 12 6 0.71
5d 10 0 2 10 2 1
5e 12 3 2 9 4 0.75
5f 15 5 2 10 6 0.67
5g 12 2 2 9 4 0.75
5h 7 1 2 5 4 0.71

Total 266 34 38 69 14 0.26

Table 6: Pairwise correlations between complexity measures, across the 19 items of Basel I
(text version). quanti t y is not included, as it is constant across items.

Panel A: Pearson Correlation Coefficients
leng th c ycl omati c potenti al di ver si t y l evel

leng th 1 0.65 0.88 0.63 -0.62
c yclomati c 0.65 1 0.48 0.89 -0.69
potenti al 0.88 0.48 1 0.44 -0.24
di ver si t y 0.63 0.89 0.44 1 -0.72
level -0.62 -0.69 -0.24 -0.72 1

Panel B: Spearman Rank Correlation Coefficients

leng th c ycl omati c potenti al di ver si t y l evel

leng th 1 0.71 0.93 0.64 -0.42
c yclomati c 0.71 1 0.56 0.89 -0.64
potenti al 0.93 0.56 1 0.47 -0.1
di ver si t y 0.64 0.89 0.47 1 -0.67
level -0.42 -0.64 -0.1 -0.67 1
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Table 7: Correlation coefficients between the measures based on the algorithm and the mea-
sures based on the text.

Pearson Spearman

leng th 0.76 0.84
c yclomati c 0.41 0.64

quanti t y 1 1
potenti al 0.82 0.8
di ver si t y 0.4 0.48

level 0.39 0.43

Table 8: Summary statistics on complexity measures - sample of 38 randomly generated
regulations.

mean sd min max

leng th 31.82 12.46 10.00 57.00
c yclomati c 5.32 3.58 1.00 13.00
quanti t y 4.79 1.19 2.00 6.00
potenti al 16.66 5.45 7.00 28.00
di ver si t y 4.24 0.94 3.00 7.00
level 0.55 0.09 0.39 0.70

Table 9: Pairwise correlations between complexity measures, sample of 38 randomly gener-
ated regulations.

Panel A: Pearson Correlation Coefficients
leng th c ycl omati c quanti t y potenti al di ver si t y level

leng th 1 0.89 0.87 0.92 0.8 -0.7
c yclomati c 0.89 1 0.68 0.72 0.63 -0.79
quanti t y 0.87 0.68 1 0.82 0.7 -0.69
potenti al 0.92 0.72 0.82 1 0.83 -0.4
di ver si t y 0.8 0.63 0.7 0.83 1 -0.43
level -0.7 -0.79 -0.69 -0.4 -0.43 1

Panel B: Spearman Rank Correlation Coefficients

leng th c ycl omati c quanti t y potenti al di ver si t y level

leng th 1 0.89 0.85 0.91 0.83 -0.69
c yclomati c 0.89 1 0.75 0.7 0.67 -0.86
quanti t y 0.85 0.75 1 0.8 0.69 -0.65
potenti al 0.91 0.7 0.8 1 0.86 -0.39
di ver si t y 0.83 0.67 0.69 0.86 1 -0.45
level -0.69 -0.86 -0.65 -0.39 -0.45 1
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Table 10: Criterion (i): Correlation with cor r ect . This table reports the coefficients, t-
statistics (in brackets), and R2, of univariate regressions of cor r ect over the six measures
of complexity separately.

(1) (2) (3) (4) (5) (6)

leng th -0.007***
(-3.63)

c yclomati c -0.019**
(-2.60)

quanti t y -0.091***
(-5.04)

potenti al -0.016***
(-3.51)

di ver si t y -0.045
(-1.56)

level 0.813***
(2.78)

R2 0.268 0.158 0.414 0.254 0.063 0.177

Table 11: Criterion (i’): Correlation with cor r ect beyond leng th. This table reports the
coefficients, t-statistics (in brackets), and R2, of regressions of cor r ect over leng th and each
of the five other measures of complexity separately (columns (1) to (5)). In addition, column
(6) reports the results of a regression of cor r ect over all measures except level.

(1) (2) (3) (4) (5) (6)

leng th -0.011** 0.002 -0.005 -0.012*** -0.006** 0.001
(-2.54) (0.63) (-0.93) (-3.88) (-2.17) (0.07)

c yclomati c 0.015 -0.000
(1.01) (-0.00)

quanti t y -0.111*** -0.106**
(-3.04) (-2.70)

potenti al -0.006 -0.013
(-0.48) (-0.97)

di ver si t y 0.083* 0.101**
(2.03) (2.51)

level 0.225
(0.58)

R2 0.289 0.421 0.273 0.345 0.275 0.518
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Table 12: Criterion (ii): Correlation with t i me. This table reports the coefficients, t-
statistics (in brackets), and R2, of univariate regressions of t i me over the six measures of
complexity separately.

(1) (2) (3) (4) (5) (6)

leng th 3.256***
(7.09)

c yclomati c 8.259***
(4.01)

quanti t y 33.870***
(6.96)

potenti al 7.954***
(8.46)

di ver si t y 34.565***
(4.65)

level -227.829**
(-2.40)

R2 0.582 0.309 0.574 0.665 0.375 0.138

Table 13: Criterion (ii’): Correlation with time beyond leng th. This table reports the coef-
ficients, t-statistics (in brackets), and R2, of regressions of time over leng th and each of the
five other measures of complexity separately (columns (1) to (5)). In addition, column (6)
reports the results of a regression of time over all measures except level.

(1) (2) (3) (4) (5) (6)

l eng th 5.615*** 1.831** 0.287 3.269*** 4.181*** 1.493
(6.01) (2.05) (0.26) (4.17) (6.85) (0.56)

c yclomati c -9.197*** -3.750
(-2.83) (-0.83)

quanti t y 17.229* 10.431
(1.84) (1.09)

potenti al 7.349*** 6.581*
(2.96) (2.03)

di ver si t y -0.210 -13.109
(-0.02) (-1.33)

level 190.396**
(2.17)

R2 0.660 0.619 0.666 0.582 0.632 0.712

35

Electronic copy available at: https://ssrn.com/abstract=3523824



Table 14: Summary of the criteria for each measure. This table reports for each complexity
measure other than length whether it passed each of the criteria (i), (i’), (ii), and (ii’). A X
symbol indicates that the measure satisfies the criterion, and a 7 symbol that it does not.

(i) (i’) (ii) (ii’)

c yclomati c X 7 X 7

quanti t y X X X X
potenti al X 7 X X
di ver si t y 7 7 X 7

level 7 7 7 X

Table 15: Top 10 words in each category, entire Dodd-Frank Act.

Operands Operators

Regulatory Logical Mathematical

COMMISSION 1573 SHALL 3595 AND 9352 ADDING 267
PERSON 920 AMENDED 651 OR 8928 ADDITIONAL 125
BUREAU 788 REQUIRED 548 ANY 4007 TOTAL 101

CORPORATION 771 ESTABLISHED 282 AS 2646 MINIMUM 86
INFORMATION 731 ESTABLISH 247 OTHER 1546 EXCEED 70

DATE 692 REQUIRE 220 NOT 1128 OVER 69
STATE 607 PRESCRIBED 219 AFTER 906 ADDED 68

APPROPRIATE 569 DETERMINES 212 INCLUDING 761 INCREASE 48
REPORT 564 PRESCRIBE 202 EACH 687 MAXIMUM 41

AUTHORITY 552 DETERMINE 181 WITH RESPECT TO 678 MINIMIZE 28
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Table 16: Complexity measures of the 16 titles of the Dodd-Frank Act.

Title length cyclomatic quantity potential diversity level

1 10581 2271 729 1389 190 0.13
2 16388 4479 852 1559 212 0.10
3 7269 2052 335 889 130 0.12
4 1938 466 117 444 94 0.23
5 3539 828 163 784 107 0.22
6 7662 1960 503 1040 157 0.14
7 32055 8195 2195 2127 231 0.07
8 3852 882 263 634 119 0.16
9 26319 5826 1614 2533 277 0.10
10 31872 7938 1916 2724 277 0.09
11 3277 764 220 674 113 0.21
12 780 155 49 248 42 0.32
13 575 141 31 152 32 0.26
14 16126 3389 866 2068 237 0.13
15 2013 376 106 549 76 0.27
16 68 22 3 32 14 0.47
Entire Act 164314 39744 9962 5874 429 0.04

Table 17: Fraction of words found in each title of the Dodd-Frank Act, using dictionaries built
from the other titles only.

Title All Operands Operators Other

Logical Regulatory Mathematical

1 0.89 0.89 0.92 1.00 0.88 0.84
2 0.92 0.94 0.98 0.97 0.93 0.81
3 0.83 0.93 1.00 0.96 1.00 0.66
4 0.93 0.92 0.98 1.00 1.00 0.91
5 0.87 0.84 1.00 0.97 1.00 0.90
6 0.86 0.90 0.98 0.98 0.92 0.73
7 0.80 0.83 0.95 0.98 0.80 0.70
8 0.94 0.95 1.00 1.00 1.00 0.88
9 0.77 0.81 0.93 0.94 0.95 0.60
10 0.75 0.81 0.91 0.93 0.90 0.55
11 0.90 0.91 0.97 0.97 1.00 0.84
12 0.95 0.95 1.00 1.00 1.00 0.95
13 0.87 0.89 1.00 1.00 1.00 0.80
14 0.77 0.80 0.90 0.84 0.95 0.64
15 0.85 0.84 0.98 0.97 1.00 0.85
16 0.91 0.87 1.00 1.00 . 0.91
Average 0.86 0.88 0.97 0.97 0.96 0.79
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B Figures

Figure 1: Online experiment - Welcome page.

38

Electronic copy available at: https://ssrn.com/abstract=3523824



Figure 2: Online experiment - Registration page.
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Figure 3: Online experiment - Instructions page.

Figure 4: Online experiment - Test round.

Figure 5: Online experiment - Feedback after correct answer in the test round.
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Figure 6: Online experiment - Feedback after wrong answer in the test round.
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Figure 7: The Dashboard we developed to help us classify words in the Dodd-Frank Act as
one of the following seven categories: Logical Connectors, Regulatory Operators, Economic
Operands, Attributes, Legal References, Function Words, or Other. Top: The plain text of
the Dodd-Frank Act. When highlighting a word or phrase, our dashboard displays a simple
drop-down menu from which the category can be selected. The dashboard also provides
some simple statistics on the right of the screen, and navigation on the left. Bottom: A mark-
up of the Dodd-Frank Act when all words and phrases have been classified.
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Figure 8: Frequency of correct answers, time to answer, and social welfare, as functions of
the number of distinct asset classes.
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C Two representations of Basel I risk-weighted assets

In the following, we provide a description of the Basel I regulation in the form of a stylized

algorithm and compare it side by side with the actual text of the regulation. We use pseudo

code that simply captures the logical flow of the instructions in Basel I. To compute the Hal-

stead measures for each item we consider the code contained between two “ASSET_CLASS

==" (excluding this expression). This section reports the text we used to compute the com-

plexity measures in Table 5.
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D Example of a randomly generated regulation

We report here one of the random regulations generated by our algorithm. We first report

the raw output and then the “translated" text that students saw in the experiment.

E A dictionary for studying the complexity of regulatory texts

As discussed in Section 4.1, we have created a dictionary consisting on n-grams that appear

in the text version of the Dodd-Frank Act. We have followed the following steps to create our

dictionary:

1. We started by manually classifying n-grams using the dashboard discussed in Section

4.1. This results in 6,115 unique entries and a marked-up version of the Dodd-Frank

Act where each classified n-gram is enclosed in a <span class="Category"></span>

html tag. The Category of each n-gram is either Logical Operators, Regulatory Opera-

tors, Operands (Economics Operands or Attributes), or Other (Legal References, Func-
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tion Words, or ambiguous words). We record all residual text that is not manually clas-

sified as an n-gram.

2. We then standardize the n-grams in our dictionary by stripping away all special char-

acters such as ‘",;:.() and transforming each n-gram into uppercase. This leaves us

with a standardized dictionary of 9,099 n-grams.

3. Next, we sort those n-grams from longest to shortest and iterate through the similarly

standardized text of the Dodd-Frank Act again, removing each identified n-gram from

the remaining text. We do this for each n-gram and in turn are able to match virtually

the entire text of the Dodd-Frank Act.

F A model of risk-sensitivity

We consider a bank with 1 in assets, that can be financed either with deposits D or equity

E . In case the bank fails, depositors are reimbursed by the government using public funds,

which have a marginal cost of 1+λ. These losses can be mitigated by asking the bank to use

more equity, but we take as given that equity has a marginal social cost of 1+δ.

There is a continuum x ∈ [0,1] of asset types. The bank starts with an asset of type x,

drawn from the uniform distribution over [0,1]. With probability p, the economy is growing

and asset x pays r (x). With probability 1−p, the economy enters a recession and the asset

pays only 1− x, i.e., the bank makes a loss of x on its investment. If E < x the bank defaults,

and the government has to repay D − (1−x) = x −E to the depositors.

We assume that the social cost of capital is lower than the expected gain of reducing losses

to the public sector:

λ(1−p) > δ. (5)

For a given level of equity E and an asset type x, total welfare writes as:

pr (x)+ (1−p)[1−x −λmin(x −E ,0)]−δE . (6)

We want to derive an objective function for the regulator. As pr (x)+ (1−p)(1− x) is exoge-
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nously given, we can consider the following objective function:

W (E , x) =−λ(1−p)min(x −E ,0)−δE . (7)

As long as E < x, we have ∂W /∂E = λ(1−p)−δ, which by assumption is positive. It is then

clear that the optimal regulation would be to have E∗(x) = x for any x, so that the bank never

defaults. Total expected welfare would then be:

∫ 1

0
W (x, x)d x =

∫ 1

0
−δxd x =−δ

2
. (8)

Such a regulation requires to associate a continuum of different asset types to different levels

of capital, which may be very complex, and hence costly.

We assume instead that the regulator defines different buckets, that is, intervals [ai ,bi ]

such that if x ∈ [ai ,bi ] then E ≥ Ei . For a given interval [a,b] the optimal capital requirement

E∗
a,b is given by:

E∗
a,b = b −δ b −a

λ(1−p)
. (9)

Proof: For a given E ∈ [a,b], total welfare is given by:

Wa,b(E) =
∫ b

a
[−λ(1−p)min(x −E ,0)−δE ]d x (10)

= −λ(1−p)
∫ b

E
(x −E)d x −δE(b −a) (11)

= −λ(1−p)
(b −E)2

2
−δE(b −a). (12)

Maximizing this quantity with respect to E gives the desired result. ■
Note that we indeed have a ≤ E∗

a,b ≤ b. This means that banks with assets x close to a will

be over-capitalized (they have more capital than what is necessary to sustain the losses x),

while banks with assets x close to b will be undercapitalized (they default with probability

1−p).
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We obtain that the optimal welfare over interval [a,b] is given by:

Wa,b(E∗
a,b) = δ(b −a)

[
δ(b −a)

2λ(1−p)
−b

]
. (13)

Using this expression, we can determine the optimal intervals chosen by the regulator. If the

regulator uses I intervals it is actually optimal to split [0,1] into I intervals of equal length.

To see why, consider the case of two intervals, [0, x̄] and [x̄,1]. Total expected welfare is then

given by:

W0,x̄(E∗
0,x̄)+Wx̄,1(E∗

x̄,1) = δx̄

[
δx̄

2λ(1−p)
− x̄

]
+δ(1− x̄)

[
δ(1− x̄)

2λ(1−p)
−1

]
(14)

= δx̄(1− x̄)
λ(1−p)−δ
λ(1−p)

− δ

2λ(1−p)
[δ−2λ(1−p)]. (15)

We immediately see that the optimal x̄ is equal to 1/2, that is, the two intervals are symmetric.

Consider now any number I of intervals. Following the same approach it is easily proved

that all intervals must have the same length, so that the I intervals are [0,1/I ], [1/I ,2/I ]...[(I−
1)/I ,1]. The i +1-th interval has a welfare of:

Wi /I ,(i+1)/I (E∗
i /I ,(i+1)/I ) = δ

I

[
δ

2Iλ(1−p)
− i +1

I

]
(16)

= δ

I 2

[
δ−2λ(1−p)

2λ(1−p)
− i

]
. (17)

We use this lest expression to compute total welfare:

W (I ) =
I−1∑
i=0

Wi /I ,(i+1)/I (E∗
i /I ,(i+1)/I ) =−δ

2
− δ

2Iλ(1−p)
[λ(1−p)−δ]. (18)

Total welfare is thus increasing in I , and converges to the continuous case −δ/2 as I →+∞.

Without any cost of complexity, it would be optimal to define as many risk buckets as possi-

ble. We use expression (18) to plot W (I ) on Fig. 8, with λ= 0.05, δ= 0.01, and p = 0.05. These

parameters are meant for illustration only.
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G Experiments - Panel analysis

In this section we go beyond the cross-sectional analysis at the regulation level of Section

3 and further analyze the determinants of the participants’ answers by running panel re-

gressions. The participants’ answers form a balanced panel with 118 students, indexed by

i , answering a series of 9 questions each, indexed by t . The t-th question for each student

is drawn randomly from our 38 randomly generated regulation, and draws are independent

across questions and students. Denoting Xi ,t a complexity measure for the t−th regulation

given to student i , and Yi ,t a measure of the performance of student i on question t , we study

the power of X to explain the variation in Y . First, we evaluate the following probit model:

ln

(
Pr(cor r ecti ,t = 1)

Pr(cor r ecti ,t = 0)

)
=α+βXi ,t , (19)

where cor r ecti ,t = 1 if student i gave the correct answer to question t , and 0 otherwise.

We estimate the model with student and question fixed effects.17

Table 18: Explaining the probability to find the correct answer. OLS regression with student
and question fixed effects.

(1) (2) (3) (4) (5) (6) (7)

Length -0.037*** -0.002
(-7.95) (-0.07)

Cyclomatic -0.095*** -0.012
(-6.23) (-0.23)

Quantity -0.507*** -0.563***
(-9.34) (-5.25)

Potential -0.078*** -0.061*
(-7.59) (-1.72)

Diversity -0.243*** 0.555***
(-4.34) (4.61)

Level 4.061***
(6.52)

Log-Likelihood -416.15 -430.59 -397.89 -419.72 -441.26 -428.57 -385.92
Pseudo-R2 0.243 0.217 0.277 0.237 0.198 0.221 0.298

The results are displayed in Table 18. We obtain that all measures of complexity except

level are associated with a lower probability of answering correctly. In terms of explana-

17This is in principle unnecessary as regulations are randomly assigned to students, but we include these
effects for robustness due to the relatively small sample size. Note that with student fixed effects there is no
variation to explain for the 3 students who did not answer a single question correctly and the 14 students who
answered all questions correctly.
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tory power, measured either by the log-likelihood of the model or the pseudo-R2, the best

measure is quanti t y , followed by leng th and potenti al . Column (7) uses all measures

as regressors, except length (which is mechanically related to leng th and potenti al ). This

regression must be interpreted with caution as the regressors are highly correlated with each

other. However, we observe that the Pseudo-R2 in this regression is 111% higher than in the

regression using Column (1) only, which strongly suggests that the additional measures cap-

ture dimensions of complexity which are not already subsumed in leng th.

Next, we run a similar analysis but on the time taken to provide a correct answer. As in

Section 3, we exclude answers with time below 7 seconds (1st percentile) or above 579 (99th

percentile). We also keep only the correct answers, and run the following regression with

OLS, both without and with student and question fixed effects, and where t i mei ,t is the time

(in seconds) taken by student i to answer question t .

t i mei ,t =α+βXi ,t . (20)

The results are displayed in Table 19. We obtain that all measures except l evel are pos-

itively associated with the time to answer, again with the exception of l evel . The mea-

sure with the strongest explanatory power is potenti al , closely followed by leng th and

quanti t y . The coefficients have a straightforward interpretation: a regulation with an extra

word takes an extra 3.4s to process on average, whereas a regulation with an extra unique

operand takes 8.1s more, and a regulation with an extra regulatory instruction 34.6s. We

again find that adding extra measures to leng th increases the explanatory power, though

not to the same extent as in the previous table, and that potenti al seems to be a less noisy

measure than leng th.
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Table 19: Explaining the time taken to provide a correct answer. OLS regression with student
and question fixed effects.

(1) (2) (3) (4) (5) (6) (7)

Length 3.394*** 1.219
(14.39) (0.75)

Cyclomatic 9.338*** -2.598
(10.17) (-0.95)

Quantity 33.159*** 7.841
(13.83) (1.37)

Potential 7.992*** 5.772***
(15.41) (2.95)

Diversity 39.387*** -4.339
(12.28) (-0.71)

Level -265.670***
(-6.89)

R2 0.54 0.47 0.53 0.55 0.50 0.42 0.56
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