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In this paper, we provide a model that aims to describe the impact of a massive cyber attack on an 
insurance portfolio, taking into account the structure of the network. Due to the contagion, such an event 
can rapidly generate consequent damages, and mutualization of the losses may not hold anymore. The 
composition of the portfolio should therefore be diversified enough to prevent or reduce the impact of 
such events, with the difficulty that the relationships between actor are difficult to assess. Our approach 
consists of introducing a multi-group epidemiological model which, apart from its ability to describe 
the intensity of connections between actors, can be calibrated from a relatively small amount of data, 
and through fast numerical procedures. We show how this model can be used to generate reasonable 
scenarios of cyber events, and investigate the response to different types of attacks or behavior of the 
actors, allowing to quantify the benefit of an efficient prevention policy.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Accumulation in cyber risk

Cyber risk is a major challenge in a digital era where industries 
and public services strongly rely on numerical tools. The num-
ber of cyber incidents and attacks in the recent years (see Kshetri 
(2020), Agence Nationale de la Sécurité des Systèmes d’Informa-
tion (2021)) has even increased with the Covid-19 pandemic and 
the expansion of teleworking, see Lallie et al. (2021). In this con-
text, cyber insurance is an essential tool for the industry to develop 
a proper protection against this threat, see Xie et al. (2020). These 
products typically mix financial compensation, prevention, and as-
sistance in case of incident (see Romanosky et al. (2019)). But a 
major concern is the potentially “systemic” nature of the risk. A 
single massive attack, striking simultaneously (or in a short lapse) 
a large number of victims, could lead to losses of mutualization, 
endangering the viability of the insurance mechanism, see Wel-
burn and Strong (2019). The Wannacry (see for example Mohurle 
and Patil (2017)) or NotPetya (see Fayi (2018)) episodes1 are warn-
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1 Wannacry and NotPetya are worldwide ransomware attacks which took place 

just a few weeks apart (May 2017 and June 2017 respectively), and that both 
exploited the vulnerability Eternal Blue. They are two outstanding examples of 
massive attacks: in a few days, Wannacry hit around 300,000 computers in 150 
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ing signs, whose estimated costs represent billions of dollars of 
losses (see Chen and Bridges (2017)). In this paper, we aim to 
provide a flexible framework to describe, model, and project the 
impact of the accumulation of cyber events on a portfolio. We par-
ticularly focus on how network effects can contribute to the spread 
of a cyber epidemic.

The network structure is known to have a significant influence 
on the spread of cyber attacks. This is true when one focuses on 
a single company, which wants to monitor the spread of the in-
fection through the nodes of its information systems (see Adams 
and Heard (2014)), but also at an higher level when one looks at a 
set of different actors that can be affected through the connections 
between each other (see Welburn and Strong (2019), Böhme et al. 
(2010)). Recently, Fahrenwaldt et al. (2018) illustrated the influ-
ence of different types of networks in cyber insurance and showed 
how their shape leads to a faster propagation of an attack or not. 
In all these approaches, the contagion is assumed to spread among 
the policyholders. Hillairet and Lopez (2021) develop an alternative 
approach to model the dynamic of the cyber contagion, and the re-
action of the actors. It assumes that contamination is more likely 
to come from outside the portfolio than from inside. This seems 
reasonable, based on the fact that a portfolio is in fact of small 
size, compared to the global population among which the cyber 
epidemic spreads. Moreover, this choice leads to a simple model, 

countries, and NotPetya several million in 65 countries, and billion of dollars of 
losses for each one.
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which allows to model separately the dynamic of the contagion 
and the time for recovery after being hit.

1.2. Contributions

The approach we develop in the present paper is in the con-
tinuity of Hillairet and Lopez (2021), but focusing on the way to 
incorporate the network topology and evaluate its impact. We aim 
to complete previous analysis through a multi-group SIR model, 
whose connectivity components are calibrated on OECD data, and 
only require macro-level data. Our contributions are the following:

• To model the contagion, we rely on compartmental models 
widely used in epidemiology, namely multi-group SIR models, 
see for example Beretta and Capasso (1988), Guo et al. (2006), 
or Magal et al. (2018), and also Diekmann and Heesterbeek 
(2000), Brauer et al. (2019), Daley and Gani (2001), Andersson 
and Britton (2012) for more properties on classical epidemio-
logical models. We introduce specific terms in the system of 
differential equations describing the dynamic, in order to cap-
ture some specificities of cyber risk. In particular, we model 
the reaction to the crisis, namely the introduction of coun-
termeasures as soon as the threat has been identified by the 
community. More precisely, we take into account that, even 
after the detection of a specific attack, some potential vic-
tims do not manage to implement a perfect protection against 
the threat, but only reduce the risk of being hit. In the ap-
plication, we focus on the situation where the contamination 
of policyholders comes from outside the portfolio, while an 
independence assumption holds inside the portfolio. The pos-
sibility of combining this approach with interactions between 
individuals is mentioned but not explored here in detail. The 
choice of these deterministic models is driven by the need to 
rely on very few data to calibrate them for practical use, due 
to the present weakness of information on cyber risk.

• We derive some theoretical properties of this model. One of 
the key results is to provide a methodology to easily eval-
uate the outcome of a cyber pandemic by solving a fixed 
point equation to compute the total number of victims in each 
group. We explain how this model can be used to quantify the 
impact of a contagious cyber event on an insurance portfolio, 
as well as the impact of protection measures.

• We address the issue of the model’s calibration, which is of 
major concern, although it is hardly treated in the literature 
cyber risk, since data on digital connections are very hard to 
get. We show how this model can be calibrated using a proxy 
computed from a relatively small amount of macro-economic 
data.2 An example of such calibration is conducted from OECD 
data, in order to mimic a Wannacry episode. It allows us to 
quantify the contagiousness of each industrial network, and 
how their reaction may help to reduce the spread of the at-
tack. Adding a model for the cost of each infection, we quan-
tify the impact on an insurance portfolio and its premium, 
using data from studies conducted on the French market of 
insurance brokers.

• We investigate how the connectivity of the network can have 
influence on the spread of the attack and the final number of 
victims.

The rest of the paper is organized as follows. Section 2 in-
troduces the multi-group SIR model and derives some theoretical 
properties. Section 3 provides an example of calibration from OECD 

2 Although we consider economic flows, we do not claim to capture any financial 
contagion: these data have to be understood as a proxy to identify digital links.
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data in order to mimic a Wannacry episode. A detailed quantitative 
analysis is then conveyed concerning the contagiousness of each 
industrial sector, the impact of their reactions, as well as the im-
pact on an insurance portfolio. Finally, the impact of the network 
is investigated through simulations in section 4. Technical materi-
als and proofs, as well as a sensitivity analysis, are postponed in 
the Appendix.

2. Multi-group SIR model

In this section, we introduce the compartmental models that 
will allow us to model how connections between the actors impact 
the contagion of a cyber pandemic. The multi-group SIR we use is 
introduced in section 2.1. We also explain how our model can be 
adapted to take into account the fact that failures in the supply 
chain may be generated through a cyber event and increase the 
impact of an incident. Section 2.2 studies the consequences of the 
spread of the cyber attack on an insurance portfolio.

2.1. Definition of the model

Compartmental models, since their introduction by McKendrick 
(1925) and Kermack and McKendrick (1927), have become com-
mon tools in epidemiology. See for example Brauer et al. (2012)
for a review on this topic, or Di Domenico et al. (2020) for re-
cent work in the context of the Covid-19 pandemic. These types 
of models have been introduced in actuarial sciences by Feng and 
Garrido (2011) to study epidemiological risk, see also more recent 
developments in Feng et al. (2022). The core of these models is to 
describe the different states of an individual in a population stroke 
by a disease. The most simple version, the SIR model (for Suscepti-
ble - Infected - Recovered) splits the population into three groups:

• the “Susceptibles” are exposed to the risk of developing a 
pathology. In our case, the susceptibles will be the entities 
that can be stroke by the ongoing cyber attack; for example, in 
the Wannacry or NotPetya episodes, susceptibles are comput-
ers vulnerable to the Eternal Blue exploit, see Kao and Hsiao 
(2018). As we can see from this example, the total number of 
susceptibles is hard to track - in fact, even the exact number 
of computers equipped with a given operating system is im-
possible to obtain;

• a susceptible may then become “Infected” by the pathology 
(here, by the cyber virus), and is contagious. An infected will 
contribute to the contagion;

• after some time, an infected becomes “Recovered”, or “Re-
moved”: it means that this individual or entity can not trans-
mit the virus anymore. In the context of cyber risk, the term 
removed must be understood as the fact that the victim stops 
participating to the contamination, because countermeasures 
have been adopted. The time before full recovery of a cyber at-
tack can be very long, of a different scale to the length of the 
attack itself (the attack lasted around a week for Wannacry, to 
be compared with months or years of recovery according to 
Low (2017)).

2.1.1. The dynamics of the epidemic
The dynamic of the epidemic is then described by a system of 

differential equations, governing the rate at which individuals in 
each of the compartments move from one state to another. Here, 
we want to take into account the fact that the population on which 
the attack spreads is heterogeneous. Typically, we do not expect 
the contagion to spread identically on industries from the health 
sector or from the financial sectors: the nature of the assets that 
can be targeted by hackers, how easy to get a ransom from a given 
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type of victim, and the difference in terms of level of security in 
different sectors will indeed have an impact on contagion (see Al-
rimy et al. (2018)). For this reason, we will consider a multi-group 
SIR model (see for example Magal et al. (2018)). In this case, the 
population of victims is decomposed into d groups (for example 
representing different sectors of activities for industrial actors, but 
these groups may also be constituted from the type of behaviors 
of some categories of victims). For j = 1, ..., d, and at each instant 
t ≥ 0, s j(t) (resp. i j(t), resp. r j(t)) is the number of susceptibles 
(resp. infected, resp. removed) in category j at time t . Next, the 
evolution of each of these compartments is governed by

ds j(t)

dt
= −η j(t)

{
α j(t) +

d∑
k=1

βk, j ik(t)

}
s j(t), (2.1)

di j(t)

dt
= η j(t)

{
α j(t) +

d∑
k=1

βk, j ik(t)

}
s j(t) − γ j i j(t), (2.2)

dr j(t)

dt
= γ j i j(t). (2.3)

The matrix B = (βk, j)1≤k, j≤d conveys the information on how class 
k contaminates class j. This matrix is the key element of the model 
to capture the network topology. It materializes the connections 
between the different groups. An oriented graph can be associ-
ated to B by constituting the adjacency matrix G with coefficients 
g j,k = 1β j,k �=0. Let us emphasize that the matrix B (hence G) is 
not necessarily symmetric - that is why we use the term “orient-
ed” graph - since the contamination may not flow identically from 
both sides: group j may strongly contaminate group k, while group 
k may be less contagious for group j since group j developed more 
security measures to reduce contamination from group k.

Compared to the most classical version of the multi-group SIR 
as described in Magal et al. (2018), we introduce some additional 
terms in order to take into account specificities of cyber attacks. 
First, the vector A(t) = (α j(t))1≤ j≤d represents a latent form of at-
tacks, i.e. not contagious. Through the introduction of this term, we 
want to consider a mechanism which is not only contagious, but 
which can be caused by successive attacks on different categories 
of victims. At the same time, we introduce a protection component 
against the threat, materialized by the vector H(t) = (η j(t))1≤ j≤d . 
This vector diminishes the rate of new infections through time, 
meaning that on the contrary to Hillairet and Lopez (2021), it mod-
els here an imperfect protection, that is not 100 % efficient. Indeed, 
perfect protection is not always possible. For example, large organi-
zations may have difficulties to implement a correction throughout 
their systems in a short amount of time. Moreover, some attacks 
may rely on human factors, like in the case of phishing or attacks 
based on fraudulent mails. In those cases, one may increase the 
awareness on the threat, and thus reduce the transmission and the 
risk of infection, but without achieving perfect protection.

Remark 2.1. The framework that we develop is adapted to a con-
tagious mechanism which is not necessarily purely cyber. Indeed, 
a possible consequence of cyber attacks is business interruption 
(see Hobbs (2021), Romanosky et al. (2019), Cashell et al. (2004)). 
Hence, the contagion may not only be caused by the transmission 
of a virus, but through breaking the supply chain (see Ghadge et 
al. (2019), Boyes (2015)). The matrix B can for example material-
ize a chain of dependence between sectors of activity, one being 
hit because it relies on the production of another that has been 
stroke by the cyber attack.

2.1.2. Basic reproduction number
For given values of the parameters of this model, a natural 

question is to determine if the contagion is likely to spread or 
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if the cyber-epidemic is about to collapse. The basic reproduction 
number is a way to measure the evolution of the dynamic. Its def-
inition in the context of a general system of differential equations 
like (2.1)-(2.3) has been introduced by Diekmann et al. (1990). 
See also Heffernan et al. (2005). It relies on the so-called “next-
generation matrix”.

Let s = (s1, ..., sd) a vector representing the susceptibles in 
the different categories, and let F j(s, i1, ..., id)dt (resp. V j(x, i1, ...,
id)dt) denote the number of new infections (resp. of infected en-
tities entering the “removed” status) between t and t + dt . We 
consider a given composition of the population s(0) (namely the 
initial composition of the population if one wishes to understand, 
at the beginning of the episode, if the attack is able to spread). 
Next, define

F j,k = ∂F j(s(0), i1, ..., id)

∂ ik
= βk, j s

(0)
j , and

V j,k = ∂V j(s(0), i1, ..., id)

∂ ik
= γ j1k= j,

considering the special case where η j(t) ≡ 1. Then, the next-
generation matrix is F V −1. The ( j, k) entry of this matrix ma-
terializes the rate at which infected entities in the k-th category 
generate new infected in category j, multiplied by the average 
length of stay in the j-th infected compartment. The basic repro-
duction number R0 is then the spectral radius of F V −1. If R0 > 1, 
then the epidemic expands, while the epidemic fades if R0 < 1 (see 
for example van den Driessche and Watmough (2002), Andreasen 
(2011), Theorem 2.2 in Perasso (2018) or section 5.2 in Brauer et 
al. (2019)).

2.2. From the multi-group SIR to the impact on an insurance portfolio

The multi-group SIR defined in section 2.1 describes a dynamic 
on a large population. On the other hand, an insurance portfo-
lio is of smaller size, introducing some randomness in the result. 
We introduce this randomness by considering that the portfolio is 
a random sample from a much larger population for which the 
deterministic epidemiological model holds. Let us note that an al-
ternative way would be to consider stochastic dynamics even for 
the larger population. Different systemic interaction models could 
be used, at a global level (using Hawkes processes, see e.g. Bessy-
Roland et al. (2021)) or at a local level, using stochastic SIR models. 
Such alternative would be particularly interesting in a situation 
where the larger population in which the attack propagates is of 
reasonable size. In this case, the deterministic approximation of 
the law of large numbers would be seen as a too rough approxima-
tion, requiring to turn towards, for example, stochastic SIR models. 
Examples of use of stochastic SIR models in insurance can be found 
for example in Lefèvre et al. (2017), or Lefèvre and Simon (2021). 
Let us point that, although the technique we propose could be 
adapted to stochastic SIR up to some modifications, the calibra-
tion would be harder. Due to the weakness of databases on cyber 
events, we chose to focus on the simpler model described below, 
which requires a minimum amount of data. Let us describe the 
model at a portfolio level more precisely. Each policyholder m is 
described by a random variable Tm and a deterministic character-
istic xm where

• Tm is the random time at which the m-th policyholder is in-
fected by the cyber virus;

• xm is deterministic, and represents the category of the multi-
group SIR to which the m-th policyholder belongs (that is xm ∈
{1, ..., d}).
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Let us note that Tm can be infinite with non-zero probability. The 
distribution of Tm is linked to the dynamic of the cyber attack. Let 
us introduce the hazard rate function

λTm (t) = lim
dt→0+

P (Tm ∈ [t, t + dt]|Tm ≥ t)

dt
. (2.4)

The value λTm (t) quantifies the risk of being infected at time t , 
which depends on the current circulation of the cyber virus, and 
on the protection level.

In the following, we consider the simplest case where the pol-
icyholders are considered as independent from each other with 
respect to the spread of the attack. The idea is that, due to the 
small size of the portfolio, infection is more likely to come from 
outside: it does not propagate within the community of policy-
holders directly, but because of the connections of the policy-
holders to a wider attacked network. Introducing a dependence 
structure and/or introducing stochastic epidemiological models is 
a possible extension that is left to future research. Under this sim-
plifying assumption, and since the portfolio can be understood as 
a random sample of individuals from the global population, the in-
fection rate λTm (t)dt of the individual m belonging to group xm

should be equal to the probability of selecting a newly infected 
individual among the individuals of population xm that were not 
infected before t (that is s j(t) if xm = j). Between t and t + dt , 
there are η j(t){α j(t) + ∑d

k=1 βk, j ik(t)}s j(t)dt new contaminations 
in population j. This leads to

λTm (t) = λ(t, j) = η j(t)

{
α j(t) +

d∑
k=1

βk, j ik(t)

}
, if xm = j.

From this hazard rate function, one can deduce the average num-
ber of infected policyholders in the portfolio, which directly de-
rives from the quantities in (2.1)-(2.3). If we have n j policyholders 
from category j, the expectation of the number of victims in class 
j is

n j

⎛⎝1 − exp

⎧⎨⎩−
∞∫

0

λ(t, j)dt)

⎫⎬⎭
⎞⎠ = n j × ν.

Moreover, the variance is then n jν(1 −ν). More details on approxi-
mations of this number can be found in Hillairet and Lopez (2021).

Through (2.4), it is assumed that the portfolio behaves like the 
global population. This may not be true in practice, for example 
due to adverse selection. Statistical analysis of portfolio data can 
potentially help to quantify the distortion between the two popula-
tions, which can be incorporated into the model. Another possible 
modification is the introduction of dependence between policy-
holders, for example through a copula function. Again, additional 
statistical analysis may help to identify such phenomena.

Remark 2.2. In Hillairet and Lopez (2021), an additional random 
variable U j was introduced to describe the length of immediate as-
sistance required after a victim is hit. This variable is important if 
one wishes to understand how many policyholders have to be as-
sisted at a given time. This question has important consequences, 
because if this number becomes too high, a saturation of the re-
sponse capacity can lead to additional damages. In the present 
paper, we do not focus on this problem, since we are more mo-
tivated by understanding the impact of the network topology on 
the spread of the infection. Nevertheless, an approach similar to 
the one of Hillairet and Lopez (2021) can easily be added to com-
plement this model.
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2.3. Total number of victims

In this section, we provide theoretical results that rely on the
total number of victims from a cyber incident to the parameters 
of the multi-group SIR model. The total number of victims in the 
global population (hence the average number of infected policy-
holders) can be easily determined by (numerically) solving the 
system of differential equations (2.1)-(2.3). We refer the interested 
reader to Amann (2011) for extensive theoretical results on sys-
tems of ODE, and to Brauer et al. (2008) for additional results on 
SIR models for a single population. By measuring the total number 
of infected individuals in each group of the population depending 
on the starting point of the infection, we will have the ability to 
better understand the impact of connectivity between classes. In 
the case of no reaction from the attacked community (that is pro-
tection coefficients η j = 1 for all j), the total number of victims in 
the global population can be determined in a simple and fast way, 
by solving a fixed point problem. Let r j(∞) = limt→∞ r j(t). Since 
every infected ultimately becomes removed after a finite amount 
of time, r j(∞) represents the total number of infected in class j. 
In Theorem 2.3 below, we show that r(∞) = (r j(∞))1≤ j≤d is the 
solution of an equation of the type r(∞) = 	(r(∞)) (the defini-
tion of the function 	 is given in the statement of the theorem). 
The arguments of the proof are similar to the one in Magal et al. 
(2018), but the function 	 is not the same. This difference comes 
from the fact that the model we consider is more general, but also 
from the fact that the path of the proof is slightly different, and 
leads to a simpler function.

Theorem 2.3. For j = 1, ..., d, assume that η j = 1 and let A j =∫ ∞
0 α j(t)dt. Assume that if for all j, i j(0) = 0 then there exists j0 such 

that A j0 �= 0. Then, for x = (x1, ..., xd)
tr , where tr denotes the transpose, 

let

	 j(x) = i j(0) + s j(0)

{
1 − exp

(
−

(
A j +

d∑
k=1

βk, j

γ j
xk

))}
,

and 	(x) = (	 j(x))1≤ j≤d. The vector r(∞) is the unique solution of the 
equation

r = 	(r), on R = {r : 0 ≤ r j ≤ s j(0) + i j(0)}.

The proof of Theorem 2.3 is postponed to the Appendix (sub-
section A.2). Note that the case where for all j, i j(0) = 0 and 
A j0 = 0 corresponds to the trivial situation with no infected at 
time zero and no initial burst of attacks, leading then to the 
static situation where the multi-group SIR system is stuck at r = 0
(which is clearly a fixed point in this situation). Theorem 2.3 char-
acterizes the total number of victims as the solution of a fixed 
point equation, in case there is no reaction from the attacked com-
munity (that is η j = 1 for all j). This result allows to quickly cal-
ibrate or assess the impact of such an episode. In section A.3, we 
show that, in some situations, the solution of this fixed point prob-
lem can be obtained from a fast converging iterative algorithm.

Theorem 2.3 can be easily generalized to constant protection 
parameter η j , by multiplying α j and the βk, j by η j , for all j. Simi-
larly, one can also take into account constant cross-categories pro-
tection effects (η jk)1≤ j,k≤d . In section 3.4, numerical experiments 
are used to investigate the case of time-varying protection coeffi-
cients, that may for example depend on the current proportion of 
infected in each group.

3. Illustration on a particular example

In this section, we give an example of calibration of the model 
based on macroeconomic data. Our aim is to show that plausible 
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Table 1
Exchange of added value between sectors - OECD data, 2015. A line represents the flow 
of added value sent from the corresponding sector to the sectors in columns.

Mining Manufacturing Energy Construction Services

Mining 225.52 1026.27 154.72 506.18 412.55
Manufacturing 14.86 8654.41 94.61 1709.06 1362.29
Energy 4.92 342.46 674.89 165.10 284.47
Construction 1.41 58.85 12.55 3685.20 197.56
Services 33.62 4396.65 249.46 2164.84 22206.97
parameters may be obtained through the use of a relatively small 
amount of data.

We consider a population composed of five categories of poten-
tial policyholders, namely

• Mining and quarrying;
• Manufacturing;
• Electricity, gas, water supply, sewerage, waste and remediation 

services;
• Construction;
• Total business sector services.

These classes correspond to categories used by OECD to identify 
the dependence between some sectors of activity. We consider a 
particular form of contagion matrix B = βB0, where B0 reflects the 
connectivity between actors. This section is organized as follows. In 
section 3.1, we calibrate this matrix B0 which somehow contains 
information on the topology of the network formed by the poten-
tial victims. Section 3.2 then shows how a Wannacry type episode 
can be calibrated for this particular structure of population. In 
section 3.3, we investigate the vulnerabilities of the different cat-
egories of the population by focusing on the impact on a cyber 
attack targeting one single sector. Section 3.4 shows how to quan-
tify the benefit of certain type of interventions during the crisis to 
reduce its impact. Finally, in section 3.5, we illustrate the use of 
this model to measure the impact of a cyber episode on a insur-
ance portfolio.

3.1. Connectivity between sectors

The groups considered in this study are split into different sec-
tors of activity. To assess the connectivity between those sectors, 
we use an OECD study on the origin of value added in final de-
mand, see OECD (2018). The statistics of this study are shown 
in Table 1. They represent a way to model how a category de-
pends on another, via the flow of traded added value. Of course, 
this does not reflect the digital dependence between these sectors, 
which would be a much more accurate information if available. 
Therefore, we do not aim here to produce a very accurate vision 
of the connectivity between these sectors, but only to determine 
a reasonable benchmark. Following this objective, the (strong) as-
sumption that we make is that the digital flow between these 
categories is, somehow, proportional to the economical flow re-
flected by Table 1.

More precisely, we want our matrix B to be of the follow-
ing form, B = βB0, where the parameter β is here to describe 
the strength of the contagion (its calibration is discussed in Sec-
tion 3.2), and B0 is a normalized matrix (the sum of all of its coef-
ficients is equal to one) containing only the information regarding 
the connectivity between actors. The matrix B0 is calibrated using 
the OECD data of Table 1 and 2. Indeed, the volume of exchanges 
between sectors (given in Table 1) has to be normalized by the 
number of companies in each sector, which is the information 
given in Table 2, from OECD (2015).

The contagion matrix B0 of Table 3 is obtained by dividing the 
value of a given line of Table 1 by the number of companies of the 
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Table 2
Distribution of companies between sectors - OECD data, 
2015.

Sector Number of companies Percentage

Mining 66,492 0.20%
Manufacturing 3,068,178 9.02%
Energy 220,892 0.65%
Construction 4,874,747 14.34%
Services 25,768,765 75.79%

corresponding sector (from Table 2), before normalizing the values 
in order to ensure that the sum of all coefficients is equal to 1.

According to this matrix, we see that the Mining & Quarrying 
sector would be the most contagious one, followed by the Energy 
sector. This high contagiousness is however to be tempered by the 
small population size of these sectors. Services and Manufacturing 
are the sectors that receive more cross-infections than the others. 
As expected, the manufacturing sector, strongly dependent from 
the supplies from other sectors, also achieves a high level of de-
pendence.

Let us also note that this high contagiousness of the Mining 
and Energy sectors can also make sense from a supply-chain mod-
eling perspective: the approach that we develop is focused on a 
case of contagious cyber event. But a cyber event targeting a sector 
can also have consequences on another one that is highly depen-
dent, triggering business interruptions for companies that are not 
directly stroke by the virus. The framework we develop can also 
be used to take this type of phenomenon into account, through a 
proper design of the matrix B0, see also Remark 2.1.

Remark 3.1. We would like to emphasize that this contagion ma-
trix B0, computed from economic flows quantities of OECD, is only 
a proxy of cyber connectivity. Those macroscopic data have the 
advantage to be public and provide a kind of link between sectors, 
while digital connections among sectors are much harder to get. 
Section A.1 evaluates the sensitivity of the results to the param-
eters of the contagion matrix B0. We made the choice to rely on 
public data, although imperfect, in order to show the simplicity of 
the model calibration. In practice, several cyber security firms pro-
vide data on connectivity between some categories of actors. In the 
meantime, the multi-SIR model we develop can work with a rel-
atively high scale of aggregated data, while competing approaches 
like in Antonio et al. (2021) need a very detailed graph at a micro-
scopic level.

3.2. Calibration of a Wannacry type episode

In the dynamics described by (2.1)-(2.3), we consider the con-
tagion matrix B = βB0, where the parameter β helps to design the 
intensity of the contagion. We here develop how to calibrate this 
parameter so that we may obtain a cyber event relatively simi-
lar to Wannacry. For this calibration, we first investigate the case 
without reaction, that is η j = 1 for all j. We follow the path of 
Hillairet and Lopez (2021), in which a calibration of a Wannacry 
type event was proposed, based on indirect information about its 
dynamic (namely the timeline of the payments of ransoms, which 
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Table 3
Normalized Interaction matrix B0.

Mining Manufacturing Energy Construction Services Total
Mining 0.0634 0.2927 0.0449 0.1427 0.1255 0.6692
Manufacturing 0.0063 0.0527 0.0027 0.0108 0.0351 0.1076
Energy 0.0135 0.0370 0.0571 0.0150 0.0452 0.1679
Construction 0.0019 0.0068 0.0007 0.0141 0.0091 0.0326
Services 0.0003 0.0042 0.0004 0.0017 0.0161 0.0227
Total 0.0855 0.3934 0.1057 0.1844 0.2309 1
Table 4
Parameters used to simulate a 
Wannacry-type episode based 
on a single-type population. 
The parameters γ and N (total 
size of the victim population) 
have been taken as in Hillairet 
and Lopez (2021).

Parameter Value

α0 7 × 10−3

β 1.845 × 10−5

γ 1
N 4,064,279

is publicly available due to the use of the Bitcoin protocol). Here, 
the calibration is different in two ways:

• we consider a non homogeneous population with contagion 
matrix B = βB0, the total size of the population of poten-
tial victims being the same as in Hillairet and Lopez (2021)
(N = 4, 064, 279) with distribution given by the proportions of 
Table 2;

• the initialization of the epidemic is done in a different way 
(see below).

Indeed, in Hillairet and Lopez (2021), a small number of initially 
infected i0 spreads the cyber attack. Here, we do not need to use 
this number (which has to be chosen arbitrarily), because we pre-
fer to use the functions α j to ignite the epidemic, which seems 
more consistent with the patterns of cyber attacks. To calibrate 
the value of β , we consider that the attack strikes all classes at 
the same rate, α j(t) = α01t≤1 for all j : during one day, there is a 
burst of infections caused by the hackers that strike the victims at 
uniform rate α0.

We follow the approach of Hillairet and Lopez (2021), where a 
model is chosen from its ability to replicate the peak of the epi-
demic - maximum number of victims affected at a given moment 
- and the total number of victims over 10 days, which is the ap-
proximate length of the episode. This leads to the parameters of 
Table 4.

The evolution through time of the infections in each category 
is reported in Fig. 1. We can observe that the peak of infections 
is not located at the same time (we see that this peak is achieved 
later for services, with a slower decay). The size of this peak can 
be of some concern: as pointed in Hillairet and Lopez (2021), this 
represents the number of victims needing assistance at a given 
time. Since many cyber insurance contracts are supposed to pro-
vide immediate assistance to their policyholders when hit, a too 
high peak could lead to an impossibility to deliver the service that 
was contractually guaranteed (also if assistance comes too late due 
to saturation, this could increase the amount of damages).

Let us recall that N does not represent the number of policy-
holders in an insurance portfolio, which tends to be, in present 
cyber insurance portfolios, much smaller than N from Table 4. 
The number of infected given here represents how the infection 
spreads on a population that is much larger (at a national level or 
even at a global level). To obtain the (average) impact of such an 
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Table 5
Comparison of the sectors through different attack scenarios. The sectors 
are ordered from the one leading to the highest epidemic, to the lowest. 
We consider a total population of N = 4′064′279 of potential victims, with 
the same distribution between sectors as in Table 2.

Targeted sector β α Total infected Peak

Mining 1.845 × 10−5 3.5 714,347 89,984
Manufacturing 1.845 × 10−5 0.078 587,338 70,815
Energy 1.845 × 10−5 1.077 450,824 50,759
Services 1.845 × 10−5 0.0049 256,833 27,483
Construction 1.845 × 10−5 0.009 223,744 26,233

episode on a portfolio, one can retrieve the proportion of victims 
in each sector and apply it to the number of policyholders of this 
category in the portfolio.

3.3. Measuring the vulnerability of the different sectors

We now use our matrix B = βB0 (where β is given by Ta-
ble 4 and B0 is given by Table 3) to investigate which sector seems 
the most vulnerable and can potentially trigger a systemic event. 
Under this configuration, the basic reproduction number can be 
computed as explained in Section 2.1.2, leading to R0 = 1.02. This 
value is slightly higher than 1, which means that the cyber epi-
demic will spread. To measure the vulnerability of sector j, we 
concentrate on the initial attack on it (that is α j(t) = α( j)1t≤1, 
and αk(t) = 0 for k �= j). Taking α( j) = α0 would not make things 
comparable: if the size of the population of sector j is small com-
pared to N , this would result in a small number of initial infections 
through these direct attacks (approximately α0 times the size of 
this sub-population). Therefore, we take α( j) = α0/p j , where p j
is the proportion of sector j in the total population (see Table 2), 
which seems more appropriate. The values of the coefficients α( j)

are given in Table 5, where we also gather results on the total size 
of the epidemic in each attack scenario, and the peak of infections 
(that is the highest number of currently affected victims at a given 
time).

From the coefficients of Table 3, it is logical to find that an at-
tack targeting the Mining and Quarrying sector leads to the most 
important impact: we already mentioned the high contagiousness 
of this sector according to B0. Moreover, as the population of this 
sector is small, almost all companies in this category are infected 
by the initial attack. On the other hand, an attack on the Manu-
facturing sector, although this category is larger (9.02% of the total 
population compared to the 0.20% of Mining), also leads to a num-
ber of victims which is higher than the Wannacry episode (same 
property for the Energy sector, but with a smaller number of com-
panies and a smaller impact than for Manufacturing). Again, this is 
caused by the high contagion spread by this sector.

Table 6 provides more precision on how a category contami-
nates another in the different scenarios. One can observe that the 
Mining sector suffers fewer from contagion when not attacked di-
rectly. We can also observe that the largest proportion of victims 
is not always achieved in the category where the attack was initi-
ated: in the case of an attack on Manufacturing, Services are hit at 
a high rate (16.58%), which corresponds to 510’716 victims in this 
category, compared to 58’692 in the Manufacturing sector. On the 
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Fig. 1. Evolution of the proportion of infected - Uniform attack. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 6
Proportion inside each sector of companies affected by the epidemic, depending on the targeted 
sector.

Targeted sector Mining Manufacturing Energy Construction Services

Uniform attack 1.06% 4.11% 0.99% 2.07% 8.86%
Attack on Mining 99.70% 12.69% 1.36% 5.49% 20.37%
Attack on Manufacturing 1.02% 16.01% 0.66% 3.05% 16.58%
Attack on Energy 0.93% 5.96% 64.08% 2.35% 12.93%
Attack on Construction 0.33% 2.49% 0.21% 6.60% 5.72%
Attack on Services 0.25% 2.59% 0.21% 1.01% 7.84%

Fig. 2. Cross-infection between sectors after a uniform burst (proportion by destination).
other hand, we see that the Service sector is less affected when 
directly hit (except if we compare with the case of an attack on 
Construction) than when the initial burst of infection strikes an-
other sector.

Fig. 2 gives another illustration of this phenomenon. If we look 
at a scenario of an uniform attack, we can see that each sector -
since each of them is highly connected to Services - generates a 
large number of infection in this Services sector. To a lesser extent, 
we see that Manufacturing and Construction are also affected by 
this contagion effect.
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Additionally, we provide an example of the dynamic evolution 
of the number of victims in Fig. 3, corresponding to the worst case 
scenario of an attack on Mining. Compared to Fig. 1, the percent-
ages of victims at a current time are much higher in each sector. 
We also can observe that the peak is achieved a little bit later 
than in the first situation (except for the Mining sector, which is 
fast completely contaminated).

This postponed peak is bad news for the total number of vic-
tims (which is typically related to the area under each curve). On 
the other hand, it also creates an opportunity: this gives more time 
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Fig. 3. Evolution of the proportion of infected - Attack on Mining. Note that the y-axis has been bounded to 4%, so that the effects of the infection remain readable for all 
sectors. Indeed, the value of the peak for the Mining sector is very high at 70% of infected companies after 10 hours of epidemic.
to react to the attack by providing countermeasures. This question 
of measuring the benefits of such a reaction is the purpose of the 
following Section.

3.4. Impact of a reaction during the crisis

We now consider the case where, during the crisis, a collec-
tive reaction of the victims occurs and reduces the impact of the 
episode. The impact of the reaction of the population is at the core 
of several modeling and scenario projections developed in the con-
text of the Covid-19 pandemic, see for example Di Domenico et al. 
(2020). In the case of cyber events, the length of the attack (a 
few days) tends to limit the impact of this reaction, but efficient 
measures to prevent infection by the digital virus seems easier to 
implement. In the Wannacry case, for example, a « kill switch » 
was identified (see Mohurle and Patil (2017)) that allowed to di-
minish the severity.

In model (2.1)-(2.3), we introduce a function η j that corre-
sponds to the reaction of category j. We here investigate the im-
pact of two particular shapes of reaction functions,

η
(1)
j (t) = 1 − λ1i j(t)≥s, (3.1)

η
(2)
j (t) = 1 − λ1∑d

k=1 ik(t)≥s. (3.2)

In each case, a threshold s triggers the reaction: the threat draws 
the attention and is considered worth taking measures only if a 
sufficient number of victims have been hit. The difference is that, 
in the first case, the category j only bothers when its members are 
hit: a threat making lots of victims in the other sectors does not 
lead to a reaction as long as category j is preserved. The oppo-
site case is the situation where category j pays attention to what 
happens to others and reacts accordingly.

We consider three levels of protection, λ = 0.1, λ = 0.3 and 
λ = 0.5, and three different thresholds of reaction s = 10, 000, 
s = 50, 000 and s3 = 100, 000. Tables 7 and 8 show the impact 
of reactions (3.1) and (3.2) respectively, in case of an uniform ini-
tial attack, and when only one single sector j0 reacts. Denoting 
r(λ)

j (∞) (resp. r j(∞)) the total number of victims in category j if 
sector j0 reacts (resp. if there is no reaction), the two following 
ratios are reported in Tables 7 and 8:
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• The ratio on the “total” sector RT :=
∑d

j=1 r(λ)
j (∞)∑d

j=1 r j(∞)

• The ratio on the “collateral” sectors that do not react Rc :=∑
j �= j0

r(λ)
j (∞)∑

j �= j0
r j(∞)

.

In Table 7, some cells have been darkened to reflect the fact 
that the reaction thresholds are sometimes too large to trigger a 
reaction of the corresponding sector (this is the case when the 
threshold exceeds the number of companies in the sector). This 
situation does not occur in Table 8 since the reaction (3.2) is not 
only based on what happens in the sector itself, but also on the 
observation of what happens to the other categories. Clearly, this 
second type of reactions is more efficient, since it allows to detect 
quicker that something happens. For some sectors, warning comes 
sometimes even too late for reaction (3.1) even if the threshold is 
less than the number of companies in this sector. This is no sur-
prise, but Table 8 helps to quantify the gain obtained through (3.2). 
We can also observe that the reaction having the most important 
impact is the one on the Services sector. Let us recall that this sec-
tor contains the largest number of companies. This reduction of 
the size of the cyber epidemic is first of all caused by the fact that 
less companies are infected, in this sector, due to the reaction. But 
it is also interesting to notice that this induces effects in the other 
sectors also, since the collateral gains are quite important too.

To conclude this section, let us mention that these results are 
only an illustration, and, again, the effects of the attack on these 
different sectors are related to the particular way the matrix B0
has been calibrated (focusing of exchanges of added value). We 
want to emphasize that the contribution we aim to provide is 
to illustrate, as precisely as possible, a calibration strategy of the 
model, and what can be learned from it. In the present case, we 
can observe that maximizing the effect of prevention is not only 
a matter of finding the most contagious sector regarding the pa-
rameters of matrix B. For example, the mining sector has been 
identified as highly contagious, but its size is small, while preven-
tion on the larger services sector has more effect, even on other 
segments.

3.5. Cost of claims

In this section we consider an insurance portfolio composed 
of n policyholders. Following the notations of section 2.1, the m-
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Table 7
Impact of the reaction (3.1) on the number of victims, depending on the sector which reacts 
(only one sector at a time) and on the threshold s activating the reaction, in case of an uniform 
initial attack. The column “Total” shows the ratio RT and the column “Collateral” shows Rc .

λ = 10% s = 10,000 s = 50,000 s = 100,000

Reaction from sector: Total Collateral Total Collateral Total Collateral
Mining
Manufacturing 96.12% 98.01% 99.54% 99.89% 100% 100%
Energy 100% 100%
Construction 99.14% 99.72% 100% 100% 100% 100%
Services 74.45% 78.88% 83.41% 87.07% 92.04% 94.50%

λ = 30% s = 10,000 s = 50,000 s = 100,000
Reaction from sector: Total Collateral Total Collateral Total Collateral
Mining
Manufacturing 89.15% 94.34% 98.66% 99.67% 100% 100%
Energy 100% 100%
Construction 97.49% 99.17% 100% 100% 100% 100%
Services 46.16% 53.84% 63.20% 70.30% 80.99% 86.46%

λ = 50% s = 10,000 s = 50,000 s = 100,000
Reaction from sector: Total Collateral Total Collateral Total Collateral
Mining
Manufacturing 83.17% 91.05% 97.84% 99.47% 100% 100%
Energy 100% 100%
Construction 95.93% 98.65% 100% 100% 100% 100%
Services 32.86% 41.16% 52.48% 60.76% 74.08% 81.10%

Table 8
Impact of the reaction (3.2) on the number of victims, depending on the sector which reacts 
(only one sector at a time) and on the threshold s activating the reaction, in case of an uniform 
initial attack. The column “Total” shows RT and the column “Collateral” shows the ratio Rc .

λ = 10% s = 10,000 s = 50,000 s = 100,000

Reaction from sector: Total Collateral Total Collateral Total Collateral
Mining 99.80% 99.99% 99,83% 99.99% 99.87% 99.99%
Manufacturing 94.60% 96.99% 95.82% 97.82% 97.09% 98.63%
Energy 99.81% 99.98% 99.84% 99.98% 99.88% 99.99%
Construction 98.51% 99.40% 98.87% 99.59% 99.18% 99.74%
Services 73.10% 77.62% 80.40% 84.36% 86.79% 90.05%

λ = 30% s = 10,000 s = 50,000 s = 100,000
Reaction from sector: Total Collateral Total Collateral Total Collateral
Mining 99.39% 99.95% 99.49% 99.97% 99.61% 99.98%
Manufacturing 84.99% 91.44% 88.33% 93.78% 91.83% 96.07%
Energy 99.42% 99.93% 99.52% 99.95% 99.64% 99.97%
Construction 95.66% 98.24% 96.70% 98.79% 97.62% 99.23%
Services 43.66% 51.37% 57.35% 64.73% 69.97% 76.61%

λ = 50% s = 10,000 s = 50,000 s = 100,000
Reaction from sector: Total Collateral Total Collateral Total Collateral
Mining 98.97% 99.90% 99.14% 99.93% 99.35% 99.96%
Manufacturing 76.87% 86.55% 81.92% 90.19% 87.25% 93.77%
Energy 99.03% 99.88% 99.21% 99.92% 99.40% 99.95%
Construction 92.99% 97.14% 94.66% 98.03% 96.14% 98.75%
Services 30.04% 38.29% 45.65% 54.04% 60.53% 68.54%
th policyholder experiences an infection at time Tm (with, again, 
P (Tm = ∞) �= 0, since some policyholders may not be stroke by 
the attack). The distribution of Tm depends on the category xm to 
which this policyholder belongs. We assume Tm independent from 
Tm′ for m �= m′ . It corresponds to the simplest situation where the 
contagion comes from outside the portfolio and when there is no 
interaction between policyholders. We consider the five categories 
of section 3, with the contagion matrix of sections 3.1-3.2 and we 
assume the same distribution of the categories than the one of the 
OECD data (see Table 2). In full generality, the composition of the 
portfolio does not necessarily reflect the proportion of categories 
in the whole population, since the portfolio results from a selec-

tion process. There is no difficulty in handling this situation: the 
values of xm are inputs of the model, and will allow to distort the 
final results.
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The number of policyholders stroke by the event is

Ntot =
n∑

m=1

1Tm<∞.

We then consider a vector of potential losses (Zm)m=1,...,n . The to-
tal cost of the event is

Ctot =
n∑

m=1

Zm1Tm<∞.

To simulate the distribution of the variable Ctot , we assume that 
the random variables (Zm)m=1,...,n are independent and identically 
distributed, and independent from (Tm)m=1,...,n . We consider an 
exponential distribution for the random variable Z1, with mean 
μ. In order to obtain reasonable values for the loss, we consider 
two different values for μ, corresponding to studies conducted on 
the French market of insurance brokers, and in particular the study 
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Table 9
Mean value of the cost per policyholder, and associated standard deviation. The amounts 
are given in ke.

Targeted sector μ1 μ2

E[Ctot ]/n
√

V ar(Ctot )/n E[Ctot ]/n
√

V ar(Ctot )/n

Uniform attack 0.35 1.77 0.87 4.47
Attack on Mining 0.81 2.63 2.05 6.66
Attack on Manufacturing 0.67 2.41 1.69 6.10
Attack on Energy 0.55 2.20 1.40 5.58
Attack on Services 0.17 1.25 0.43 3.18
Attack on Construction 0.05 0.68 0.12 1.72
“LUCY”3 conducted in 2021 by the AMRAE.4 According to this anal-
ysis, the average cost of a cyber claim in France was μ1 = 4.68 ke 
in 2019 and μ2 = 11.84 ke in 2020. Let us nevertheless stress that 
these statistics have been gathered on a population of policyhold-
ers which is mainly composed of large companies of the private 
sector.

The expectation and variance of Ctot are easy to obtain, since

E[Ctot] = λE[Ntot ] = nμP (T1 < ∞), and

V ar(Ctot) = nμ2P (T1 < ∞){2 − P (T1 < ∞)}.
Let us note that E[Ntot ] is supposed to be close to the total number 
of infected from Table 5 times n/N (since n/N is the proportion 
of the total affected population represented by the portfolio). The 
values of E[Ctot ]/n and V ar(Ctot)/n are given in Table 9. Moreover, 
the whole distribution of Ctot can be approximated by a Gaussian 
distribution (this is a consequence of assuming that Zm are i.i.d. 
with a second order moment), allowing to approximate the quan-
tiles of Ctot .

Let us note that E[Ctot ] does not represent a pure premium in 
our case. Indeed, Ctot represents the total cost of the contagion 
episode, which means conditionally that this particular contagion 
scenario occurs. Although we chose not to emphasize it in order 
to simplify the notations, E[Ctot ] depends on the contagion ma-
trix B = βB0, and the intensity of initial attacks on each class, 
say A(·) = (α1(·), ..., αd(·)) ∈ A, where A is a functional space rep-
resenting the possible scheme of initial attacks. In other words, 
E[Ctot ] = fB0 (β, A). If one assumes that, from one attack to an-
other, the matrix B0 (representing the connectivity) stays the same, 
the pure premium becomes

π =
∫

fB0(β,A)dp(β,A),

where p is a probability distribution on [0, ∞] × A. Computing π
is then feasible only if one adds some prior expertise (contained 
in the distribution p) on the possible types of attacks. Let us recall 
that the aim of our model is less to compute a premium than to 
allow to simulate stress scenarios that helps to understand how 
the portfolio reacts to some generic types of cyber episodes.

Remark 3.2. In the present analysis, we assume that the cost of 
a claim has the same distribution independently from the cate-
gory to which the policyholder belongs. This is of course a strong 
assumption. In practice, this cost would be dependent of the sec-
tor of activity. It would also dependent on several other factors 
like the size of the targeted company (as mentioned above, the 
policyholders in the perimeter of the AMRAE study are mostly 
large companies), and, of course, the perimeter of the contract. 

3 https://www.amrae .fr /bibliotheque -de -amrae /lucy-lumiere -sur-la -
cyberassurance -amrae -mai -2021.

4 Association pour le Management des Risques et les Assurances de l’Entreprise, 
French association of risk managers, see https://www.amrae .fr/.
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Since the present paper essentially focuses on a model for counting 
the number of victims, we do not explore more deeply this path. 
Moreover, introducing an heterogeneity in the cost would blur the 
conclusions on the analysis of the impact of contagion, which is 
our main purpose.

4. Simulations

In this section, we try to evaluate via simulations how the con-
nectivity of the network (namely, the structure of the matrix B) 
can have influence on the final number of victims. As in Section 3, 
we consider matrices of the form B = βB0. The matrix B0 is cho-
sen in different classes of matrices, each corresponding to some 
properties that we want the network to satisfy. To simplify the 
discussion, we consider the effect of the network in absence of re-
action.

The different classes of matrices (which all are normalized, in 
the sense that the sum of the values of all their coefficients is 
equal to 1) are the following:

• B1 : an “homogeneous” case, where there is no particular 
structure, coefficients are generated randomly (independent 
uniform distributions are used to simulate each coefficient, 
then the matrix is normalized);

• B2 : a “clustered” case, where for all j = 1, ..., d, 
∑

k �= j βk, j ≤
β j, j . This situation corresponds to the case where the conta-
gion occurs mostly within a given sector, and can extend to 
others with less intensity;

• B3 : a “non-clustered” case, where for all j = 1, ..., d, β j, j ≤
mink �= j βk, j . This corresponds to a situation where contagion 
mostly occurs from outside a given sector, and where there 
are few contagions among susceptibles of the same category;

• B4 : a “cascade” case where all the coefficients of the ma-
trix are 0 except for β j, j for j = 1, ..., d, and β j, j+1 for j =
1, ..., d −1. This corresponds to a potential cascade effect, since 
an infection coming from the first category must first contam-
inate the second, before infecting the third, and so on. The last 
category does not contaminate any other class.

The simulation procedure is exposed in section 4.1. We next intro-
duce in section 4.2 a way to measure the impact of each scenario 
that we consider. Results are gathered in section 4.3.

4.1. Simulation procedure

For each class of matrices B j , we generate randomly (uniformly 
over B j) B = 100, 000 matrices, (B(b)

0 )b=1,...,B . For each b, we study 
the impact of different types of attacks on different structures of 
population. The value β is always taken as β = 2 × 10−5 (close 
to the value of Section 3). Regarding the structure of the pop-
ulation of potential victims (decomposed into 5 categories), we 
consider three different compositions, whose total size is taken as 
N = 5, 000, 000 (same scale as N calibrated in Section 3):

 https://www.amrae.fr/bibliotheque-de-amrae/lucy-lumiere-sur-la-cyberassurance-amrae-mai-2021
 https://www.amrae.fr/bibliotheque-de-amrae/lucy-lumiere-sur-la-cyberassurance-amrae-mai-2021
https://www.amrae.fr/
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• Configuration 1: homogeneous, that is each category is made 
of 1,000,000 potential victims;

• Configuration 2: a class is larger than the others, with size 
1,800,000 (size 800,000 for the others);

• Configuration 3: a class is smaller than the others, with size 
600,000 (while the 4 others have size 1,100,000).

In Configurations 2 and 3, we call the “special class” the category 
which has not the same population as the others (which are de-
nominated “standard classes” in the following). Next, we consider 
different type of attacks, targeted on a single class j0 with inten-
sity attack of the type α j0 (t) = α1t≤1. In Configuration 1, since 
all classes are similar in terms of composition, it does not matter 
which class is initially stroke. In Configuration 2 and 3, we distin-
guish two cases: attack on the special class or on a standard class.

4.2. Metric used to measure the impact of each scenario

For each attack, we evaluate the value of α which allows to 
achieve the same number of victims as Wannacry (estimated at 
300,000). For two populations of the same size, a higher α shows 
that the hackers need to make stronger efforts to achieve the 
same effect. In other words, the structure of the network is more 
favorable, in the sense that it slows down the epidemic. To bet-
ter identify this effect, we compare this value of α (say αW ) to 
the value α∗ that would be required if the whole population be-
haved as the initially targeted population. More precisely, if we 
are considering a cyber episode obtained from a matrix βB(b)

0 and 
an attack on the class j, we consider a benchmark case where 
we consider a single homogeneous population of size N (that is 
a one-dimensional case where d = 1 with contagion parameter 
β × B(b)

0,( j, j) , where B(b)
0,( j, j) is the j-th diagonal coefficient of B(b)

0 . 
In this benchmark case, no contagion effect occurs, only contam-
ination inside a single isolated category similar to the one where 
the attack was launched. The value α∗ is the one required so that 
the initial attack allows to achieve 300,000 victims. We next com-
pute the ratio, ρ = [Naα

W − Nα∗][Nα∗]−1, with Na the size of the 
population that is attacked in the corresponding scenario. A high 
value for ρ indicates that the type of structure considered tends 
to slow down the transmission and to mitigate the impact of the 
episode.

4.3. Simulation results

We report in Table 10 the mean value and the median value 
of the indicator ρ (over these 100,000 replications), for differ-
ent configurations and different targeted classes, depending on the 
contagion matrix class. In each case, we see that the network 
structure seems to slow down the infection, compared to the situ-
ation where all the infected belong to the same group. B1 provides 
some kind of benchmark case (since there is no particular struc-
ture in the network). From these results, we can also observe that 
a matrix of type B3 seems the less favorable situation, since the 
intensity of attacks required to trigger a Wannacry-type event is 
lower. This is no big surprise: with a structure such as B3, the cy-
ber attack has a low propagation rate inside a given sector. But 
the contagion quickly spreads to all other sectors, having the abil-
ity to rapidly expose the whole population from cross-infections. 
Indeed, the size of the initially infected category here seems deter-
minant: let us recall that, in Configuration 2 (resp. 3), the “special” 
(resp. “standard”) category is the largest sector, and we see that 
the losses are more important if it is the initial target, no mat-
ter the class of matrices considered (and especially in the case of 
B2). With this fast propagation of the attack to other sectors for 
networks of type B3, the attack spreads quickly to the whole pop-
ulation.
98
5. Conclusion

Multi-group SIR models are simple tools to describe an epi-
demic, and are widely used in epidemiology. Their adaptation to 
the study of contagious cyber events seems relevant due to the 
ability of such models to take into account differences of connec-
tivity between groups of actors. They can also be easily modified 
to capture particular shapes of attacks. In this paper, we showed 
how this model can be used to investigate the impact of a partic-
ular shape of network, allowing to identify potential weaknesses 
in a portfolio. Moreover, we want to emphasize that, although this 
model may not provide the most accurate physical description of 
the phenomenon, its calibration is relatively easy. Indeed, obtaining 
precise information about how policyholders are connected with 
each other (and with potential other sources of infection) is really 
hard to get. In the example that we provided, we showed that the 
model we develop can be calibrated from a small amount of data 
at a macroscopic level. We point out that this illustration is only 
a rough example, based on publicly available data related to some 
kind of economic connectivity between actors. The aim of this ex-
ample is only to show a methodology of calibration, and what can 
be obtained from it.

To conclude, let us also mention that the model can be adapted 
to take into account not only cyber risk, but also its consequences 
when it comes to breaking the supply chain. Indeed, a cyber in-
fection can then contaminate other companies not only digitally: a 
business interruption in a given sector, from which another sector 
is very dependent in terms of supply, could generate some losses 
for victims that are not directly targeted by the initial attack. The 
model we develop can also capture these types of situation, after 
adaptation of the parameters (taking for example into account that 
some reserves of the product whose supply has been disturbed can 
delay the propagation of the infection).
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Appendix A

A.1. Sensitivity analysis

To evaluate the sensitivity of the result to the parameters of the 
contagion matrix, we applied a shock on every coefficient of B0
separately. The result that we show below correspond to a shock 
of magnitude 10%, before renormalizing the coefficients of matrix 
B0. The effects of these augmentations of the contagiousness are 
shown in Table 11 through the number of infected policyholders 
during the crisis.

One can observe that an increase of the contagion coming from 
the mining sector (line “Mining” of Table 11) does not lead to 
a strong change in the result, although an attack on mining was 
identified as particularly concerning according to Table 9. On the 
other hand, changing the coefficients corresponding to services has 
a stronger impact: this is caused by the fact that contagion is not 
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Table 10
Mean and Median values of ρ computed from 100,000 simulations of matrices from the classes 
B j for j = 1, · · · , 4.

Configuration Targeted class Special Standard

Mean of ρ Median of ρ Mean of ρ Median of ρ

B1 Configuration 1 5.01 6.02
Configuration 2 4.55 5.48 5.41 6.49
Configuration 3 6.05 7.23 5.05 6.06

B2 Configuration 1 2.86 1.67
Configuration 2 2.42 1.44 6.51 6.52
Configuration 3 7.39 7.40 2.79 1.62

B3 Configuration 1 0.50 0.37
Configuration 2 0.20 0.10 0.37 0.25
Configuration 3 0.50 0.38 0.21 0.10

B4 Configuration 1 2.89 1.90
Configuration 2 2.57 1.69 3.12 2.10
Configuration 3 3.53 2.39 2.82 1.88

Table 11
Marginal effect of an increase of 10% of a single coefficient of matrix B0. The value in 
cell (k, j) corresponds to a shock on the coefficient (k, j) of Table 3, and is shown as a 
relative variation in the number of total victims (in percentage of the total number of 
victims of the scenario).

Mining Manufacturing Energy Construction Services

Mining 0.36% 0.02% 0.12% 0.10% 0.005%
Manufacturing 0.10% 2.31% 0.11% 0.12% 4.68%
Energy 0.12% 0.08% 0.12% 0.11% 0.02%
Construction 0.11% 0.15% 0.12% 0.16% 0.99%
Services 0.10% 2.92% 0.10% 0.50% 3.55%
only a matter of a large value for βk, j , but also results from the 
number of companies directly affected by this change, that is the 
number of companies in categories k and j.

A.2. Proof of Theorem 2.3

We provide the proof of Theorem 2.3 that characterizes the to-
tal number of victims as the solution of the fixed point equation 
r = 	(r), on R = {r : 0 ≤ r j ≤ s j(0) + i j(0)}, in the case there is no 
reaction (that is η j = 1 for all j). We recall the notations:

	 j(x) = i j(0) + s j(0)

{
1 − exp

(
−

(
A j +

d∑
k=1

βk, j

γ j
xk

))}
,

with A j =
∞∫

0

α j(t)dt.

From (2.3) we have r j(∞) = γ j I j , with I j = ∫ ∞
0 i j(t)dt . On the 

other hand, r j(∞) = s j(0) − s j(∞) + i j(0), since all infected be-
come recovered in a finite time and, from (2.1),

s j(∞) = s j(0)exp

(
−

(
A j +

d∑
k=1

βk, j Ik

))
.

We see that r(∞) = (r j(∞))1≤ j≤d is a fixed point of 	, that is

r(∞) = 	(r(∞)).

The question is now to prove the unicity of this fixed point. For 
two vectors x and y, we write x ≤ y if all the components of x j ≤
y j for all j. If, in addition x j < y j for at least one j, we say that 
x < y. Note that 	 j(x) < s j(0) + i j(0) for all x ∈ R. Besides, since 
we have excluded the trivial case where for all j, i j(0) = 0 and 
A j = 0 we get 0 < 	(0).

Clearly, if x ≤ y, 	(x) ≤ 	(y). By induction, we therefore get 
that
99
0 < 	(0) ≤ 	(2)(0) ≤ · · · ≤ 	(k)(0)

≤ 	(k)(n(0)) ≤ · · · ≤ 	(n(0)) < n(0),

where 	(k)(x) = 	(	(k−1)(x)) (with 	(0)(x) = x), and n(0) =
(s j(0) + i j(0))1≤ j≤d . This shows that both sequences 	(k)(0) and 
	(k)(n(0)) converge to a finite limit, respectively denoted by l0
and ln . Necessarily, since 	 is continuous, 	(l0) = l0, 	(ln) = ln . 
Moreover, l0 ≤ ln .

The next step consists in showing that l0 = ln . We will proceed 
by contradiction, assuming that

d= ln − l0 > 0. (A.1)

Let J	(x) = (∂ j	k(x))1≤ j,k≤d denote the Jacobian matrix of 	, 
where ∂k denotes the partial derivative with respect to the k-th 
component. If l0 < ln , we could write

d= 	(ln) − 	(l0) =
1∫

0

J	(l0 + td)ddt. (A.2)

Observe that

∂k	 j(x) = βk, j

γ j
(
(
s j(0) + i j(0)) − 	 j(x)

)
>0.

Hence, the differential of 	 inherits some monotonicity properties 
of 	, in the sense that, for all x ≤ y and h ≥ 0,

J	(x)h ≥ J	(y)h.

This, combined with (A.2), leads to

d≤ J	(l0)d. (A.3)

Let ρ denote the spectral radius of J	(l0). Since all the coeffi-
cients of J	(l0) are positive, hence the matrix is irreducible, and 
we can apply the Perron-Frobenius Theorem to ensure that there 
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exists some eigenvector y0 > 0 such that ytr
0 J	(l0) = ρytr

0 . Hence, 
from (A.3),

ytr
0 d≤ ρytr

0 d,

which implies that ρ ≥ 1. On the other hand, we have

l0 = 	(l0) =
1∫

0

J	(0 + tl0)l0dt> J	(l0)l0.

This implies that

ytr
0 l0>ytr

0 J	(l0)l0 = ρytr
0 l0. (A.4)

Since y0 > 0 and ρ ≥ 1, (A.4) contradicts the fact that l0 ≥ 	(0) >
0. Hence, necessarily, (A.1) is wrong and ln = l0, which shows the 
unicity of the fixed point.

A.3. Solving the fixed point problem

We study here the fixed point problem of Theorem 2.3 to deter-
mine the total number of victims r(∞). According to Theorem 2.3, 
we can approximate r(∞) using a recurrent sequence un+1 =
	(un) initialized for example at u0 = n(0) = (s j(0) + i j(0))1≤ j≤d . 
In some situations, the rate of convergence can be shown to be 
geometric.

Consider the special case where the matrix B is diagonally 
dominant, that is for all j, β j, j ≥ ∑d

k=1,k �= j βk, j . This corresponds 
to the special case where the contagion is stronger within each 
given group than with respect to other actors. In this case, if the 
intensity of attacks is strong enough, one can derive a rate of 
convergence for un . Indeed, the differential of 	 is a contracting 
application. First of all, from (2.1),

s j(t) ≤ s j(0)exp

⎛⎝−
t∫

0

α j(s)ds

⎞⎠ ,

which leads to

s j(∞) = s j(0) − r j(∞) ≤ s j(0)exp

⎛⎝−
∞∫

0

α j(s)ds

⎞⎠ ,

therefore R can be replaced by R̃ = {r : s j(0)[1 − exp(−A j)] ≤
r j ≤ s j(0) + i j(0)}.

We have, for h ∈Rd with ‖h‖∞ = 1, and x ∈ R̃

|( J	(x)h) j| =
∣∣∣∣∣

d∑
k=1

∂k	 j(x)hk

∣∣∣∣∣
=

∣∣∣∣∣
d∑

k=1

βk, j

γ j
(s j(0) + i j(0) − 	 j(x))hk

∣∣∣∣∣
=

∣∣∣∣∣
d∑

k=1

βk, j

γ j
s j(0)exp

(
−

(
A j +

d∑
k=1

βk, j

γ j
xk

))
hk

∣∣∣∣∣
≤ 2

β j, j s j(0)

γ j
exp

(
−

(
A j + β j, j

γ j
x j

))
≤ 2

s j(0)

x j

β j, jx j

γ j
exp

(
−

(
A j + β j, j

γ j
x j

))
≤ s j(0)

x j
exp(−A j) ≤ exp(−A j)

1 − exp(−A j)
,

where the first inequality comes from the diagonally dominance 
condition on B and the third one from the inequality 2x exp(−x) <
100
1 for all x ≥ 0. As a consequence, if A j > log 2 for all j, 
‖	(x) −	(y)‖∞ ≤ M‖x − y‖∞ , with M = sup j=1,...,d exp(−A j)[1 −
exp(−A j)]−1 < 1. This leads to

‖un − n(0)‖∞ ≤ Mn‖u1 − n(0)‖∞.

Even if the assumptions of this particular case do not hold, the 
convergence is nevertheless quite fast in the applications we con-
sider in the paper.
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