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Abstract: We present a new collateral framework, called CoMargin, for derivatives exchanges. 
CoMargin depends on both the tail risk of a given market participant and its interdependence 
with other participants. This collateral system aims at internalizing market interdependencies 
and enhancing the stability of the financial system. CoMargin can be estimated using a model-
free and scenario-based methodology, validated using formal statistical tests, and generalized 
to any number of market participants. We assess and illustrate our methodology using 
proprietary data from the Canadian Derivatives Clearing Corporation (CDCC). Our data set 
includes daily observations of the actual trading positions, margin requirements and profits-and-
losses of all forty-eight CDCC clearing members from 2002 to 2009. We show mathematically 
and empirically that CoMargin outperforms existing margining systems by minimizing the 
occurrence and economic shortfall of simultaneous financial distress events, particularly when 
trading similarity across clearing members and comovement among underlying assets 
increases. 
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1. Introduction 

How much margin should a given market participant post against its derivatives positions? In 

this paper, we argue that margin requirements should increase with both (1) the variability and 

(2) the interdependence of each participant’s future profits and losses (P&Ls). We show that 

commonly used collateral methods, such as the Standard Portfolio Analysis of Risk (SPAN) or 

the Value-at-Risk (VaR) system, can fail to properly allocate collateral requirements because 

they disregard the interdependence across the P&Ls of different market participants. 

Therefore, we propose a new margining system, called CoMargin, which explicitly internalizes 

these interdependencies. Our methodology is a model-free, scenario based approach that can 

be generalized to any number of market members. In addition, CoMargin requirements can be 

backtested and are less procyclical than those estimated with alternative methods. 

We focus on clearing houses in derivatives exchanges because these institutions concentrate a 

significant amount of counterparty risk in the financial system (Pirrong, 2009). However, our 

collateral approach and backtesting methodology is general enough to be applied to any 

context where counterparty risk needs to be managed. Examples include, but are not limited 

to, banks and lending institutions, over-the-counter (OTC) securities dealers, newly-proposed 

swap execution facilities (SEFs), and insurance companies. 

In a derivatives exchange, the clearing house conducts the clearing function, which consists on 

confirming, matching, and settling all trades. Clearing houses operate with a small number of 

members, referred to as clearing firms, who are allowed to clear their own trades (i.e., conduct 

proprietary trading), those of their customers, and those of non-clearing firms. Through the 

process of novation, the clearing house becomes the counterparty to every contract and 

guarantees their performance; thus, reducing the counterparty risk faced by its members. In 

the process of providing this service, however, the clearing house concentrates a significant 

amount of default risk, which is primarily managed through the use of margining systems.2 

A clearing house margining system requires members to post funds (or liquid assets) as 

collateral in a margin account. These funds are used to guarantee the performance of clearing 

                                                           
2 Other common default risk management tools include capital requirements for clearing firms, default funds, 
private insurance arrangements, and strict segregation between customer and house margin accounts (see Jones 
and Pérignon, 2013). 
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members’ positions over a period of time, usually one day, such that the clearing house is 

protected against the losses and potential default of its counterparties. However, clearing firms 

sometimes experience losses that exceed their posted collateral, leaving them with a negative 

balance in their margin accounts. These clearing firms may delay their payments or in some 

cases default; thus, creating a shortfall in the market. In either case, the clearing house has to 

cover this shortfall with its own funds in order to compensate the counterparties who profited 

from taking opposite trading positions. Usually, financing the shortfall of a single member over 

a limited period of time does not impose a hefty financial burden on the clearing house. 

However, when two or more large clearing firms have a negative margin balance 

simultaneously, the consequences tend to be more severe. In this case, if the clearing members 

only delay their payments temporarily, the resulting shortfall tends to be short lived, but it can 

significantly affect market liquidity, particularly during volatile periods. If on the other hand, the 

clearing members default, the shortfall tends to be long-lived or even permanent which can 

erode the resources of the clearing house to the point of financial distress or even failure.  

While clearing house failures are rare events, the cases of Paris in 1973, Kuala Lumpur in 1983 

and Hong Kong in 1987 (Knott and Mills, 2002) demonstrate that these extreme scenarios are 

not only possible, but also very economically significant.3 In addition, recent consolidation of 

clearing facilities through economic integration and mergers and acquisitions, as well as the 

strong pressure from governments and market participants to facilitate, or force, OTC 

derivatives to be cleared by central counterparties, has dramatically increased the systemic 

importance of these institutions (see, for instance, Acharya et al., 2009; US Congress’ OTC 

Derivatives Market Act of 2009; US Department of Treasury, 2009; Duffie, Li, and Lubke, 2010; 

Duffie and Zhu, 2010).4 Therefore, it is increasingly necessary to devise appropriate risk 

management systems that enhance the stability and resiliency of clearing facilities. 

Current margining systems employed by derivatives exchanges set the margin level of a 

derivatives portfolio based on a coverage probability or a target probability of a loss in excess of 

                                                           
3 Default of clearing firms are of course much more frequent. Recent examples on the CME include Refco in 2005, 
Lehman in 2008, and MF Global in 2011 (see Jones and Pérignon, 2012). 
4 The Chicago Mercantile Exchange (CME), Intercontinental Exchange (ICE), EUREX, Euronext Liffe, and LCH-
Clearnet have each recently created clearing facilities for Credit Default Swaps. 
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posted collateral (Figlewski 1984; Booth et al. 1997; Cotter 2001).5 However, by focusing only 

on individual firm portfolios, these systems ignore the fact that clearing firms sometimes face 

homogenous risk exposures that make them highly interdependent and causes them to exceed 

their posted margin simultaneously. As a consequence, the clearing house may experience 

sudden and extreme shortfalls that could undermine its stability and resiliency. 

The level of risk homogeneity across clearing firms increases with trade crowdedness and 

underlying asset comovement. Trade crowdedness refers to the similarity of clearing firms’ 

trading positions. When member portfolios are very similar, they tend to have equivalent 

exposures and returns, regardless of how underlying assets behave. Underlying asset 

comovement refers to underlying assets returns moving in unison. When underlying assets 

experience high levels of comovement, clearing firms tend to have similar risk exposures 

because, regardless of their individual trading decisions, all securities in all portfolios tend to 

move in the same direction.6  

Both dimensions of risk homogeneity are related; however, the first one is directly influenced 

by the individual trading behaviour of clearing firms, while the second one is determined by 

aggregate market behaviour. Similar trading positions, or crowded trades, tend to arise among 

large clearing firms because they share a common (and superior) information set. This 

informational advantage leads them to pursue similar directional trades, arbitrage 

opportunities and hedging strategies.7 On the other hand, underlying assets tend to move in 

the same direction during economic slowdowns or during periods of high volatility, both of 

which are rarely the result of individual market participants’ actions.8 

                                                           
5 For example, Kupiec (1994) shows the empirical performance of the SPAN system for selected portfolios of S&P 
500 futures and futures-options contracts and he finds that, over the period 1988-1992, the historical margin 
coverages exceed 99% for most considered portfolios. 
6 The importance of asset comovement has been identified in previous studies. For example, in an early attempt to 
analyze the default risk of a clearing house, Gemmill (1994) highlights the dramatic diversification benefit from 
combining contracts on uncorrelated or weakly correlated assets. 
7 Much of the proprietary trading activity on derivatives exchanges consists of arbitraging futures and over-the-
counter or cash markets (e.g. cash-futures arbitrage of the S&P 500 index, eurodollar-interest rate swap arbitrage, 
etc.). 
8 Extreme dependence and contagion across assets is discussed in Longin and Solnik (2001), Bae, Karolyi and Stulz 
(2003), Longstaff (2004), Poon, Rockinger and Tawn (2004), Boyson, Stahel and Stulz (2010), and Harris and Stahel 
(2011), among others. 
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In this paper, we depart from the traditional view of setting margin requirements based on 

individual member positions. Instead, we account for their interdependence by computing the 

margin requirement of a clearing firm conditional on one or more firms being in financial 

distress. By adopting this approach, we obtain a system that allows the margin requirements of 

a particular member to increase when it is more likely to experience financial distress 

simultaneously with others. 

Our method builds on the CoVaR concept introduced by Adrian and Brunnermeier (2011) which 

is defined as the VaR of the system (i.e., banking sector) conditional on a given institution being 

in financial distress. The core of their analysis is the so-called delta CoVaR that measures the 

marginal contribution of a particular institution to the overall risk in the system; i.e., the 

difference between the VaR of the system conditional on a given institution being in distress 

and the VaR of the system in the median state of the institution. There are some key 

differences between the CoVaR and CoMargin methodologies, however. First, the objective of 

CoMargin is not to measure systemic risk. Instead, it is used to estimate margin requirements 

that account for the interdependence of market participants. Thus, we do not consider the VaR 

of the system but the VaR of a firm conditional on one or several other firms being in financial 

distress. Second, CoMargin is not applied to bank stock returns but to the trading P&Ls of 

clearing firms. Moreover, we only focus on a sub-set of these firms because by construction 

their aggregate P&Ls in a derivatives exchange is zero. Finally, the estimation of CoMargin is 

non-parametric and much simpler than that used for CoVaR, which requires a quantile 

regression technique.  

The CoMargin estimation process starts by taking the trading positions of all clearing members 

at the end of the trading day as given. Then, we consider a series of one-day-ahead scenarios 

based on changes in the price and volatility of the underlying assets. For each scenario, we 

mark-to-model each firm’s portfolio and obtain its hypothetical P&L. Based on these 

hypothetical P&L calculations we compute margin requirements that minimize the probability 

of joint financial distress. We show that the CoMargin system enhances financial stability 

because it reduces the likelihood of several clearing members being in financial distress 

simultaneously. In addition, we also show that this method increases financial resiliency 

because it actively adjusts the allocation of collateral as a function of market conditions. As a 

result, the average magnitude of the margin shortfall given simultaneous financial distress is 
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minimized relative to other collateral systems. Both of these conditions greatly reduce systemic 

risk concerns. 

The rest of the paper is organized as follows. In Section 2, we describe how margin 

requirements are currently estimated under the SPAN and VaR margining systems. In Section 3 

we define a list of properties needed to achieve a sound margining system. We present the 

theoretical foundations of the CoMargin system in Section 4 and examine its effectiveness 

through an empirical analysis in Section 5. Finally, Section 6 concludes. 

 

2. Standard Margin Systems 

 

2.1. Derivatives Market 

Consider a derivatives exchange with 𝑁 clearing firms and 𝐷 derivatives securities (futures, 

options, credit default swaps, etc.) written on 𝑈 underlying assets. Let 𝑤𝑖,𝑡 be the number of 

contracts in the derivatives portfolio of clearing firm 𝑖, for 𝑖 = 1, … , 𝑁, at the end of day 𝑡: 

𝑤𝑖,𝑡 = [

𝑤1,𝑖,𝑡
⋮

𝑤𝐷,𝑖,𝑡
] (1) 

The performance bond, 𝐵𝑖,𝑡, is the margin or collateral requirement imposed by the clearing 

house on clearing firm 𝑖 at the end of day 𝑡. This performance bond depends on the 

outstanding trading positions of the clearing firm at the end of day 𝑡, 𝑤𝑖,𝑡. The variation margin, 

𝑉𝑖,𝑡, represents the aggregate P&L of clearing firm 𝑖 on day 𝑡. 

In derivatives markets, margins are collected to guarantee the performance of member 

obligations and to guard the clearing house against default. Therefore, we are interested in 

situations when trading losses exceed margin requirements; i.e., when 𝑉𝑖,𝑡 ≤ 𝐵𝑖,𝑡−1. In these 

cases, we say that firm 𝑖 is in financial distress. Identifying firms in this state is important 

because they have an incentive to default on their positions or to delay payment on their 

obligations, which generates a shortfall in the system that needs to be covered by the clearing 

house.  
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2.2. SPAN Margin 

The most popular margining system around the world is the Standard Portfolio Analysis of Risk 

(SPAN) system. This system was introduced by the CME in 1988 and as it is illustrated in Table 1, 

it is currently used by more than 50 derivatives exchanges. SPAN is a scenario based system 

that is applied on a firm by firm basis; however, it is not a comprehensive portfolio margining 

system. Instead, it divides the portfolio into contract families, which are defined as groups of 

contracts that share the same underlying asset. Thus, in a market with 𝑈 underlying assets, 

there are 𝑈 different contract families. SPAN sets the margin requirements for these families 

independently, and the collateral level for the entire portfolio is then computed by aggregating 

the margin requirements of all contract families according to the aggregation rules set by the 

clearing house.  

To compute the margin level for a derivatives portfolio, the SPAN system simulates potential 

one-day changes in the value of each contract using sixteen scenarios that vary the value (∆𝑋) 

and the volatility (∆𝜎𝑋) of the underlying assets, as well as the time to expiration of the 

derivatives products. The potential price movements for each underlying asset are defined in 

terms of a price range, which is derived from historical data. In most cases, the price range is 

selected to cover 99% of the historical one-day price movements observed in the calibration 

window. A similar approach is adopted for the volatility range. 

Every day following the market close, the clearing house applies each scenario to each one of 

the 𝐷 derivatives securities traded on the exchange. The price changes of non-linear 

instruments, such as options, are obtained by using numerical valuation methods or option 

pricing models. A risk array with sixteen gain or loss values is created for each contract (i.e., 

each maturity and each strike price will have its own array). Using these arrays, the predicted 

losses across contracts are computed to find the scenario that creates the worst-case loss for 

the contract family as a whole. This worst-case value is then used to determine the margin 

requirement for that contract family.  

The overall portfolio margin requirement is computed by aggregating the margin requirements 

of different contract families. However, since SPAN allows different futures and options months 

within a family to offset each other, the aggregation across contract families is adjusted with 

intermonth spread charges. Similarly, inter-commodity credits are given to account for inter-
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commodity spreads. It is important to note that the magnitudes of these charges and credits 

are left to the discretion of the margin committee of the clearing house, so they may not be 

consistent across commodities, market conditions or clearing houses. As a consequence, the 

actual coverage probability of the SPAN system may vary through time or across markets. 

As an illustration, we display in Figures 1 and 2 the daily SPAN margins and P&L for all sixty nine 

clearing firms in the CME between January 1 and December 31, 2001. More precisely, these 

figures correspond to the house trading account (i.e., proprietary trading) of these clearing 

firms, and as such, do not reflect customer trading. The most striking feature of the data is the 

segmentation of the market between extremely large (i.e., systemically-important) clearing 

firms and smaller ones. The top-10 largest clearing firms (the brokerage units of Morgan 

Stanley, Goldman Sachs, Credit Suisse, etc.) account on average for approximately 80% of all 

collateral collected. We see in Figure 1 that the posted margin for a single firm can be close to 

$3 billion and the daily trading gain or loss can exceed $1 billion. 

Figure 2 displays the ratio of daily P&L to posted SPAN margin (𝑉𝑖,𝑡/𝐵𝑖,𝑡−1) for all of the clearing 

firms in the sample. This graph illustrates two important features of the SPAN margining 

system. First, SPAN margins are frequently exceeded by trading losses. In our sample, 30 days 

(out of 251) show a negative balance in at least one member’s margin account (i.e. these 

accounts ended the trading day under-water).  In addition, 14 different clearing firms 

experienced at least one margin-exceeding loss event during this one year sample. Second, 

margin deficiencies tend to cluster. This feature of the data is particularly salient and 

concerning from a risk management perspective for the largest clearing firms. The ten most 

extreme losses as a proportion of posted collateral that affected the ten largest clearing firms 

occurred on two different trading days. 

 

2.3. VaR Margin 

VaR is defined as a lower quantile of a P&L distribution. It is the standard measure used to 

assess the aggregate risk exposure of banks (Berkowitz and O’Brien, 2002; Berkowitz, 

Christoffersen and Pelletier, 2011), as well as their regulatory capital requirements (Jorion, 

2007). VaR can also be used to set margins on a derivatives exchange. In this case, the margin 
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requirement corresponds to a given quantile of a clearing firm’s one-day-ahead P&L 

distribution.  

 

 

Definition 1: The VaR margin, 𝐵𝑖, corresponds to the 𝛼% quantile of the P&L distribution: 

Pr(𝑉𝑖,𝑡+1 ≤ −𝐵𝑖,𝑡) = 𝛼 (2) 

 

Like the SPAN system, the VaR collateral method is applied on a firm by firm basis using a 

scenario analysis (Cruz Lopez, Harris and Pérignon, 2011). We consider 𝑆 scenarios and use 

them to evaluate each clearing firm’s entire portfolio. The hypothetical P&L or variation margin 

of each clearing member is computed by marking-to-model their positions in each scenario. 

Thus, for each clearing member and each date 𝑡, we obtain a simulated sample of 𝑉𝑖,𝑡+1 

denoted {𝑣𝑖,𝑡+1
𝑠 }

𝑠=1

𝑆
 that can be used to estimate the VaR collateral requirement as follows: 

𝐵̂𝑖,𝑡 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 ({𝑣𝑖,𝑡+1
𝑠 }

𝑠=1

𝑆
, 100𝛼) (3) 

Compared to market risk VaR (Jorion, 2007), the estimation of VaR margin is much simpler. In 

general, the quantile of the return at time 𝑡, needed for market risk VaR, cannot be estimated 

without making some strong assumptions about the underlying distribution because for each 

date, there is only one P&L observation available for each firm. For example, the historical 

simulation approach broadly used by financial institutions for market risk VaR estimations 

assumes that the P&Ls of each firm are independently and identically distributed over time. 

Under these assumptions, the unconditional VaR is stationary and it can be estimated from the 

historical path of past P&Ls. The estimation of more refined measures, such as conditional VaR 

also require some particular assumptions regarding the dynamics of the P&L quantiles. For 

instance, the CAViaR approach proposed by Engle and Manganelli (2004), assumes an 

autoregressive process for the P&L quantile. 
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In our context, however, the situation is quite different and much simpler because we have 𝑆 

simulated observations of the P&L of each clearing firm at time 𝑡. This is an ideal situation from 

an econometric point of view because the quantile of the P&L distribution can be directly 

implied without making any assumptions regarding its behavior over time. Thus, 𝐵̂𝑖,𝑡, which 

represents the empirical quantile based on the 𝑆 simulated observations (see equation 3), is a 

consistent estimate of the VaR when 𝑆 tends to infinity. 

3. Characteristics of a Sound Margining System 

Surprisingly, there is very little guidance in the literature regarding the properties that a sound 

margining system should satisfy. Nevertheless, this is a fundamental issue that needs to be 

addressed in order to understand the relative merits of different margining methodologies. 

Therefore, in this section we attend to this issue by proposing five main properties that any well 

designed margining system must satisfy. These properties and the rationale behind them are 

explained below. 

i. Margins must increase with P&L variability 

Let 𝜎𝑖,𝑡 be a measure of the variability of the P&L of clearing member 𝑖 at time 𝑡: 

If 𝜎𝑖,𝑡
1 ≥ 𝜎𝑖,𝑡

2  then 𝐵𝑖,𝑡(𝑤𝑖,𝑡, 𝜎𝑖,𝑡
1 ) ≥ 𝐵𝑖,𝑡(𝑤𝑖,𝑡, 𝜎𝑖,𝑡

2 ) (4) 

This basic property is at the heart of existing margining methods (see Table 2). 

Intuitively, it means that since riskier trading portfolios (as measured by their variability) 

tend to have larger potential losses, more collateral must be collected to guarantee 

their performance. Or in simple words, riskier clearing firms should post higher margins. 

The SPAN and VaR methods comply with this property because both the simulated loss 

of the SPAN system and the quantile that determines the VaR margin increase with the 

variability of P&Ls.9 

                                                           
9 Artzner et al. (1999) define a coherent risk measure using four axioms: monotonicity (if portfolio 1 (P1)’s returns 
are always lower than portfolio 2 (P2)’s returns, then P1 is riskier than P2), translation invariance (adding $K in 
cash to P1 reduces its risk by the same amount), homogeneity (increasing the size of P1 by a factor S increases its 
risk by the same factor), and subadditivity (risk measures need to account for diversification). Conceptually, with 
non-subadditive margins, it may be optimal for participants to breakdown their trading portfolio into smaller sub-
portfolios in order to reduce their total margin requirements. However, in practice, clearing houses prevent 
financial institutions from having multiple clearing firms. Furthermore, netting rules allow clearing members to 
post considerably less margin than they would if they had dislocated portfolios. 
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ii. Margins must increase with loss dependence 

Let 𝛿𝑖,𝑡 be a measure of dependence between the losses of market participant 𝑖 and 

those of other market participants at time 𝑡. Loss dependence can originate from 

similarities in trading positions, correlated asset prices, or both: 

If 𝛿𝑖,𝑡
1 ≥ 𝛿𝑖,𝑡

2  then 𝐵𝑖,𝑡(𝑤𝑖,𝑡, 𝛿𝑖,𝑡
1 ) ≥ 𝐵𝑖,𝑡(𝑤𝑖,𝑡, 𝛿𝑖,𝑡

2 ) (5) 

 

The intuition behind this property is that a sound margining system should prevent (or 

minimize) the occurrence of joint-financial distress across market participants. As shown 

in Section 2, both the SPAN and VaR margin methods set margins on a firm-by-firm basis 

and hence completely disregard loss dependence across clearing firms. 

 

iii. Margins should not be excessively procyclical 

When margins are procyclical, market downturns and excess volatility can lead to higher 

initial margins and more frequent margin calls. This situation can adversely affect 

funding conditions and market liquidity, and it can force traders to close out their 

positions simultaneously; thus, intensifying market declines. Brunnermeier and 

Pedersen (2009) explain and model this sequence of reinforcing events which they refer 

to as a “margin spiral”. Current margining requirements are prone to trigger these 

spirals because they are only a function of expected price and volatility changes. In 

addition, discretionary parameters, such as the ranges and aggregation rules used in the 

SPAN system, are usually modified after significant or persistent market shocks. 

Therefore, margin requirements often exhibit significant jumps, as opposed to smooth 

transitions, which can be very destabilizing for the market.  

 

iv. Margins must be robust to outliers 
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Erratic margin swings due to outliers should be prevented as much as possible as they 

may lead to severe operational problems, such as sudden margin calls. Since SPAN 

margins are based on the maximum simulated loss and not on a quantile, they are much 

more sensitive to outliers than VaR margins. 

 

v. Margins must be testable ex-post 

The only way to systemically measure the accuracy and effectiveness of a margining 

system is by backtesting it. Backtesting aims at identifying misspecified models that lead 

to margin requirements that are either too high or too low.  Therefore, if a margining 

system cannot be backtested using formal statistical methods, then we cannot identify 

its potential shortcomings and fine tune it to meet its objectives.  

 

VaR margins can be easily backtested because they are defined by the quantile of the 

P&L distribution. The intuition behind the backtesting procedure is that the actual 

trading losses of a given clearing firm should only exceed its VaR margin α% of the time. 

Well known VaR validation tests can be found in Jorion (2007) and a more refined 

approach can be found in Hurlin and Pérignon (2012). On the other hand, backtesting 

SPAN margin requirements is extremely challenging because they are based on the 

minimum of a simulated distribution, which is very hard to identify. Therefore, the 

validation tests cannot be performed without making strong assumptions about the P&L 

distributions of clearing firms. 

 

As it can be seen from the discussion above, the SPAN system only complies with the first key 

property, whereas the VaR margining system complies with properties one, four and five. Table 

2 summarizes these findings. It is very interesting to notice, however, that existing margining 

techniques are unable to account for the loss dependence across participants and to generate 

margin requirements that are not highly procyclical.  

 

4. CoMargin 
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4.1. Concept 

As shown in Section 3, VaR and SPAN collateral systems only focus on firm specific risk; that is, 

the unconditional probability of financial distress of each individual member. By adopting either 

system, the clearing house guards itself from unique or independent financial distress 

occurrences, but it leaves itself exposed to simultaneous distress events. These events, 

however, tend to be more economically significant because they place a more substantial 

burden on the resources of the clearing house, which may exhaust its funds and eventually 

default. 

Consider firms 𝑖 and 𝑗. Using the VaR collateral system, their probability of joint financial 

distress is given by:  

Pr[(𝑉𝑖,𝑡+1 ≤ −𝐵𝑖,𝑡) ∩ (𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡)] 

= Pr(𝑉𝑖,𝑡+1 ≤ −𝐵𝑖,𝑡|𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡) × Pr(𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡) 
(6) 

Equation 6 shows that joint financial distress events tend to happen more frequently not only 

when firm specific risk increases (i.e., when Pr(𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡) increases), but also when risk 

homogeneity increases (i.e., when  Pr(𝑉𝑖,𝑡+1 ≤ −𝐵𝑖,𝑡|𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡) increases). In the first 

case, firms are more likely to experience losses that exceed their collateral levels in all 

situations. In the second case, firms are more likely to experience these losses when other firms 

are in financial distress, either because they hold similar positions (i.e., trade crowdedness is 

high) or because underlying assets have a tendency to move together (i.e., underlying asset 

comovement is high). However, VaR and SPAN systems completely disregard risk homogeneity 

and its potential effect on financial distress and market stability. In the case of the VaR system, 

risk managers only target unconditional distress probabilities by setting a coverage level for 

each clearing member. In the case of the SPAN system, risk managers do not have direct control 

over the unconditional distress probabilities, so the clearing house is potentially left even more 

vulnerable to simultaneous distress occurrences.  

Now, consider a fully orthogonal market; that is, a market that has firms with orthogonal 

trading positions and orthogonal underlying asset returns. In this case, firms have orthogonal 

risk exposures and their probabilities of financial distress are independent. Therefore, 
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Pr(𝑉𝑖,𝑡+1 ≤ −𝐵𝑖,𝑡|𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡) = 𝛼 (7) 

and 

Pr[(𝑉𝑖,𝑡+1 ≤ −𝐵𝑖,𝑡) ∩ (𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡)] = 𝛼
2 (8) 

Equation 8 shows that a fully orthogonal market minimizes the probability of joint financial 

distress across clearing members. Given a common coverage probability, 𝛼, a fully orthogonal 

market provides the best possible level of market stability, regardless of the collateral system 

being adopted by the clearing house. Therefore, a fully orthogonal market can be seen as a 

conceptual construct that provides a common benchmark for all margining systems.   

With this in mind and in the spirit of the CoVaR measure of Adrian and Brunnermeier (2011), 

we propose a new collateral system, called CoMargin, which enhances financial stability by 

taking into account the risk homogeneity of clearing firms. Our starting point is the framework 

used to estimate VaR margin requirements, which was described in the previous section. Once 

we establish the 𝑆 scenarios for each underlying asset, we jointly evaluate the portfolios of 

firms 𝑖 and 𝑗 and compute their associated hypothetical P&Ls or variation margins, 𝑉𝑖,𝑡+1 and 

𝑉𝑗,𝑡+1 respectively, such that for each date 𝑡, we obtain a panel of simulated P&Ls, denoted 

{𝑣𝑖,𝑡+1
𝑠 , 𝑣𝑗,𝑡+1

𝑠 }
𝑠=1

𝑆
. Thus, the CoMargin of firm 𝑖, denoted 𝐵𝑡

𝑖|𝑗
, conditional on the realisation of 

an event affecting firm 𝑗 is: 

Pr (𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗
|𝐂(𝑉𝑗,𝑡+1)) = 𝛼 (9) 

The conditioning event that we consider in this case is an extreme loss in the portfolio of firm 𝑗, 

which is defined as a loss that exceeds its 𝛼% VaR, or equivalently, a loss that exceeds its VaR 

margin; i.e., 𝐂(𝑉𝑗,𝑡+1) = {𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡}. 

 

Definition 2: The CoMargin, 𝐵𝑖|𝑗, corresponds to the 𝛼% conditional quantile of their joint P&L 

distributions: 

Pr(𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗
|𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡) = 𝛼 (10) 
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Through Bayes theorem we know that: 

Pr(𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗
|𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡) =

Pr[(𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗
) ∩ (𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡)]

Pr(𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡)
 (11) 

where the numerator represents the joint probability of 𝑖 exceeding its CoMargin requirement 

and 𝑗 experiencing an extreme loss. From Definitions 1 and 2, we can see that the CoMargin of 

firm 𝑖 is defined as the margin level 𝐵𝑡
𝑖|𝑗

 such that: 

Pr[(𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗
) ∩ (𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡)] = 𝛼

2 (12) 

Notice from equation 10 that the CoMargin system starts by defining a threshold level or 

extreme loss as the 𝛼% VaR of the P&L of a conditioning firm 𝑗. This threshold, which 

corresponds to that firm’s VaR margin, accounts for firm specific risk in the CoMargin 

calculation. Risk homogeneity is then incorporated by directly targeting the conditional 

probability of financial distress of firm 𝑖, such that it behaves as if the market was fully 

orthogonal when firm 𝑗 experiences an extreme loss. This means that when the market is 

indeed fully orthogonal, the CoMargin and VaR collateral systems are equivalent and produce 

the same results. When the market is not fully orthogonal, any differences between the 

collateral requirements of these two systems can be attributed to risk homogeneity. Thus, the 

CoMargin of firm 𝑖, 𝐵𝑡
𝑖|𝑗

, can be interpreted as the margin level that guarantees that firm 𝑖 

remains solvent at an optimal level when firm 𝑗 experiences an extreme loss. The optimal level 

of solvency corresponds to that seen in a fully orthogonal market, in the sense that, given that 

firm 𝑗 experiences an extreme loss, firm 𝑖 will have enough funds in its margin account to cover 

its potential losses 1 − 𝛼2% of the time. Therefore, the CoMargin system greatly enhances 

financial stability. 

 

4.2. Illustration 

4.2.1. Properties 
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We consider a simple case with two firms that have normally-distributed P&Ls. For simplicity, 

we consider an unconditional distribution, with respect to past information, and consequently 

neglect the time index 𝑡: 

(𝑉1, 𝑉2)
′~ 𝑁(0, Σ)  

Σ = (
𝜎1
2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2 )  

 

In this setting, the CoMargins for both members, denoted (𝐵1|2, 𝐵2|1), are defined by: 

Pr(𝑉𝑖 ≤ 𝐵
𝑖|𝑗|𝑉𝑗 ≤ −𝐵𝑗) = 𝛼 (13) 

For 𝑖 = 1,2, where 𝐵𝑖 = −𝜎𝑖Φ
−1(𝛼) denotes the unconditional VaR of firm 𝑖 and Φ(∙) the cdf 

of the standard normal distribution. The conditional distribution of 𝑉𝑖 given that 𝑉𝑗 < 𝑐, ∀𝑐 ∈ ℝ 

is a skewed distribution (Horace, 2005) and is denoted by g(∙). The CoMargin for the firm 𝑖 is 

the solution to:  

∫ 𝑔(𝑢;

−𝐵𝑖|𝑗

−∞

𝜎𝑖, 𝜎𝑗 , 𝜌)𝑑𝑢 = 𝛼 (14) 

𝑔(𝑢; 𝜎𝑖, 𝜎𝑗 , 𝜌) =
1

𝛼𝜎𝑖
× 𝜙(

𝑢

𝜎𝑖
) ×  Φ(

−𝐵𝑗/𝜎𝑗 − 𝜌𝑢/𝜎𝑖

√1 − 𝜌2
) 

(15) 

where ϕ(∙) denotes the pdf of the standard normal distribution (Arnold et al., 1993). Using the 

expression of CoMargin in equation 14, we can illustrate some of its properties:  

 

i. The CoMargin of firm 𝑖 increases with the variability of its P&L: 

𝜕𝐵𝑖|𝑗

𝜕𝜎𝑖
> 0 

(16) 

See Appendix A1 for the proof. 
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ii. When there is no correlation between the P&Ls of firms 𝑖 and 𝑗, CoMargin and VaR 

margin converge. In our case, the dependence is fully captured by the correlation 

coefficient, 𝜌: 

𝐵𝑖|𝑗 = 𝐵𝑖 when 𝜌 = 0 (17) 

Notice, however, that this result is not specific to the normal case. When there is no 

dependence (linear or not) between the P&L of the two firms, the CoMargin simply 

reduces to the VaR margin. See Appendix A2 for the proof. 

 

iii. The CoMargin of firm 𝑖 increases with the dependence between its P&L and that of 

other firms (i.e., firm 𝑗). See Appendix A3 for the proof: 

𝜕𝐵𝑖|𝑗

𝜕𝜌
> 0 

(18) 

 

iv. When the correlation between the P&Ls of firm 𝑖 and firm 𝑗 approaches one, the 

CoMargin converges towards the VaR margin defined with an 𝛼2% coverage probability, 

𝐵𝑖(𝛼
2):  

lim
𝜌→1

 𝐵𝑖|𝑗 =  𝐵𝑖(𝛼
2) (19) 

This property shows that the CoMargin is not explosive when the correlation becomes 

very large. See Appendix A4 for the proof. 

 

v. The CoMargin of firm 𝑖 does not depend on the variability of the P&L of firm 𝑗: 

𝜕 𝐵𝑖|𝑗

𝜕𝜎𝑗
= 0 

(20) 

See Appendix A5 for the proof. 
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4.2.2. Performance 

In order to illustrate the performance of the CoMargin system, we now consider with the case 

of four firms, where two of them (firms 1 and 2) have correlated P&Ls: 

𝑉𝑡 ~ 𝑁(0, Σ) 

where 𝑉𝑡 = (𝑉1,𝑡, 𝑉2,𝑡, 𝑉3,𝑡, 𝑉4,𝑡)
′
 and: 

Σ = (

1 𝝆
𝝆 1

0 0
0 0

0 0
0 0

1 0
0 1

) 

Firms 1 and 2 have P&Ls with correlations increasing from 0 to 0.8. As it was explained before, 

the increasing correlation in the P&Ls of these firms can reflect an increase in their trading 

similarity or the comovement across underlying assets. In Table3, we present the margins of 

each clearing firm computed using both a VaR approach and a CoMargin approach. Here, the 

conditioning event in the CoMargin definition is that at least one of the other three firms is in 

financial distress. 

We see in Table 3 that both types of margins are equal when 𝜌 = 0 and that the CoMargin is 

larger than the VaR margin when 𝜌 > 0. We also report a so called Budget-Neutral (BN) margin 

that is designed to collect as much aggregate collateral as the CoMargin system, but the funds 

collected over and above the aggregate level of VaR margin are obtained only from the 

independent firms (i.e., firms 3 and 4), for which CoMargin is always equal to VaR Margin. Thus, 

the BN margin scheme redistributes the allocation of collateral across firms. 10 

Figure 7 reports the probability of having, respectively, one (p1), two (p2), three (p3), and four 

(p4) firms in financial distress, i.e., firms suffering a margin-exceeding loss. We see that the 

CoMargin system clearly outperforms its VaR counterpart as it systematically leads to smaller 

probabilities of having firms in financial distress and, consequently, it leads to higher 

probabilities of not having firms in financial distress (p0).  

Next, we check whether the better performance of the CoMargin system is due to (1) a better 

allocation of margins across firms or to (2) the fact that it collects higher margins.  In order to 

                                                           
10 An alternative budget-neutral margin scheme would be to redistribute all of the additional collateral across all 
firms.  
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do this assessment, we neutralize the second effect by using BN margins. Given the symmetric 

nature of the market structure – two dependent firms and two independent firms (see Table 3) 

– p0 is the same for CoMargins and BN margins. The key difference between the two curves 

shown in Figure 7 is that joint-financial distresses happens less frequently with CoMargins than 

they do with BN margins. Notice that this effect is only the result of a better allocation of 

margins across firms, and not the result of additional funds collected under the CoMargin 

system.  

 

4.3. Scenario Generation 

One common feature of all margin methods is that they are all scenario based. As a 

consequence, generating meaningful scenarios is a crucial stage in the margin setting process. 

We consider a series of scenarios based on potential shocks in the value of some state 

variables. Depending on the derivative securities included the portfolio, one can consider 

changes in the derivatives prices (e.g., for futures), changes in the price and volatility of an 

underlying asset (e.g., for options), changes in the time to expiration (e.g., for any derivatives 

contract), or default (e.g., for CDS). 

The shocks associated with a particular scenario can be of two types: historical or simulated 

from a parametric multivariate distribution. There are two types of multivariate scenarios: 

unconditional and conditional ones. One type of information that we suggest should be used to 

condition scenarios is the trading positions of systemically important market participants. The 

reason for suggesting this approach is that when market participants have large and similar 

trading positions, they are likely to have a non-trivial effect on the future value and volatility of 

the derivatives that they hold. In addition, since these participants tend to operate under a 

relatively homogeneous information set, they are likely to have analogous responses to 

changing market conditions. For example, they may decide to close out their positions at the 

same time during a downturn, which could trigger large price swings and excess volatility. This 

feed-back effect from trading positions to volatility is an important source of endogenous risk in 

the system. 
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There are two important implications of using scenarios that are conditional on trading 

positions: (1) Joint financial distress occurrences are less likely to occur as collateral 

requirements increase with trading similarities and (2) margins will tend to be less procyclical.  

As noted by Brunnermeier and Pedersen (2009), under standard collateral systems, margins 

increase with current volatility, which sometimes leads to margin spirals. Thus, having scenarios 

that account for trading positions can lead to higher margins prior to episodes of high volatility.  

Besides conditional scenarios, another way to control for endogenous risk is to define margin 

requirements such that they account for trading similarities. This is exactly the approach 

followed by the CoMargin system. As a consequence, CoMargins are less procyclical than SPAN 

and VaR margins, even when computed from unconditional scenarios. 

 

4.4. Estimation 

Given the simulated path {𝑣𝑖,𝑡+1
𝑠 , 𝑣𝑗,𝑡+1

𝑠 }
𝑠=1

𝑆
, conditional on 𝐵𝑡

𝑖|𝑗
, a simple estimate of the joint 

probability Pr[(𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗
) ∩ (𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡)], denoted 𝑃𝑡

𝑖,𝑗
, is given by: 

𝑃̂𝑡
𝑖,𝑗
=
1

𝑆
∑𝐈(𝑣𝑖,𝑡+1

𝑠 ≤ −𝐵𝑡
𝑖|𝑗
) × 𝐈(𝑣𝑗,𝑡+1

𝑠 ≤ −𝐵𝑗,𝑡)

𝑆

𝑠=1

 (21) 

where 𝑣𝑖,𝑡+1
𝑠  and 𝑣𝑗,𝑡+1

𝑠  correspond to the 𝑠𝑡ℎ simulated P&L of firms 𝑖 and 𝑗, respectively. Given 

this result, we can now estimate 𝐵𝑡
𝑖|𝑗

. For each time 𝑡 and for each firm 𝑖, we look for the value 

𝐵𝑡
𝑖|𝑗

, such that the distance 𝑃̂𝑡
𝑖,𝑗
− 𝛼2 is minimized: 

𝐵̂𝑡
𝑖|𝑗
= argmin

{𝐵𝑡
𝑖|𝑗
}
(𝑃̂𝑡

𝑖,𝑗
− 𝛼2)

2
 (22) 

Thus, for each firm 𝑖, we end up with a time series of CoMargin requirements {𝐵̂𝑡
𝑖|𝑗
}
𝑡=1

𝑇
 for 

which confidence bounds can be bootstrapped.  

 

4.5. Backtesting 
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Just like VaR margin, CoMargin allows us to test the null hypothesis of an individual member 

exceeding its margin requirement. More importantly, however, is the fact that we can also test 

the conditional probability of financial distress defined by the CoMargin of firm 𝑖, 𝐵𝑡
𝑖|𝑗

. The null 

hypothesis in this case becomes:  

𝐻0 : Pr(𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗
|𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡) = 𝛼 (23) 

Since the null implies that 𝐸[𝐈(𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗
) × 𝐈(𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡)] = 𝛼, then a simple 

likelihood-ratio (LR) test can also be used (Christoffersen, 2009). To assess the conditional 

probability of financial distress, we use the historical paths of the P&Ls for both members 𝑖 

and 𝑗; i.e., {𝑣𝑖,𝑡+1}𝑡=1
𝑇

 and {𝑣𝑗,𝑡+1}𝑡=1
𝑇

. The corresponding LR test statistic, denoted 𝐿𝑅𝑖|𝑗 takes 

the same form as 𝐿𝑅𝑖: 

𝐿𝑅𝑖|𝑗 = −2ln[(1 − 𝛼)
𝑇−𝑁𝑖|𝑗𝛼𝑁𝑖|𝑗] + 2ln [(1 −

𝑁𝑖|𝑗

𝑇
)
𝑇−𝑁𝑖|𝑗 𝑁𝑖|𝑗

𝑇

𝑁𝑖|𝑗

] (24) 

except that in this case 𝑁𝑖|𝑗 denotes the total number of joint past violations observed for both 

members 𝑖 and 𝑗; that is, 𝑁𝑖|𝑗 = ∑ 𝐈(𝑣𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗
)𝑇

𝑡=1 × 𝐈(𝑣𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡). 

 

4.6. Extension to 𝒏 Conditioning Firms 

Consider now that the conditioning event depends on two firms denoted 𝑗 and 𝑘. In this case, 

the CoMargin of firm 𝑖, denoted by 𝐵𝑡
𝑖|𝑗,𝑘

, is defined as follows: 

Pr (𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗,𝑘

|𝐂(𝑉𝑗,𝑡+1, 𝑉𝑘,𝑡+1)) = 𝛼 (25) 

Pr[(𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗,𝑘

) ∩ 𝐂(𝑉𝑗,𝑡+1, 𝑉𝑘,𝑡+1)]

Pr[𝐂(𝑉𝑗,𝑡+1, 𝑉𝑘,𝑡+1)]
= 𝛼 (26) 

The conditioning event that we consider is either firm 𝑗 or firm 𝑘, or both, being in financial 

distress; i.e., 𝐂(𝑉𝑗,𝑡+1, 𝑉𝑘,𝑡+1) = 𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡 𝑜𝑟 𝑉𝑘,𝑡+1 ≤ −𝐵𝑘,𝑡. In this case, the probability of 
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the conditioning event is equal to 2𝛼 only if the financial distress events of firms 𝑗 and 𝑘 are 

mutually exclusive. In the general case, we have: 

Pr[𝐂(𝑉𝑗,𝑡+1, 𝑉𝑘,𝑡+1)] = Pr[(𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡) or (𝑉𝑘,𝑡+1 ≤ −𝐵𝑘,𝑡)] 

= Pr(𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡) + Pr(𝑉𝑘,𝑡+1 ≤ −𝐵𝑘,𝑡) 

    −Pr[(𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡) ∩ (𝑉𝑘,𝑡+1 ≤ −𝐵𝑘,𝑡)] 

= 2𝛼 − Pr[(𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡) ∩ (𝑉𝑘,𝑡+1 ≤ −𝐵𝑘,𝑡)] 

 

 

(27) 

 

Hence, CoMargin 𝐵𝑡
𝑖|𝑗,𝑘

 satisfies the following condition:  

Pr[(𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗,𝑘

) ∩ 𝐂(𝑉𝑗,𝑡+1, 𝑉𝑘,𝑡+1)]

2𝛼 − Pr[(𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡) ∩ (𝑉𝑘,𝑡+1 ≤ −𝐵𝑘,𝑡)]
= 𝛼 (28) 

Given this result, we proceed to estimate CoMargin 𝐵𝑡
𝑖|𝑗,𝑘

. First, notice that the probability 

Pr[(𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡) ∩ (𝑉𝑘,𝑡+1 ≤ −𝐵𝑘,𝑡)], denoted 𝑃𝑡
𝑗,𝑘

, does not depend on the CoMargin level 

𝐵𝑡
𝑖|𝑗,𝑘

; thus, it can simply be estimated by: 

𝑃̂𝑡
𝑗,𝑘
=
1

𝑆
∑𝐈(𝑣𝑗,𝑡+1

𝑠 ≤ −𝐵𝑗,𝑡) × 𝐈(𝑣𝑘,𝑡+1
𝑠 ≤ −𝐵𝑘,𝑡)

𝑆

𝑠=1

 (29) 

Second, conditional on 𝐵𝑡
𝑖|𝑗,𝑘

, the joint probability in the numerator of equation 28, denoted 

𝑃𝑡
𝑖,𝑗,𝑘

, becomes: 

𝑃𝑡
𝑖,𝑗,𝑘

 = Pr[(𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗,𝑘

) ∩ 𝐂(𝑉𝑗,𝑡+1, 𝑉𝑘,𝑡+1)] 

= Pr [(𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗,𝑘

) ∩ [(𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡) or (𝑉𝑘,𝑡+1 ≤ −𝐵𝑘,𝑡)]] 

= Pr[(𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗,𝑘

) ∩ (𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡)  

     or (𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗,𝑘

) ∩ (𝑉𝑘,𝑡+1 ≤ −𝐵𝑘,𝑡)] 

= Pr[(𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗,𝑘

) ∩ (𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡)] 

    +Pr[(𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗,𝑘

) ∩ (𝑉𝑘,𝑡+1 ≤ −𝐵𝑘,𝑡)] 

(30) 



23 
 

    −Pr[(𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑗,𝑘

) ∩ (𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡) ∩ (𝑉𝑘,𝑡+1 ≤ −𝐵𝑘,𝑡)] 

Thus, a simple estimator of this probability is given by: 

𝑃̂𝑡
𝑖,𝑗,𝑘

=
1

𝑆
∑𝐈(𝑣𝑖,𝑡+1

𝑠 ≤ −𝐵𝑡
𝑖|𝑗,𝑘

)

𝑆

𝑠=1

× 𝐈(𝑣𝑗,𝑡+1
𝑠 ≤ −𝐵𝑗,𝑡) 

+
1

𝑆
∑𝐈(𝑣𝑖,𝑡+1

𝑠 ≤ −𝐵𝑡
𝑖|𝑗,𝑘

)

𝑆

𝑠=1

× 𝐈(𝑣𝑘,𝑡+1
𝑠 ≤ −𝐵𝑘,𝑡) 

−
1

𝑆
∑𝐈(𝑣𝑖,𝑡+1

𝑠 ≤ −𝐵𝑡
𝑖|𝑗,𝑘

)

𝑆

𝑠=1

× 𝐈(𝑣𝑗,𝑡+1
𝑠 ≤ −𝐵𝑗,𝑡) × 𝐈(𝑣𝑘,𝑡+1

𝑠 ≤ −𝐵𝑘,𝑡) 

 

 

(31) 

and the CoMargin 𝐵𝑡
𝑖|𝑗,𝑘

 can be estimated by: 

𝐵̂𝑡
𝑖|𝑗,𝑘

= argmin
{𝐵𝑡
𝑖|𝑗,𝑘

}
(

𝑃̂𝑡
𝑖,𝑗,𝑘

2𝛼 − 𝑃̂𝑡
𝑗,𝑘
− 𝛼)

2

 (32) 

Following a similar argument, CoMargin can be generalized to 𝑛 conditioning firms, with 𝑛 <

𝑁 − 1. In this case, the conditioning event is that at least one of the 𝑛 clearing members is in 

financial distress (see Appendix for details). 

 

5. Empirical Analysis 

 

5.1. Data 

In this section we evaluate and compare the empirical performance of the SPAN, VaR and 

CoMargin systems. We conduct this assessment using proprietary data from the Canadian 

Derivatives Clearing Corporation (CDCC). The data set includes daily observations of the actual 

trading positions, margin requirements and profits-and-losses of all forty-eight clearing 

members of the CDCC from January 2002 to March 2011. 

The data set reports the daily net open interest of each clearing member on the S&P/TSX 60 

Index Standard Futures (SXF), the ten-year Government of Canada Bond Futures (CGB), and the 
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three-month Canadian Bankers' Acceptance Futures (BAX). These open interest figures are 

reported for each delivery date available for each contract. The SXF, CGB and BAX contracts 

account for almost 75% of the trading volume of all exchange-traded derivatives in Canada and 

for over 80% of the net total margin requirements collected by the CDCC. Table 4 summarizes 

the specifications of each one of these contracts. Our data set also includes the daily net SPAN 

margin requirements, net clearing fund contributions and net P&L for the customer, house and 

market-maker accounts of each clearing member.  

Using the daily positions reported for each clearing member, we estimate their net SPAN, VaR 

and CoMargin collateral requirements and assess the number and magnitude of financial 

distress occurrences during the sample period. We show that, relative to other methods, the 

CoMargin system minimizes the number of joint financial distress events and the shortfalls 

associated with them. In addition, we show that the CoMargin methodology reduces 

procyclicality and abrupt changes in margin requirements because it incorporates information 

that is ignored by its SPAN and VaR counterparts. More specifically, by accounting for risk 

homogeneity, CoMargin is able to mitigate the effects of increased asset correlations and 

drastic price changes caused by clearing members exiting the market simultaneously.  

Because of the proprietary nature of the data set used for this section, at this point, we are 

unable to publicly disclose our results in detail. However, in the next few days, we expect to be 

granted permission by the CDCC and its clearing members to disclose our findings. At that time, 

we will update this section of the paper. 

 

6. Conclusion 

In this paper, we have presented a new margin system, called CoMargin, for derivatives 

exchanges. CoMargin depends on both the tail risk of a given market participant and the 

interdependence between this participant and others participants. CoMargin can be estimated 

by a model-free and scenario-based methodology, backtested using formal statistical tests, and 

generalized to any number of market members. We show that the CoMargin outperforms 

alternative margin systems when the level of trading similarity and the comovement among 

underlying assets increase.  
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Appendix A: Proofs for CoMargin Properties (Section 4.2.1) 

 

[Proof A1]: Let  𝐻(𝐵𝑖|𝑗, 𝜎𝑖) be a function such that: 

 𝐻(𝐵𝑖|𝑗 , 𝜎𝑖) =  ∫ 𝑔(𝑢, 𝜎𝑖)𝑑𝑢 −

−𝐵𝑖|𝑗

−∞

 𝛼 = 0 

(A1) 

Note that we simplified the notation of the pdf 𝑔(𝑢; 𝜎𝑖) compared to equation 15. Then, the CoMargin 

can be defined as an implicit function  𝐵𝑖|𝑗 = ℎ(𝜎𝑖). By the Implicit Functions Theorem, we have: 

𝜕𝐵𝑖|𝑗

𝜕𝜎𝑖
= −

𝐻𝜎𝑖(𝐵
𝑖|𝑗 , 𝜎𝑖)

𝐻𝐵(𝐵
𝑖|𝑗, 𝜎𝑖)

 
(A2) 

The derivative 𝐻𝐵(𝐵
𝑖|𝑗 , 𝜎𝑖) can be expressed as follows: 

𝐻𝐵(𝐵
𝑖|𝑗, 𝜎𝑖) = −𝑔(−𝐵

𝑖|𝑗; 𝜎𝑖) < 0 (A3) 

and is negative since 𝑔(𝑢; 𝜎𝑖) is a pdf. Thus, the sign of 
𝜕𝐵𝑖|𝑗

𝜕𝜎𝑖
 is given by the sign of 𝐻𝜎𝑖(𝐵

𝑖|𝑗 , 𝜎𝑖): 

𝐻𝜎𝑖(𝐵
𝑖|𝑗 , 𝜎𝑖) =

𝜕

𝜕𝜎𝑖
(∫ 𝑔(𝑢; 𝜎𝑖)

−𝐵𝑖|𝑗

−∞
𝑑𝑢 − 𝛼) = ∫

𝜕𝑔(𝑢;𝜎𝑖)

𝜕𝜎𝑖

−𝐵𝑖|𝑗

−∞
𝑑𝑢  (A4) 

For simplicity, let us consider the case where 𝜌 = 0: 

𝜕𝑔(𝑢; 𝜎𝑖)

𝜕𝜎𝑖
=
𝜕

𝜕𝜎𝑖
(
1

𝜎𝑖
𝜙 (

𝑢

𝜎𝑖
)) = −

1

𝜎𝑖
2 𝜙 (

𝑢

𝜎𝑖
) −

𝑢

𝜎𝑖
3 𝜙′ (

𝑢

𝜎𝑖
) 

(A5) 

Since 𝜙′(𝑥) = −𝑥 𝜙(𝑥), we have: 

𝜕𝑔(𝑢; 𝜎𝑖)

𝜕𝜎𝑖
= −

1

𝜎𝑖
2𝜙 (

𝑢

𝜎𝑖
)(1 − (

𝑢

𝜎𝑖
)
2

) 
(A6) 

For any value of 𝑢 such that 𝑢 < −𝜎𝑖, we have 𝜕𝑔(𝑢; 𝜌)/𝜕𝜎𝑖 > 0. This condition is satisfied when 𝑢 ∈

]−∞,− 𝐵𝑖|𝑗] since −𝐵𝑖|𝑗 = 𝜎𝑖Φ
−1(𝛼) = −𝜎𝑖Φ

−1(1 − 𝛼) and Φ−1(1 − 𝛼) > 1 for most of the 

considered coverage rates (e.g. 1%, 5%). Consequently, the integral AX8 is also positive and 

𝐻𝜎𝑖(𝐵
𝑖|𝑗 , 𝜎𝑖) > 0. Then we conclude that: 

𝜕𝐵𝑖|𝑗

𝜕𝜎𝑖
= −

𝐻𝜎𝑖(𝐵
𝑖|𝑗 , 𝜎𝑖)

𝐻𝐵(𝐵
𝑖|𝑗 , 𝜎𝑖)

> 0 
(A7) 

A similar result can be obtained when we relax the assumption. 

 

[Proof A2]: If = 0 , the last term in equation 15 becomes Φ(−𝐵𝑗/𝜎𝑗) = Φ(Φ
−1(α) ) = 𝛼  since 𝐵𝑖 =

−𝜎𝑖Φ
−1(𝛼). Consequently, the CoMargin of firm 𝑖 is the solution of the following integral: 
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∫
1

𝜎𝑖
× 𝜙(

𝑢

𝜎𝑖
)

−𝐵𝑖|𝑗

−∞

𝑑𝑢 = 𝛼 

(A8) 

By properties of the normal distribution, we have 𝐵𝑖|𝑗 = −𝜎𝑖Φ
−1(𝛼) = 𝐵𝑖 . 

 

[Proof A3]: Let  𝐹(𝐵𝑖|𝑗, 𝜌) be a function such that: 

𝐹(𝐵𝑖|𝑗, 𝜌) =  ∫ 𝑔(𝑢; 𝜌)

−𝐵𝑖|𝑗

−∞

du − 𝛼 = 0 

(A9) 

Note that we simplified the notation of the pdf 𝑔(𝑢; 𝜌) compared to equation 15. Then, the CoMargin 

can be defined as an implicit function  𝐵𝑖|𝑗 = 𝑓(𝜌). By the Implicit Functions Theorem, we have: 

𝜕𝐵𝑖|𝑗

𝜕𝜌
=  −

𝐹𝜌(𝐵
𝑖|𝑗 , 𝜌)

𝐹𝐵(𝐵
𝑖|𝑗, 𝜌)

 
(A10) 

where 𝐹𝜌(. ) and 𝐹𝐵(. ) denote respectively the first derivative of the 𝐹 function with respect to 𝜌 and 𝐵. 

For any function 𝐻(𝑥) defined as: 

𝐻(𝑥) =  ∫ ℎ(𝑡)
−𝑏(𝑥)

−∞
𝑑𝑡  (A11) 

we have 𝐻′(𝑥) = ℎ(𝑏(𝑥)) ×  𝜕𝑏(𝑥)/𝜕𝑥. Consequently, the derivative 𝐹𝐵(𝐵
𝑖|𝑗, 𝜌) can be expressed as 

follows: 

𝐹𝐵(𝐵
𝑖|𝑗 , 𝜌) = −𝑔(−𝐵𝑖|𝑗; 𝜌) < 0 (A12) 

and is negative since 𝑔(𝑢; 𝜌) is a pdf. Thus, the sign of 𝜕𝐵𝑖|𝑗/𝜕𝜌 is given by the sign of 𝐹𝜌(𝐵
𝑖|𝑗, 𝜌): 

𝐹𝜌(𝐵
𝑖|𝑗, 𝜌) =

𝜕

𝜕𝜌
(∫ 𝑔(𝑢; 𝜌)

−𝐵𝑖|𝑗

−∞
𝑑𝑢 − 𝛼) = ∫

𝜕𝑔(𝑢;𝜌)

𝜕𝜌

−𝐵𝑖|𝑗

−∞
𝑑𝑢  (A13) 

Given the expression of the pdf 𝑔(𝑢; 𝜌) we have: 

𝜕𝑔(𝑢; 𝜌)

𝜕𝜌
= −

1

𝛼𝜎𝑖
× 𝜙 (

𝑢

𝜎𝑖
) ×  𝜙 (

−𝐵𝑗/𝜎𝑗 − 𝜌𝑢/𝜎𝑖

√1 − 𝜌2
)

⏞                        
𝐴

× (
−𝑢/𝜎𝑖√1 − 𝜌

2 − (𝐵𝑗/𝜎𝑗 + 𝜌𝑢/𝜎𝑖)𝜌(1 − 𝜌
2)−1/2

1 − 𝜌2
)

= 𝐴 × (
1

1 − 𝜌2
)
3/2

× (
𝑢

𝜎𝑖
+
𝜌𝐵𝑗

𝜎𝑗
) 

(A14) 

This function is positive for any value of 𝑢 such that 𝑢 ≤  𝜌𝐵𝑖 = −𝜌𝜎𝑖Φ
−1(α) with −𝜌𝜎𝑖Φ

−1(α) > 0. 

Since  𝐵𝑖|𝑗 ≥ 0 by definition, this condition is satisfied for the interval ]−∞,− 𝐵𝑖|𝑗] and 𝐹𝜌(𝐵
𝑖|𝑗, 𝜌) > 0. 

Then we conclude that: 
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𝜕𝐵𝑖|𝑗

𝜕𝜌
=  −

𝐹𝜌(𝐵
𝑖|𝑗 , 𝜌)

𝐹𝐵(𝐵
𝑖|𝑗, 𝜌)

> 0 
(A15) 

 

[Proof A4]: For 𝜌 = 1, the pdf 𝑔(𝑢; 𝜎𝑖, 𝜎𝑗, 𝜌) in equation 15 is degenerated. However, when 𝜌 tends to 

one, we have: 

lim
𝜌→1

Φ(
−Bi/𝜎𝑗 − 𝜌𝑢

√1 − 𝜌2
) = 1 

(A16) 

as long as 𝑢 <
−Bi

𝜎𝑗
= Φ−1(α). If we assume that the standardized CoMargin for 𝑖 is larger than the 

standardized VaR margin for 𝑖, i.e., −𝐵𝑖|𝑗/𝜎𝑖 ≤ 𝐵𝑗/𝜎𝑗, then we have: 

lim
𝜌→1

𝑔(𝑢) =
1

𝛼𝜎𝑖
 × 𝜙 (

𝑢

𝜎𝑖
) 

(A17) 

And consequently the CoMargin corresponds to the VaR margin defined for a coverage rate 𝛼2 since: 

lim
𝜌→1

∫
1

𝜎𝑖

−𝐵𝑖|𝑗

−∞

 × 𝜙 (
𝑥

𝜎𝑖
)𝑑𝑥 = 𝛼2 

(A18) 

lim
𝜌→1

𝐵𝑖|𝑗 =− 𝜎𝑖Φ
−1(𝛼2) (A19) 

We can check that condition −𝐵𝑖|𝑗/𝜎𝑖 ≤ 𝐵𝑗/𝜎𝑗 is satisfied since Φ−1(𝛼2) ≤ Φ−1(𝛼).  

 

[Proof A5]: Since 𝐵𝑗 = −𝜎𝑖Φ
−1(𝛼), the pdf 𝑔(. ) in equation 15 can be rewritten as: 

𝑔(𝑢; 𝜎𝑖, 𝜎𝑗, 𝜌) =
1

𝛼𝜎𝑖
× 𝜙(

𝑢

𝜎𝑖
) ×  Φ [

Φ−1(𝛼) − 𝜌𝑢/𝜎𝑖

√1 − 𝜌2
] 

(A20) 

As 𝑔(. ) does not depend on 𝜎𝑗, 𝜕𝐵
𝑖|𝑗/𝜕𝜎𝑗 = 0. 
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Appendix B: CoMargin with n Firms 

With 𝑛 conditioning firms, 𝑛 < 𝑁 − 1, the conditioning event of the CoMargin is that at least one of the 

𝑛 clearing members is in financial distress. Thus, the definition of CoMargin becomes:  

Pr [(𝑉𝑖,𝑡+1 ≤ −𝐵𝑡
𝑖|𝑛
) ∩ 𝐂(𝑉1,𝑡+1, . . , 𝑉𝑛,𝑡+1)]

Pr[𝐂(𝑉1,𝑡+1, . . , 𝑉𝑛,𝑡+1)]
= 𝛼 (B1) 

where the probability to observe the conditioning event is: 

Pr[𝐂(𝑉1,𝑡+1, . . . , 𝑉𝑛,𝑡+1)] = Pr[(𝑉1,𝑡+1 ≤ −𝐵1,𝑡) 𝑜𝑟…𝑜𝑟 (𝑉𝑛,𝑡+1 ≤ −𝐵𝑛,𝑡)] (B2) 

Using Poincaré's formula for the probability of the union of events, we can see that: 

Pr[𝐂(𝑉1,𝑡+1, . . , 𝑉𝑛,𝑡+1)] =∑Pr[(𝑉𝑗,𝑡+1 ≤ −𝐵𝑗,𝑡)]

𝒏

𝒋=𝟏

 

   − ∑ Pr[(𝑉𝑗1,𝑡+1 ≤ −𝐵𝑗1,𝑡) ∩ (𝑉𝑗2,𝑡+1 ≤ −𝐵𝑗2,𝑡)]

𝒏

1≤𝑗1<𝑗2≤𝑛⏟                                
𝟐 𝒆𝒗𝒆𝒏𝒕𝒔

   

   +
∑ Pr[(𝑉𝑗1,𝑡+1 ≤ −𝐵𝑗1,𝑡) ∩ (𝑉𝑗2,𝑡+1 ≤ −𝐵𝑗2,𝑡)

𝒏

1≤𝑗1<𝑗2<𝑗3≤𝑛

  

∩ (𝑉𝑗3,𝑡+1 ≤ −𝐵𝑗3,𝑡)]⏟                                  
𝟑 𝒆𝒗𝒆𝒏𝒕𝒔

 

   …+(−1)𝒏−𝟏Pr[(𝑉1,𝑡+1 ≤ −𝐵1,𝑡) ∩ …∩ (𝑉𝑛,𝑡+1 ≤ −𝐵𝑛,𝑡)]⏟                                    
𝒏 𝒆𝒗𝒆𝒏𝒕𝒔

 

 

 

(B3) 

 

Thus, the probability of the conditioning event can be rewritten as follows: 

Pr[𝐂(𝑉1,𝑡+1, . . , 𝑉𝑛,𝑡+1)] = 𝑛𝛼 − 𝑃𝑡
𝑛 (B4) 

where 𝑃𝑡
𝑛 denotes the sum of the probabilities of all common events (for two events, three events, etc.). 

An estimator of this value, 𝑃̂𝑡
𝑛, can be obtained from the simulated path {𝑉1,𝑡+1

𝑠 , . . , 𝑉𝑛,𝑡+1
𝑠 }

𝑠=1

𝑆
 . When 

the financial distress events of the conditioning firms are mutually exclusive, however, the probability of 

the conditioning events simplifies to 𝑛𝛼. Therefore, an estimator of the CoMargin of firm 𝑖 conditional 

on 𝑛 clearing firms, 𝐵𝑡
𝑖|𝑛

, is the solution of the program: 

𝐵̂𝑡
𝑖|𝑛
= argmin

{𝐵𝑡
𝑖|𝑛
}
(

𝑃̂𝑡
𝑖,𝑛

𝑛𝛼 − 𝑃̂𝑡
𝑛 − 𝛼)

2

 (B5) 

where 𝑃̂𝑡
𝑖,𝑛  denotes the estimator of Pr [(𝑉𝑖,𝑡+1 ≤ −𝐵𝑡

𝑖|𝑛
) ∩ 𝐂(𝑉1,𝑡+1, . . , 𝑉𝑛,𝑡+1)], which is obtained by 

generalizing equation 30 conditioning on 𝐵𝑡
𝑖|𝑛

. 
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Table 1: Major Clearinghouses 

Clearinghouses CME Eurex LCH.Clearnet Nymex OCC 

Markets cleared CME, CBOT Eurex Euronext.liffe, 
ICE, LME, 

Powernext 

Nymex, 
Comex 

AMEX, CBOE 

Number of clearing firms 86 90 77 40 120 

Average daily volume 9 million 6 million 4 million 1 million 10 million 

Average daily turnover $3,000 billion $550 billion $2,500 billion N/A $10 billion 

Margining system SPAN SPAN SPAN SPAN SPAN 

Aggregate margin $47 billion $39 billion N/A N/A $77 billion 

Default fund $1 billion $0.9 billion $2.6 billion $0.2 billion $2.9 billion 

Default insurance - - $0.4 billion $0.1 billion - 

Other guarantees Membership 
value and 

assessment 
power 

Deutsche 
Boerse, SWX 

- Protection 
scheme for 

retail 
customers 

- 

Total default protection $53 billion $41 billion N/A N/A $80 billion 

Notes: This table presents some descriptive statistics about the major clearinghouses in the world. We list the 
major derivatives markets that they clear, the number of clearing firms, the average daily volume in million of 
contracts, the average daily turnover (notional value), the margining system they use, the total aggregate margin 
or collateral collected from clearing firms for both customer trading and proprietary trading, the size of the default 
fund, the policy limit of the default insurance (if any), any other protections against default, as well as the total 
default protection, i.e. margin + default fund + default insurance + other guarantees. Source: Clearinghouses 
websites and annual reports (as of 2007). 

 

 

Table 2: Margin Properties 

Properties SPAN Margin VaR Margin CoMargin 

Reflect P&L variability Yes Yes Yes 

Reflect P&L dependence 
across participants 

No No Yes 

Exhibit low procyclicality No No Yes 

Be robust to outliers No Yes Yes 

Can be backtested No Yes Yes 

Notes: This table presents a list of properties the three margin systems (SPAN, VaR, and CoMargin) comply with, 
respectively violate.  
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Table 3: Margin Values 

 VaR Margin CoMargin Budget-Neutral Margin 

Correlation:  = 0 

Member 1 1.6449 1.6449 1.6449 

Member 2 1.6449 1.6449 1.6449 

Member 3 1.6449 1.6449 1.6449 

Member 4 1.6449 1.6449 1.6449 

[Total Margin] [6.5794] [6.5794] [6.5794] 
Correlation:  = 0.2 

Member 1 1.6449 1.7956 1.6449 

Member 2 1.6449 1.7956 1.6449 

Member 3 1.6449 1.6449 1.7956 

Member 4 1.6449 1.6449 1.7956 

[Total Margin] [6.5794] [6.8809] [6.8809] 

Correlation:  = 0.4 

Member 1 1.6449 1.9811 1.6449 

Member 2 1.6449 1.9811 1.6449 

Member 3 1.6449 1.6449 1.9811 

Member 4 1.6449 1.6449 1.9811 

[Total Margin] [6.5794] [7.2519] [7.2519] 

Correlation:  = 0.8 

Member 1 1.6449 2.3736 1.6449 

Member 2 1.6449 2.3736 1.6449 

Member 3 1.6449 1.6449 2.3736 

Member 4 1.6449 1.6449 2.3736 

[Total Margin] [6.5794] [8.0370] [8.0370] 

Notes: This table presents the margins computed according to three margin systems: VaR Margin (equation 2), 
CoMargin (equation 10), and Budget-Neutral Margin. The later margin scheme is designed to collect as much 
collateral as the CoMargin system but the extra collateral is collected only from independent firms, for which 
CoMargin always equal VaR Margin. We consider four firms with normally distributed P&L, 𝑉𝑡  ~ 𝑁(0, Σ), 𝑉𝑡 =

(𝑉1,𝑡 , 𝑉2,𝑡 , 𝑉3,𝑡 , 𝑉4,𝑡)
′
and: 

Σ = (

1 𝝆
𝝆 1

0 0
0 0

0 0
0 0

1 0
0 1

). 
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Table 4: Specifications of the Contracts Included in the CDCC Dataset 

 S&P/TSX 60  
Index Standard Futures 

(SXF) 

Three-Month Canadian 
Bankers' Acceptance 

Futures (BAX) 

Ten-Year Government of 
Canada Bond Futures (CGB) 

Underlying The S&P/TSX 60 Index   

Trading Unit C$200 times the S&P/TSX 
60 index futures value 

C$1,000,000 nominal value 
of Canadian bankers' 
acceptance with a three-
month maturity. 

C$100,000 nominal value of 
Government of Canada 
Bond with 6% notional 
coupon. 

Contract Months March, June, September 
and December. 

March, June, September 
and December plus two 
nearest non-quarterly 
months (serials). 

March, June, September 
and December. 

Price Quotation Quoted in index points, 
expressed to two decimals. 

Index : 100 minus the 
annualized yield of a three-
month Canadian bankers' 
acceptance. 

Par is on the basis of 100 
points where 1 point equals 
C$1,000. 

Last Trading Day Trading ceases on the 
trading day prior to the 
Final Settlement Day. 

Trading ceases at 10:00 
a.m. (Montréal time) on the 
2nd London (Great Britain) 
banking day prior to the 3rd 
Wednesday of the contract 
month or if a holiday, the 
previous bank business day.  

Trading ceases at 1:00 p.m. 
(Montréal time) on the 7th 
business day preceding the 
last business day of the 
delivery month. 

Final Settlement 
Day 

The 3rd Friday of the 
contract month or if a 
holiday, the preceding day. 
 
 

The final settlement price is 
based on the average of the 
three-month Canadian 
bankers' acceptance bid 
rates as quoted on CDOR 
page on the last trading day 
at 10:15 a.m. (Montréal 
time), excluding the highest 
and lowest values. 

 

Contract Type Cash settlement.  Cash settlement. Physical delivery of eligible 
Government of Canada 
Bonds.  

Price Fluctuation 0.10 index points for 
outright positions. 
0.01 index points for 
calendar spreads 

0.005 = C$12.50 per 
contract for the nearest 
three listed contract 
months, including serials. 
0.01 = C$25.00 per contract 
for all other contract 
months.  

 

0.01 = C$10 

Reporting Limit 1,000 futures contracts on 
the S&P/TSX 60 Index gross 
long and short in all 
contract months combined. 

300 contracts. 

 

250 contracts. 
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Price Limits A trading halt will be 
invoked in conjunction with 
the triggering of "circuit 
breaker" in the underlying 
stocks. 

None None  

 

Trading Hours 
(Montréal time) 

Early session*: 6:00 a.m. to 
9:15 a.m.  
Regular session: 9:30 a.m. 
to 4:15 p.m.  
* A trading range of -5% to 
+5% (based on previous 
day's settlement price) has 
been established only for 
this session. 

Early session: 6:00 a.m. to 
7:45 a.m.  
Regular session: 8:00 a.m. 
to 3:00 p.m.  
Extended session*: 3:09 
p.m. to 4:00 p.m.  
* There is no extended 
session on the last trading 
day of the expiring contract 
month. 

Early session: 6:00 a.m. to 
8:05 a.m.  
Regular session: 8:20 a.m. 
to 3:00 p.m.  
Extended session*: 3:06 
p.m. to 4:00 p.m.  
* There is no extended 
session on the last trading 
day of the expiring contract 
month.  

Source: TMX Montreal Exchange (http://www.m-x.ca).  

  

http://www.m-x.ca/


35 
 

Figure 1: Financial-Distress Probabilities 
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Notes: This figure presents the probability of having, respectively, one (p1), two (p2), three (p3), and four (p4) firms 
in financial distress (i.e., firms suffering a margin-exceeding loss). We consider four firms with normally distributed 

P&L, 𝑉𝑡 ~ 𝑁(0, Σ), 𝑉𝑡 = (𝑉1,𝑡 , 𝑉2,𝑡 , 𝑉3,𝑡 , 𝑉4,𝑡)
′
and:  

Σ = (

1 𝝆
𝝆 1

0 0
0 0

0 0
0 0

1 0
0 1

). 
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Figure 2: Daily P&L 

 

Figure 3: SPAN Margins 
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Figure 4: Daily Profit and Loss and Margins of CDCC Clearing Firms  

from January 2002 to April 2009 
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Figure 5: Ratio of the Daily P&L and SPAN Margin 

 

 


