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Abstract

We develop a real-options approach to evaluate energy assets and potential investment projects
under transition scenario uncertainty. Dynamic scenario uncertainty is modelled by assuming
that the economic agent acquires the information about the scenario progressively by observing
a signal. The problem of valuing an investment is formulated as an American option pricing
problem, where the optimal exercise time corresponds to the time of entering into a potential
investment project or the time of selling a potentially stranded asset. To illustrate our ap-
proach, we apply representative scenarios from different integrated assessment models to the
examples of a coal-fired power plant without Carbon Capture and Storage (CCS) and potential
investment into a biomass power plant with CCS.

Keywords: Transition risk, scenario uncertainty, Bayesian learning, stranded asset, real options.

1 Introduction

As the global climate is changing, the need for a major decarbonisation of the energy system has
become evident [Teske, 2019, Bogdanov et al., 2019], while climate change impacts are expected
throughout the energy system itself [Stanton et al., 2016, Cronin et al., 2018]. In this context, tra-
ditional risk management approaches may no longer be sufficient to evaluate energy-related assets
and investment projects. While there is little doubt that the low-carbon transition will lead to pro-
found changes in the energy system in the years and decades to come, it is difficult to predict the
exact nature of these changes and the pace of the transition. Faced with such uncertainty, the sce-
nario approach has emerged as a means to provide decision-makers with the tools to optimise their
actions. Produced with the help of integrated assessment models, transition scenarios are published
by international bodies such as the IEA (International Energy Agency), IPCC (International Panel
on Climate Change), NGFS (Network for Greening the Financial System), IIASA (International
Institute for Applied System Analysis), and used by the economic agents to understand the possible
futures they need to prepare for. In particular, the NGFS maintains a database of six transition
scenarios1, described in detail in Section 3. These scenarios are used by central banks to conduct

∗This research was supported by ADEME (Agency for Ecological Transition) in the context of SECRAET project,
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1Release 2, available at https://data.ene.iiasa.ac.at/ngfs/
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climate stress testing exercises: for example, by comparing the value of a bank’s portfolio under
orderly and disorderly transition scenario, one may evaluate the risk of disorderly transition.

The scenario approach, however, suffers from a number of drawbacks from the point of view of
risk management and asset pricing. In most existing approaches the scenario is assumed to be given
and known to the agent, thus the influence of agent’s actions on the scenario, and the imperfect
knowledge of the scenario by the agent are not taken into account. Yet, owners of energy assets with
a risk of stranding, or of construction permits for green energy projects, make their decisions to sell
the asset, or to build the plant, without the perfect knowledge of the scenario to come. Instead,
they evaluate the prospects of a given asset / investment based on partial information about the
state of the energy transition.

In this paper we therefore extend the real options (RO) approach to take into account (i)
the transition scenario uncertainty and (ii) the progressive discovery of information about the
transition scenario by the investors. Traditional RO theory already acknowledges the value of
waiting and postponing the investment decision in favor of flexibility and in view of acquiring more
information on the evolution of the underlying stochastic variables that the project value depends
on. However, the sources of uncertainty in a RO model usually stem from the evolution of asset
prices or cost variables specific to the project. We consider an additional layer of uncertainty, that is
the uncertainty stemming from the energy transition scenario, potentially affecting the distribution
of all stochastic variables that the value of the project depends on. Then, we introduce an active
Bayesian learning component to this framework. Namely, the agents continuously update their
beliefs regarding the likelihood of being in a certain climate scenario, and evaluate the projects
accordingly.

Our paper contributes to different strands of literature. The literature on RO in the con-
text of energy project valuation is vast. Indeed, RO is a prominent approach to evaluate capital
investments under uncertainty and irreversibility, and energy projects provide a natural field of ap-
plication given their relatively high capital costs and their multiple sources of uncertainty relative to
commodity prices and future electricity demand and supply. [Siddiqui and Fleten, 2010] evaluate
how a firm may proceed with staged commercialisation and deployment of competing alternative
energy technologies, and find that the option of investing in such projects increases the value of
the firm. [Fuss et al., 2012] analyze the impact of uncertainty for deriving the optimal portfolio
of energy technologies for a profit-maximizing investor. [Boomsma et al., 2012] analyze investment
decisions in renewable energy under policy interventions, and find that a feed-in tariff leads to ear-
lier investment. [Abadie et al., 2011] employ a binomial lattice model to compute the value of the
option to abandon a coal-fired power plant; [Laurikka and Koljonen, 2006] analyze how the uncer-
tainty related to an emission trading scheme affects the value of an option to invest in a coal power
plant; [Flora and Vargiolu, 2020] use a least-squares Monte Carlo approach to solve the optimiza-
tion problem of decision making in case of a power producer who is considering switching from a
carbon-intensive technology to a renewable one under a carbon price floor; [Hach and Spinler, 2016]
assess the effectiveness of capacity payments in promoting gas-fired generation investments under
different degrees of feed-in tariff. [Detemple and Kitapbayev, 2020] develop a real options model
where a firm seeking to build a new power plant has the exclusive choice between two technologies,
namely wind and gas.

A related literature is also that of climate-related stranded assets. [McGlade and Ekins, 2015]
employ an IAM and find that a third of oil reserves, half of gas reserves and over 80 per cent of
current coal reserves must remain underground to maintain the global temperature rise compared
to pre-industrial level below 2◦C. A more recent study [Welsby et al., 2021] finds that the 1.5◦C sce-
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nario requires nearly 60 per cent of oil and fossil methane gas, and 90 per cent of coal to remain unex-
tracted. [Mercure et al., 2018] estimate, with an integrated global economy-environment simulation
model, the discounted global wealth loss from stranded fossil fuel assets. [Rozenberg et al., 2020] an-
alyze the impact of alternative policy instruments on costs and dynamics of transition from polluting
to clean capital, and study their implications for asset stranding. [van der Ploeg and Rezai, 2020]
study the determinants of asset stranding in the fossil-fuel industry. [Mo et al., 2021] focus on the
case of China, and show that carbon pricing increases the risk for newly-built coal power plants to
become stranded.

Finally, our paper also relates to the literature on active learning. In this context, closest to our
paper is [Dalby et al., 2018]. They study policy uncertainty in the form of an unexpected downward
adjustment of a fixed feed-in tariff (FIT) scheme, with a learning perspective. Their agent expects
an adverse transition between two regimes of fixed FIT, and has the option to invest in a green
energy project. Our work differs in multiple respects. First, their model pertains to renewable
energy policy uncertainty rather than broader transition scenario uncertainty. Second, it is specific
to renewable energy (RE) project valuation, while we develop a flexible approach that can be used
for several potential applications in decision making analysis. Third, they consider a single policy
revision, with two possible regimes: either the change in the FIT payment has not yet occurred (this
is the starting point), or it has occurred, and in such a case the value of the option to invest in the
green energy project becomes zero. In contrast, our model can include several different scenarios,
and climate uncertainty shapes the trajectories of all state variables.

The paper is structured as follows. In Section 2, we present our model of an agent learning from
a climate-related signal about the likelihood of the global climate scenario, and using her belief for
the purpose of decision-making analysis. In Section 3, we describe an empirical application of our
approach, and analyze the sensitivity of our results to a set of parameters. Section 4 concludes.

2 Model and scenario uncertainty with Bayesian learning

How can a microeconomic agent, wishing to price an asset or determine an optimal investment
strategy, use a macroeconomic scenario? The macroeconomic scenarios will give the agent a sense
of the magnitude of the uncertainty relative to the economic variables that are important in the
agent’s decision making process. Based on the arrival of exogenous signals, the profit maximizing
agent will then update her subjective belief about the likelihood of being in one scenario or another.
We model this processing of new information and active updating of belief in a Bayesian learning
setting.

2.1 Description of the model

We consider a discrete time model, where the integer-valued variable t denotes time measured in
years. In the context of long-term investment/divestment decisions, it seems reasonable to assume
that the agent may revise her investment/divestment strategy once a year. A risk-neutral and
profit-maximizing economic agent (owner of a power-generating asset or of the potential investment
project), facing both revenue risk and scenario uncertainty, has the option to either sell the asset
or to invest into the project at a future date τ . The revenues of the asset prior to closure / of the
project after investment are determined by future values of risk factors (fuel prices, electricity price,
carbon price) whose evolution is stochastic and whose distribution depends on the realized transition
scenario. We assume there are N scenarios corresponding to different climate, economic and policy
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assumptions. The true scenario is not known to the agent ex ante, however, the agent observes
a signal (e.g., global CO2 emissions), which contains noisy information about the scenario, and
allows the agent to progressively update her posterior probability of realization for each scenario.
For example, if the emissions decrease at a steady rate, the agent will assume that an orderly
transition scenario is more likely than a delayed transition scenario.

Under each scenario, consider a number K of stochastic risk factors. We assume that the value
Pk,t of the risk factor k at time t under the scenario i follows an autoregressive dynamics with
scenario-dependent mean µik,t. To write the risk factor dynamics in matrix form, we denote by Pt

the K-dimensional vector of risk factors, by µit the vector of drifts, by Φ the (K ×K) matrix of
mean reversion rates, and by σ the Cholesky decomposition of the instantaneous variance-covariance
matrix of the risk factors. Thus, in matrix form we have

Pt = µit + Φ
(
Pt−1 − µit−1

)
+ σεt (1)

under scenario i, where (εt) is a sequence of i.i.d. K-dimensional standard normal vectors.

2.2 Bayesian updates

As mentioned above, the agent does not know the true scenario i, but observes a noisy signal yt,
and infers the likelihood of being in scenario i based on this signal. Ideally, the signal should be
a (scenario-dependent) variable that is highly affected by or that has a high correlation with the
scenario. Thus, the signal will “reveal” to the agent, with error, the state i. For example, the signal
the agent relies on could be the price of carbon in the region where the production asset is located
or the agent plans to invest; or the total emissions of greenhouse gases. Let us assume the signal is
normally distributed with mean µiy,t and standard deviation σy, that is

yt = µiy,t + σyηt , with ηt ∼ N(0, 1) i.i.d. (2)

We assume that, given the scenario, the signal is independent from the risk factors, or, in other
words, ηt is independent from εkt for all k. At every time step, the agent updates her prior knowledge
of the state to obtain a posterior probability of each state i. For simplicity, we assume that the
updates are only based on the value of the signal, but not on the values of the risk factors Pt.

The probability πit of being in scenario i at time t based on the signal yt is

πit = P[I = i|Ft], Ft = σ(ys, s ≤ t) , (3)

where {Ft : t ≥ 0} is the filtration generated by the observable process {yt : t ≥ 0}. In particular,
the Bayesian update of πit at each time step t is

πit = P[I = i|yt,Ft−1] =
P[I = i, yt ∈ dy|Ft−1]

P[yt ∈ dy|Ft−1]
= πit−1

P[yt ∈ dy|I = i,Ft−1]

P[yt ∈ dy|Ft−1]
, (4)

where we use the notation P[yt ∈ dy|Ft−1] as a short-hand for the density of yt given Ft−1, and
similarly for other notation in the above equation.

The unnormalized posterior probability of being in scenario i is then given by

π̂it = π̂it−1e
− (yt−µiy,t)

2

2σ2y , (5)

4

Electronic copy available at: https://ssrn.com/abstract=4006304



and the normalized probability is

πit =
π̂it∑
i π̂

i
t

. (6)

Provided that the scenarios offer a range of sufficiently diversified trends µiy,t for the signal, the
lower the standard deviation of the signal σy, the sooner the agent’s belief on the likelihood of being
in a certain scenario i will converge to either 0 or 1.

In real option theory, the decision making analysis of the agent is similar to the pricing of an
American option. The value function (value of the asset) at date t is related, through the dynamic
programming principle, to the value function at date t+ 1, and computed by backward induction.
This approach relies on the specification of a dynamics for the underlying stochastic processes,
that is, we need to determine the joint dynamics of the risk factors, the signal, and the scenario
probabilities πit, or, in other words, the rule of updating Pt, yt and πit from Pt−1, yt−1 and πit−1.
This update rule reduces to a two-step procedure:

• Simulate yt and Pt from Pt−1, yt−1 and πit−1.

• Update πit from yt and πit−1.

The second update step is given by Equations (5-6). For the first simulation step, using the
conditional independence of the signal and the risk factors, we compute the conditional law of Pt
and yt given Ft−1:

P[Pt ∈ A, yt ∈ B|Ft−1] =
∑
i

πit−1P [Pt ∈ A, yt ∈ B|I = i]

=
∑
i

πit−1P [Pt ∈ A|I = i]P [yt ∈ B|I = i] , (7)

where

P [Pt ∈ A|I = i] =
1√

|Σ|(2π)K

∫
A

e−
1
2 (z−ΦPt−1−(µit−Φµit−1))

ᵀ
Σ−1(z−ΦPt−1−(µit−Φµit−1)) dz , (8)

and

P [yt ∈ B|I = i] =
1√

2πσ2
y

∫
B

e
− (z−µiy,t)

2

2σ2y dz , (9)

with Σ = σσᵀ the variance-covariance matrix of the risk factors. Thus, conditionally on the
information available to the agent, the risk factors and the signal are distributed as a multivariate
Gaussian mixture model.

The simulation algorithm described above defines a Markov process (Pt,πππt)t=0,1,....

2.3 Optimal project valuation under scenario uncertainty

Our model is general enough to be applicable in many contexts. In this section, we will focus on two
types of investment decisions: (1) an optimal exit problem, where the agent owns a carbon-intensive
plant and is considering decommissioning the plant; and (2) an optimal entry problem, where the
agent has the option to invest in a green energy project. These problems can be both modeled

5

Electronic copy available at: https://ssrn.com/abstract=4006304



as an American option pricing problem, and solved numerically by a Least Squares Monte Carlo
(LSMC) approach.

In our model, the agent’s incentive to delay the investment decision lies not only in the oppor-
tunity to wait for future price information, but also in that of learning about the macroeconomic
scenario with greater accuracy. The agent has indeed two main sources of uncertainty: the one
stemming from the fluctuations of risk factor values Pt, and the transition scenario uncertainty.
This is the main difference with respect to standard real options models, where the value of the
underlying only depends on stochastic variables that are commodity prices or other asset prices.

We assume that the agent makes the decision based on the information from the observable
risk factor values, and the information about the posterior scenario probabilities deduced from the
signal. We thus consider the Markov process (Xt := (Pt,πππt))t=0,1,... defined in the previous section,
and denote by G = (Gt)t=0,1,... the natural filtration of this process.

1. Optimal exit
The problem of an agent who is considering selling (or decommissioning) a potentially stranded
asset can be written as the following optimal stopping problem:

sup
τ∈T

E

[
τ∑
t=1

βth(Pt)− βτK(τ)

]
, (10)

where T is the set of G-stopping times with values in 0, 1, 2, . . . , T , h(Pt) is the Profit&Loss
function of year t, β is a discount factor that accounts both for the time value of money and
for the riskiness of the investment, and K is the cost of decommissioning the plant or, when
negative, the price at which the plant is sold. At each point in time until the asset’s lifetime
T , the agent has to decide whether to continue operating the plant or not.

2. Optimal entry
The problem of an agent who is considering a potential investment in a green energy project
with lifetime T can be written as the following optimal stopping problem:

sup
τ∈T

E

[
τ+T∑
t=τ

βth(Pt)− βτK(τ)

]
, (11)

where T is the set of G-stopping times with values in N, h(Pt) is the profit and loss (P&L)
function of year t, β is a discount factor, and K is the capital cost needed to undertake the
project. At each point in time, the agent has to decide whether to exercise the real option,
or to postpone the decision until more precise information about the potential profitability of
the project becomes available.

In what follows, to simplify our presentation, we will focus on case (1), that is the optimal exit
problem, with the understanding that our setting fully addresses case (2) as well. Introduce the
value function

V (t,P, π̂ππ) := sup
τ∈Tt

E

[
τ∑

s=t+1

β(s−t)h(Ps)− βτ−tK(τ)
∣∣∣ (Pt, π̂ππt) = (P, π̂ππ)

]
,

where T is the set of G-stopping times with values in t, . . . , T . Note that we use the unnormalized
posterior probabilities since they have a simpler dynamics. Normalized probabilities can equiva-
lently be used, with straightforward modifications to the formulas. By standard backward induction
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argument, it can be shown that the value function satisfies the following dynamic programming
principle:

V (t,P, π̂ππ) := max
{
−K(t), βE

[
h(Pt+1) + V (t+ 1,Pt+1, π̂ππt+1)

∣∣∣ (Pt, π̂ππt) = (P, π̂ππ)
]}

(12)

= max{−K(t), CV (t,Pt, π̂ππt)}, (13)

where CV is the so called continuation value:

CV (t,Pt, π̂ππt) = βE
[
h(Pt+1) + V (t+ 1,Pt+1, π̂ππt+1)

∣∣Pt, π̂ππt
]
. (14)

Using the explicit dynamics given in the previous section, this value can be written as follows:

CV (t,Pt, π̂ππt) =
β∑
i π̂

i
t

∑
i

π̂it
1

σy
√
|Σ|(2π)K+1

∫
Rk

∫
R
e−

1
2 (z−ΦPt−(µit+1−Φµit))

ᵀ
Σ−1(z−ΦPt−(µit+1−Φµit))

× e
− (u−µiy,t+1)

2

2σ2y {h(z) + V (t+ 1, z, {π̂ite
−

(u−µiy,t+1)2

2σ2y }i=1,...,N )}dz du .

As mentioned, Eq. (12) can be solved numerically by LSMC, that couples backward oriented dy-
namic programming techniques with forward oriented simulation techniques. The LSMC algorithm
works by backward induction, and at each point in time it compares the convenience of immediate
exercise with that of delaying the decision. As outlined in [Longstaff and Schwartz, 2001], the con-
tinuation value at each possible exercise point can be estimated from a least squares cross-sectional
regression using the simulated paths. The algorithm (see Algorithm 1) then returns both the value
of the real option Vt and the optimal exercise time τ . In the algorithm, Ṽt denotes an auxiliary
process whose conditional expectation equals the continuation value.

Algorithm 1: Least Squares Monte Carlo

Simulate Nsim trajectories of Xt = [π̂1
t , · · · , π̂Nt , P 1

t , · · · , PKt ], for t = 1, . . . , T .
For each trajectory, set ṼT = h(PT )−K(T );
for t = T − 1 : −1 : 1 do

Perform a polynomial regression of Yt = βṼt+1 on Xt;
Use the result to estimate continuation value CVt on each trajectory
if CVt +K(t) < 0 then

exercise is optimal on this trajectory;

Vt = −K(t) and Ṽt = h(Pt)−K(t);

else
continuation is optimal on this trajectory;

Vt = CVt and Ṽt = h(Pt) + CVt
end

end

CV0 = β
Nsim

∑
Ṽ1;

if CV0 +K(0) < 0 then immediate exercise is optimal and V0 = −K(0), else V0 = CV0.

As the algorithm shows, a crucial part in the LSMC procedure is to use the cross-sectional
information in the simulation to estimate the expectation on future cash flows. In all the empirical
applications that follow, we employ a quadratic specification to regress the discounted value of the
payoff at future dates over the simulated state variables. Specifically, our least-squares specification
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with which we cross-sectionally regress the continuation values of the different simulated paths j
at time t is the following:

CVt,j = αt + ϑtf (π̂t,j ,Pt,j) + εt,j , (15)

where f(·) is a second-order polynomial function.

3 Empirical application

3.1 Climate scenarios

Integrated assessment models (IAMs) encompassing feedbacks between the global economy, the
energy system and the climate system, are the convenient tool to analyze the economic impacts of
climate change and climate change mitigation measures. IAMs are used to generate scenarios of
evolution of the economy consistent with given climate objectives, based on a set of assumptions.

In this section, we illustrate how our method can be applied to model transition scenario uncer-
tainty. We employ scenario data from an IAM in the NGFS scenario database2, namely REMIND-
MAGPIE 2.1-4.2. This model is a global multi-regional general equilibrium model with a rather
detailed representation of the energy system, belonging to the class of intertemporal optimization
models with perfect foresight.

The NGFS scenario database includes 6 alternative scenarios produced with REMIND 2.1 model:

• Current Policies : existing climate policies remain in place, and there is no strengthening
of ambition level of these policies;

• Nationally Determined Contributions (NDCs) : currently pledged unconditional NDCs
are implemented fully, and respective targets on energy and emissions in 2025 and 2030 are
reached in all countries;

• Delayed Transition (Disorderly) : there is a “fossil recovery” from 2020 to 2030; thus this
scenario follows the trajectory of the Current Policies scenario until 2030. Only thereafter
countries with a clear commitment to a specific net-zero policy target at the end of 2020
are assumed to meet the target, representing regional fragmentation. Regionally fragmented
carbon prices converge to a global price near 2070 to keep the 67-percentile of warming below
2◦C in 2100, which also allows for temporary overshoot;

• Below 2◦C : this scenario assumes that optimal carbon prices in line with the long-term
targets are implemented immediately after 2020 and keeps the 67-percentile of warming below
2◦C throughout the 21st century;

• Divergent Net Zero (Disorderly) : optimal carbon prices in line with the long-term
targets are implemented immediately after 2020 to bring the median temperature below 1.5°C
in 2100, after a limited temporary overshoot. Policy pressure and mitigation efforts are
unevenly distributed across sectors;

• Net Zero 2050 : global CO2 emissions are at net-zero in 2050. Furthermore, countries with
a clear commitment to a specific net-zero policy target at the end of 2020 are assumed to
meet this target.

2Release 2.2, available at https://data.ene.iiasa.ac.at/ngfs/
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From top to bottom, the scenarios display a range of levels of stringency of the climate policy that
underlies scenario assumptions. Thus, each scenario entails different paths for the macroeconomic
variables in the model, and overall they provide a comprehensive overview of the possible climate
states.

3.2 Optimal exit from a carbon-intensive power plant

As a first empirical application, we consider an agent who owns an integrated coal gasification
plant with combined cycle, without Carbon Capture and Storage (CCS) technology, and wants to
know when it is economically optimal to decommission (or sell) the plant. We assume the cost of
decommissioning the plant corresponds to a fraction k of the capital cost of building a new coal
gasification power plant, C c

C . When k is negative, the agent is selling the plant at price k C c
C . In

the results showcased in Section 3.2.1, we assume k = 0, i.e. there are no decommissioning costs.
A sensitivity analysis for this parameter is shown is Section 3.2.2. The plant is a price taker, and
supplies every year a quantity of electricity which depends on the plant’s utilization rate (a variable
available in each scenario) but not on energy prices. We assume it has a nominal capacity W and
it is located in Germany. We further suppose that the plant has a residual lifetime of 30 years,
thus, assuming t0 = 2020, we restrict our investment valuation framework to years 2020-2050 of
the scenario dataset. Finally, we assume a risk-adjusted discount factor β = e−r∆t, with r = 1%3.
Because it is not equipped with a CCS filter, the plant has to buy some emission allowances in
every period, to comply with an emission trading scheme (ETS). Moreover, in every period, it
incurs some operation and maintenance (O&M) costs, both fixed (C c

F ) and proportional to the
production output (C c

V ). The production output of the plant depends on the plant utilization
rate R c

U , which equals the ratio of the yearly net electricity production Q c to the total installed
capacity T c for this specific technology in the selected region. The P&L function of year t of the
coal gasification plant, with the appropriate conversion factors, is thus equal to

hct = W ·R c
U t · 365.25 · 24

(
PEt −

PF t
R c
Ct

−R c
EtPCt − C

c
V t

)
−W · C c

F t, (16)

where

R c
U t = Utilization rate =

Qct
T ct · 365.25 · 24

. (17)

The variables used and their corresponding unit of measure are listed in Table 1 (we omit the
superscript c, indicating the coal gasification technology, to avoid clutter).

The risk factors in this example application, that we model according to (1), are

P =

PEPF
PC

 .

As mentioned, their mean values µi·,t depend on the scenario i of the chosen scenario dataset, and
are given by the corresponding i-th scenario path for that variable. Figure 1 shows how the mean
value µik,t of each risk factor evolves according to scenarios in the REMIND 2.1 model.

The parameters Φ and σ in (1) are estimated from historical data. Specifically, we use front-
month futures data at the monthly frequency from January 2015 to October 2021 of ICE Rotterdam

3In Section 3.2.2, we perform a sensitivity analysis relatively to this parameter.
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Variables Name Units

Capital costs CC USD2010/kW
O&M costs, fixed CF USD2010/MW/year
O&M costs, variable CV USD2010/MWh
Fuel price PF USD2010/MWh
Conversion efficiency RC per cent
Carbon price PC USD2010/t CO2
Electricity price PE USD2010/MWh
Net electricity production Q GWh
Total installed capacity T GW
Emission rate RE t CO2/MWh
Plant rated power W MW

Table 1: Variables used in the plant evaluation

Coal and of ICE EUA (carbon allowances traded in the EU ETS). For electricity, we employ the
average hourly price in the day-ahead market for electricity in Germany traded in the EEX, at the
monthly frequency. All data were retrieved using the Macrobond database. Because seasonality is
a peculiar stylized fact of electricity prices, we first de-seasonalize our monthly log-price electricity
sample with a sinusoidal function accounting for half-yearly and annual seasonality. As for carbon
and coal log-prices, we de-trend them by subtracting the annual mean level and a linear trend (see
Figure 2). We then estimate a multivariate autoregressive model by maximum likelihood using
(de-trended) log-prices. Table 2 shows the resulting estimates for the mean-reversion rates and for
the volatility parameters. In the empirical application that follows, we will only employ estimates
that are significant at the 95% level, i.e. all entries in the matrix Σ, and all diagonal entries in Φ.

E F C

ΦΦΦ

E
0.55∗∗∗ 0.02 0.02
(0.10) (0.03) (0.03)

F
−0.23 0.78∗∗∗ −0.09
(0.26) (0.09) (0.08)

C
0.17 0.12 0.38∗∗∗

(0.35) (0.12) (0.10)

ΣΣΣ

E
0.17∗∗∗ 0.02∗∗ 0.01∗∗∗

(0.03) (0.01) (0.00)

F
0.02∗∗ 0.02∗∗∗ 0.00∗∗

(0.01) (0.01) (0.00)

C
0.01∗∗∗ 0.00∗∗ 0.02∗∗∗

(0.00) (0.00) (0.00)

Table 2: Monthly parameter estimates of (1) obtained by estimating a multivariate autoregressive
model on de-trended prices of electricity, coal, and carbon. Standard errors are in parenthesis.
∗ = p < 0.1, ∗∗ = p < 0.05, ∗∗∗ = p < 0.01.

To update her beliefs on the climate state, the agent needs to choose which signal to rely on. In
this illustration, we assume that the agent chooses the greenhouse gases (GHG) emission level from
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Figure 1: Evolution of the mean value of the three risk factors in the different scenarios produced
with the REMIND 2.1 IAM.

energy production in the region where the plant is located (Germany). To estimate the volatility of
such a signal y, we use a yearly time series from the Macrobond data set, spanning almost 50 years
(from 1970 to 2018), and we fit a Gaussian model. The estimated annual signal volatility parameter
is σ̂y = 108.75 million tons of CO2 equivalent. We then employ this value to simulate the signal as
in Eq. 2. On the left axis, Figure 3 shows a simulated sample path for the signal yt (black solid
line), when using the scenarios from the REMIND 2.1 model. As the figure shows, after some time,
the simulated signal converges towards a specific REMIND 2.1 scenario (in this case scenario 3 –
Delayed Transition). The REMIND 2.1 values of the mean GHG emissions path in each scenario
are represented by the blue lines. On the right axis, the figure shows the corresponding evolution
of the relative conditional probabilities πit, for i ∈ {1, . . . , 6}, computed as in Eq. (6) (red dotted
lines, where the tag indicates scenario number). As the signal converges towards scenario i = 3,

the conditional probability πi=3
t gets higher, while all other πj 6=3

t tend to zero.
All variables in Eq. (16) except for the risk factors are modelled as deterministic, and their

time-dependent values are extracted from the scenario database, when available. In addition, we
assume constant fixed costs C c

F at 58,000 EUR/MW/year (see [ACIL, 2014]), variable costs C c
V at

2.6 EUR/MWh, and conversion efficiency R c
C at 42% (see [IEA, 2012]).

3.2.1 Numerical results

Different scenario datasets may differ not only in the nature of the base assumptions underlying
the scenario specifications, but also in the number of scenarios itself. The NGFS REMIND 2.1
dataset offers 6 different scenarios, as discussed in Section 3.1. The ones that matter the most in
the context of this empirical application are the ones related to the emissions trajectory, since the
signal the agent relies on is closely related to this variable. The span of the paths of this variable
in different scenarios represents in a sense the extent to which the agent can decode the state of
the system and form a belief about possible implications. It is thus important that the agent has a
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Figure 2: From left to right, EEX day-ahead electricity log-prices in Germany, ICE Rotterdam front-
month futures log-prices, ICE EUA front-month futures log-prices (blue lines), and their relative
de-trending (red dotted lines).

number of sufficiently diversified scenarios available. To see this, let us analyze two options. First,
let us consider the case when an agent has only two available emission scenarios to decode the signal
with, and let us suppose that the two are very far apart in their range of values. If scenarios have
a range of values much wider than the variability in the signal, the signal, albeit noisy, will likely
immediately identify the state of the system, and climate uncertainty would immediately resolve.
In this case, the learning process of the agent would end soon, and it would thus not affect much
the value of the real option. As a second case, let us consider that the agent has again two available
scenarios for the emissions trajectory, very similar one to the other. In this case, because the signal
is noisy, it would be very difficult for the agent to decode the state of the system, and to clearly
identify which of the two scenarios is the most likely. Thus, the agent would likely assign equal
probabilities to the two scenarios. Again, her learning process would not substantially affect her
decision making.

Our results confirm this intuition. Indeed, Figure 4 shows the sensitivity in the results of our
model to the value of the volatility of the signal in the two cases described above. We let the
signal volatility vary in a range [0; 5 σ̂y]. The left panel of the figure depicts the first case, with
two divergent scenarios, “Current Policies” and “Net Zero 2050”. As Figure 3 shows, these two
scenarios entail very different trajectories for the GHG emissions. When the signal volatility is in a
range of 0 to 5 times the estimated σ̂y, which is not sufficient to cover the range of values spanned
by the two scenarios, the value of the project and the optimal exercise time remain constant4. The
right panel of the figure depicts the second case, with two scenarios that display similar emissions
trajectories, “Below 2◦C” and “Nationally Determined Contributions (NDCs)”. Here, the value
of the project is not affected by the volatility of the signal, and the optimal RO exercise time is
similarly unaffected.

Figure 5 instead shows the results of our model when all six available scenarios from REMIND

4Eventually, as the signal becomes noisier, that is for higher values of σy , the value of the project starts to decline.
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Figure 3: A simulated path for the signal yt (black solid line), and the relative conditional probabil-
ities πit, for i ∈ {1, . . . , 6} (red dotted lines; the red tag corresponds to the scenario number i). The
blue lines represent the GHG emission trend evolution in each ith scenario according to REMIND
2.1 data.

2.1 are included. In this case, scenarios span a wide range of possible trajectories for the GHG
emissions, so that the learning process of the agent has value in her decision making. Indeed, the
higher the volatility of the signal, and thus the less precise the signal is in signalling the “true”
scenario to the agent, the less valuable the RO. The concave profile of the optimal exercise time
reflects the value of information obtained by waiting. When the volatility of the signal is low,
the scenario information is quite precise already in the beginning. Then, as the signal volatility
increases, it becomes important to observe the signal for a longer time to gather more information
about the scenario, so the optimal exercise time increases as well. However, when the volatility
of the signal is very high, the value of additional information obtained by waiting is low, thus
the optimal stopping time remains constant/decreases slightly. In applications of our model, we
recommend using a sufficiently large number of sufficiently diverging scenarios, so as to describe
the range of possible futures in a realistic way.

3.2.2 Sensitivity analysis

A crucial parameter in our model is the discount rate reflecting the riskiness of the investment
project. Thus, we perform a sensitivity analysis to assess the extent to which our results are affected
by the choice of this parameter. Economic intuition commands that lower discount factors β, and
thus higher discount rates r, will lead to underweighting future cash flows, and thus to an earlier
optimal stopping time τ and to lower values of the project. This is indeed what the right panel of
Figure 6 shows, with the project value declining as r increases in the range [1%; 10% ]. This figure
also shows the sensitivity to another set of parameters, that is the estimated risk-factors’ variance-
covariance matrix Σ (left panel). Here, we multiply the estimated variance-covariance matrix by
a factor that varies in a range [ 1

4 ; 5 ]. When risk factors are more volatile, the flexibility given by
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(a) “Current Policies” and “Net Zero 2050” scenarios (b) “Below 2 ◦C” and “NDCs” scenarios

Figure 4: Optimal exit problem. Sensitivity of the project value (in EUR) to the volatility of
the signal, σy. In the figure, σy varies in a range [0; 5 σ̂y]. In Panel 4a, only scenarios “Current
Policies” and “Net Zero 2050” from the REMIND 2.1 are included in the model. In Panel 4b, only
scenarios “Below 2◦C” and “Nationally Determined Contributions (NDCs)” from the REMIND
2.1 are included. The project value is computed by LSMC with 20,000 simulations, and with a
risk-adjusted discount rate r = 1%. The shaded gray area represents the 95% confidence interval.
The inset plot shows the sensitivity of the average optimal stopping time τ to the volatility of the
signal σy, with a 95% confidence interval.

Figure 5: Optimal exit problem. Sensitivity of the project value (in EUR) to the volatility of the
signal, σy. In the figure, σy varies in a range [0; 10 σ̂y]. Here, all available scenarios in REMIND 2.1
are included in the model. The project value is computed by LSMC with 60,000 simulations, and
with a risk-adjusted discount rate r = 1%. The shaded gray area represents the 95% confidence
interval. The inset plot shows the sensitivity of the average optimal stopping time τ to the volatility
of the signal σy.

owning the option is more valuable, and the RO value is higher. The uncertainty related to the risk
factors leads to postponing the decision, and thus to a higher average optimal exercise time. Finally,
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Figure 7 shows that the results showcased in Section 3.2.1 for the sensitivity of both the RO value
and the optimal exercise time to the volatility of the signal hold in presence of decommissioning
costs or selling revenues. This is true also for both the sensitivity to the risk factors’ volatility
and the discount factor (figures not shown here). Specifically, the left panel of Figure 7 presents
the result in presence of decommissioning costs equal to 10% of the capital costs CcC of building a
coal gasification plant (at the moment when the option is exercised), while the right panel shows
the result in presence of terminal revenues, obtained by selling the plant in τ , equal to 10% of the
capital costs CcC of building a coal gasification plant.

Figure 6: Optimal exit problem. Sensitivity of the project value (in EUR) to the risk factors
volatility, Σ (left panel) and to the discount rate r (right panel). In the left panel, Σ varies in a
range [ 1

4 ; 5 Σ̂], and the project value is computed with a risk-adjusted discount rate r = 1%. All
scenarios from REMIND 2.1 dataset are included. The project value is computed by LSMC with
60,000 simulations. The shaded gray area represents the 95% confidence interval. The inset plot
shows the sensitivity of the average optimal stopping time τ , with a 95% confidence interval.

Figure 7: Optimal exit problem. Sensitivity of the project value (in EUR) to the presence of
decommissioning costs equal to 10% of the capital costs CcC of building a coal gasification plant
(left panel) and terminal revenues obtained by selling the plant equal to 10% of the capital costs
CcC of building a coal gasification plant (right panel). The project value is computed by LSMC
with 60,000 simulations, and with a risk-adjusted discount rate r = 1%. All scenarios from the
REMIND 2.1 are included. The shaded gray area represents the 95% confidence interval. The inset
plot shows the sensitivity of the average optimal stopping time τ , with a 95% confidence interval.

3.3 Optimal entry in a green investment project

As a second empirical application, we consider an agent who has the option to invest in a combined
cycle biomass power plant with Carbon Capture and Storage (CCS) technology, and wants to know
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when it is economically optimal to exercise the RO. The plant is again a price taker, and will supply
electricity inelastically. We assume it has a nominal capacity W and it is located in Germany. We
further assume the plant will have a lifespan of 30 years, and we assume t0 = 2020. We set the
maturity of the RO at the last available IAM scenario date, that is to 2050 for REMIND 2.15.
Finally, we assume a risk-adjusted discount factor β = e−r∆t, with r = 1%. The problem the agent
needs to solve is now that of Eq. (11). Exercising the option entails a stream of revenues and costs
starting from the exercise time τ throughout the plant lifetime, T . The strike price of the RO
corresponds to the capital cost of building a new biomass power plant, C b

C . Namely, the payoff of
the RO at time τ is

max

(
0 ;

τ+T∑
t=τ

βthb(Pt)− C b
C(τ)

)
.

If the agent exercises the option, and thus builds the biomass power plant, in every period t she
will incur some output-dependent operation and maintenance (O&M) costs, both fixed (C b

F ) and
proportional to the production output (C b

V ). The production output of the plant depends on the
plant’s utilization rate R b

U , which equals the ratio of the yearly net electricity production Q b to the
total installed capacity T b for this specific technology in the selected region. The P&L function of
year t of the plant, with the proper conversion factors, is thus equal to

hbt = W ·R b
U t · 365.25 · 24

(
PEt −

PF t
R b
Ct

− C b
V t

)
−W · C b

F t , (18)

where

R b
U t = Utilization rate =

Q b
t

T b
t · 365.25 · 24

. (19)

We refer the reader to Table 1 for the explanation of the remaining variables in Eq. (18), as well
as for the variables’ units of measure.

The risk factors in this example application, that we model according to (1), are now two:

P =

(
PE
PF

)
.

Indeed, since the plant is a green investment, it is not required to comply to an ETS, and thus
it does not have any carbon-related costs. As before, the risk factors’ mean values µi·,t depend
on the scenario i of the chosen scenario dataset, and are given by the corresponding i-th scenario
path for that variable. Figure 8 shows how the drift µik,t of each risk factor k evolves according to
scenarios in the REMIND 2.1 IAM. The parameters Φ and σ in (1) are estimated from historical
data. Specifically, we use front-month futures data at the monthly frequency from January 2015
to October 2021 of CBOT Ethanol to estimate parameters for the biomass power plant fuel. For
electricity, we again employ the average hourly price in the day-ahead market for electricity in
Germany traded in the EEX, at the monthly frequency. All data were retrieved using the Macrobond
database. As in the previous empirical application, we first de-seasonalize our monthly log-price
electricity sample with a sinusoidal function accounting for half-yearly and annual seasonality. As
for the biofuel log-prices, we de-trend them by subtracting the annual mean level and a linear

5If the agent exercises the RO close to the RO maturity, so that the lifespan of the plant goes beyond the latest
available IAM scenario date, we assume that the scenario remains constant at the latest available value throughout
the residual power plant life.
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Figure 8: Scenarios, and relative mean risk factor price paths, within the REMIND 2.1 IAM.

trend. We then estimate a multivariate autoregressive model by maximum likelihood using (de-
trended) log-prices. Table 3 shows the resulting estimates for the mean-reverting rates and for the
volatility parameters. In the empirical application that follows, we will only employ estimates that
are significant at the 95% level, i.e. all diagonal entries in both matrices Σ and Φ.

E F

ΦΦΦ
E

0.52∗∗∗ 0.03
(0.09) (0.02)

F
0.80 0.48∗∗∗

(0.52) (0.09)

ΣΣΣ
E

0.17∗∗∗ −0.00
(0.03) (0.00)

F
−0.00 0.01∗∗∗

(0.00) (0.00)

Table 3: Monthly parameter estimates of (1) obtained by estimating a multivariate autoregressive
model on de-trended electricity and biofuel prices. Standard errors are in parenthesis. ∗ = p < 0.1,
∗∗ = p < 0.05, ∗∗∗ = p < 0.01.

In this case, the agent chooses to use as a signal the price of the EUA. To estimate the volatility
of such a signal y, we employ the EEX EUA front-month futures monthly log-prices and we fit a
Gaussian model. The estimated monthly signal volatility parameter is σ̂y = 0.80. We then employ
this value to simulate the signal as in Eq. (2).

All variables in Eq. (18) except for the risk factors are modelled as deterministic, and they follow
a trend depending on the availability of scenario trajectories for each one of them. In this case, the
REMIND 2.1 model includes scenario paths for the risk factors, for the capital cost C b

C , that is the
strike price of the RO, and for both the total installed capacity of biomass plants (with CCS) T b
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and the electricity production from biomass-fired plant (with CCS) Q b. This allows the utilization
rate R b

U of the biomass-fired plant to have a scenario-dependent trend. We assume constant fixed
costs C b

F at 81,110 EUR/MW/year, variable costs C b
V at 10.6 EUR/MWh, and conversion efficiency

RC at 55% (see [IEA, 2017]).

3.3.1 Numerical results

Figure 9 shows the sensitivity of both the RO value and the optimal exercise time to the value of
the volatility of the signal for the entry problem, when all six available scenarios from REMIND
2.1 are included. We let the signal volatility vary in a range [0; 20 σ̂y]. Similarly to the previous
case, when the signal was the country GHG emission level, scenarios for the carbon price span a
wide range of possible trajectories (see Figure 1), so that the learning process of the agent has value
in her decision making. Again, the value of the RO is decreasing in the volatility of the signal.
Compared to the optimal exit problem, here, with a wider range for the volatility of the signal σy,
it is evident that when the signal becomes too noisy, there is no value in waiting, and it is actually
optimal to exercise the option earlier than in the case when the signal is perfectly revealing the
climate state.

Figure 9: Optimal entry problem. Sensitivity of the project value (in EUR) to the volatility of the
signal, σy. In the figure, σy varies in a range [0; 20 σ̂y]. Here, all available scenarios in REMIND 2.1
are included in the model. The project value is computed by LSMC with 60,000 simulations, and
with a risk-adjusted discount rate r = 1%. The shaded gray area represents the 95% confidence
interval. The inset plot shows the sensitivity of the average optimal stopping time τ to the volatility
of the signal σy.

Figure 10 shows the sensitivity of the RO value and of the average optimal stopping time to both
the volatility of the risk factors Σ (left panel) and the discount rate r (right panel). We let r vary
in a range [1%; 10% ], and we multiply the estimated variance-covariance matrix by a factor that
varies in a range [ 1

4 ; 5 ]. As in the optimal exit problem, the RO value is increasing in the volatility
of the risk factors and decreasing in the discount rate. However, here, the average optimal exercise
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Figure 10: Optimal entry problem. Sensitivity of the project value (in EUR) to the risk factors
volatility, Σ (left panel) and to the discount rate r (right panel). In the left panel, Σ varies in a
range [ 1

4 ; 5 Σ̂], and the project value is computed with a risk-adjusted discount rate r = 1%. All
scenarios from the REMIND 2.1 are included. The project value is computed by LSMC with 60,000
simulations. The shaded gray area represents the 95% confidence interval. The inset plot shows
the sensitivity of the average optimal stopping time τ , with a 95% confidence interval.

time is decreasing in the volatility of the risk factors. Thus, the higher the variability relative of
the future cash flows, the earlier it is convenient to invest in the green energy project.

4 Conclusions

In this paper, we present a new strategy for evaluating investment projects, by combining standard
real options techniques with a macroeconomic approach for climate transition analysis. In our
model, the agent continuously observes a noisy climate-related signal, and forms a belief relative
to the likelihood of the current macroeconomic climate scenario. The agent then bases her entry
or exit decisions on the posterior probability of being in a certain macroeconomic scenario. The
agent’s learning about the level of climate risk, via Bayesian updating, then plays an active role in
the decision making process.

We showcase the potential of our strategy using public available scenario data from the NGFS
scenario database, which are representative of a range of several different environmental transition
pathways. Each of them is associated to a certain level of climate policy stringency, from low
(existing climate policies remain in place, with no further effort to mitigate climate change), to
high (there is a clear commitment to a specific net-zero policy target that results in CO2 emissions
to be at net-zero in 2050).

Our results indicate that taking into account scenario uncertainty and its progressive resolution
is essential for precise valuation of energy projects. Furthermore, they underscore the importance of
reliable and detailed climate scenarios. In particular, the IAM we adopt in the empirical application
section of this paper is not designed to simulate structural changes. Moreover, features like higher
time granularity and increased geographical diversity would add precision to our results. Finally,
for the purpose of energy project valuation, it would be important to have an IAM that includes
energy producer-specific variables, such as the wholesale price of electricity at the primary level,
rather than at the secondary one (which also includes dispatching costs).
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