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ABSTRACT

This paper makes a case for climate linkers. We define climate linkers as long-dated financial instruments
(bonds, swaps, and options) with payoffs indexed to climate-related variables, e.g., temperatures or
carbon concentrations. Such instruments would facilitate the sharing of long-term climate risks. Another
key benefit would be informational, as the prices of such instruments would reveal real-time market
expectations regarding future climate. We develop a tractable climate-risk pricing framework and exploit
it to study climate-linked instruments’ cost and risk characteristics. We examine, in particular, climate risk
premiums: because of the insurance provided by a bond (positively) indexed on temperature, investors
would demand a lower average return on such a bond than on conventional bonds. Our findings highlight
the sensitivity of climate premiums to the assumptions regarding damages associated with temperature
increases and feedbacks between temperatures and carbon emissions.
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1 Introduction

The global annual average surface temperature has already increased by 1.1°C since 1880, intensifying the
frequency and severity of adverse events—heatwaves, droughts, hurricanes, flooding. Extreme weather
events are projected to worsen over the next century, as the global annual mean temperature increases.
Through physical risks and transition risks (regulatory changes, technological innovations, and evolving
consumer preferences), the medium- to long-term exposure of our economies to climate risk is considerable
(e.g., Stern, 2007; Burke et al., 2015a,b; Dietz et al., 2016).

In this paper, we make a case for the emergence of a novel class of financial instruments indexed

to climate-related variables, such as global temperatures, carbon concentrations, or sea levels.! These

“We are grateful to Darrell Duffie, Christian Gouriéroux, Alain Monfort, Riccardo Rebonato, Guillaume Roussellet, and
Simon Scheidegger for useful comments. We hereby declare that we have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper. R codes are available upon request.

'A market for weather derivatives already exists (Cao and Wei, 2004; Campbell and Diebold, 2005; Brockett et al.,
2005). Pérez-Gonzélez and Yun (2013) show that weather-sensitive firms have benefited from their introduction. To date, the
instruments traded on weather-derivative markets feature short time horizons (typically a few months) and focus on specific
regional areas. In contrast, the derivatives discussed in this paper are long-dated and pertains to global risks. The long-dated
nature of these instruments (and the resulting counterparty risks) would call for appropriate credit-mitigation mechanisms.
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instruments would not directly contribute to the fight against climate risks, in the sense that they do
not necessarily aim at funding mitigation or adaptation projects (contrary to green bonds, e.g., Baker
et al., 2018). They would, instead, serve three main purposes. First, they would facilitate the sharing
of (physical) long-term climate risks. They would notably constitute an alternative and complementary
sources of reinsurance capacity to support the insurance industry’s goals in offering protection, as well as
in providing direct capacity to those seeking to transfer long-term climate-related exposure. Typically,
Second, the existence of a novel market for climate risks may stimulate investors to understand better, and
incorporate, long-term risks in their analyses.” Third, they would offer a public good by making market
participants reveal their expectations regarding future climate. This information would be captured in
real-time, at high frequency. One could for instance extract expected trajectories of future temperatures
from market quotes of temperature-indexed swaps or bonds—in the same manner as inflation expectation
measures are currently extracted from inflation linkers.> This approach would provide, in particular, a
natural way to gauge the perceived credibility and effectiveness of international commitments regarding

the climate.

The contribution of this paper is threefold. First, we discuss the advantages of financial instruments
indexed to secular climate changes. Second, we develop a modeling framework that allows for the fast
pricing of long-term financial instruments. Whereas it captures complex interactions between climate-
related and macroeconomic variables, our Integrated Assessment Model (IAM) offers quasi-analytical
pricing formulas for swaps, bonds, and option indexed to temperatures, for any maturity. This allows us to

explore the pricing of climate linkers, which constitutes our third contribution.

Exploiting our analytical framework, we examine how linkers’ prices would be affected by climate
risk premiums. These premiums are defined as the price components arising because agents are averse to
climate risks (Dietz et al., 2018; Lemoine, 2021). Our model recognizes that, for a given expected payoff,
agents favor assets that tend to provide larger payoffs in “bad states of the world,” which correspond here to
situations where realized temperatures are above their expected trajectory. Consider, for instance, a 50-year
temperature-indexed bond (TIB) whose repayment value increases by 10% if atmospheric temperature is
0.1°C higher than expected at maturity. Our results find that the associated yield-to-maturity would be 70

basis points lower than that of a standard (50-year) zero-coupon bond providing the same expected payoff.

2Deficiencies in this area are studied by Davies et al. (2014) and Slawinski et al. (2017). In particular, standard insurance
models remain rooted in the past, or backward-looking, and do not appropriately capture increasing climate-related risks (e.g.,
Bolton et al., 2020; Monasterolo, 2020; Swiss Re Institute, 2020). Recent studies however suggest that bond markets have
become sensitive to climate-related considerations (e.g. Cevik and Jalles, 2020). Relatedly, climate vulnerability is now taken
into account by credit rating agencies (Standard & Poor’s Global, 2017). Krueger et al. (2021) provide survey-based evidence
of an increase in climate-risk perceptions by institutional investors.

Relatedly, extreme temperature scenarios could be derived from market prices of temperature options. These scenarios
would, in particular, be useful to design climate stress tests (Battiston et al., 2017). They would reflect risk-adjusted trajectories
of climate variables; risk premiums should be extracted from option prices to reflect physical trajectories. (The risk premium
extraction can be based on a model such as the one presented in the present paper.)

2/50



This is because this TIB embeds insurance against increasing temperatures, implying that investors are

willing to hold these bonds even if their expected return is lower than for standard ones.

We further examine the importance of climate-risk premiums in long-dated temperature options. We
focus on digital options, whose payoff is equal to one if the atmospheric temperature exceeds a given
value—the option strike—and zero otherwise. The price of such an option can be interpreted as the
risk-adjusted probability of the temperature exceeding the strike. (Interestingly, the prices of options
of strike 2°C would directly measure the benefits associated with achieving the objectives of the Paris
agreement.) Our results show that for high-temperature strikes and long horizons—a temperature anomaly
of 3°C, say, and horizons between 50 and 100 years— risk-adjusted probabilities can be several times
larger than physical ones. We also find that this ratio positively depends on the strike. This result is
reminiscent of those obtained in the literature on disaster-risk pricing: risk premiums represent the bulk
of the prices of those financial instruments providing larger payoffs in disastrous situations (financial

meltdowns, defaults of large corporate or sovereign entities, see, e.g., Elton et al., 2001; Coval et al., 2009).

This research relates to the literature investigating the pricing of climate risks. A large share of the
theoretical literature is concerned with the computation of the Social Cost of Carbon (SCC), defined as the
marginal value of emission reductions (e.g., Weitzman, 2013). Uncertainty and aversion to ambiguity are
found to have profound implications on the SCC calculations (e.g., Daniel et al., 2019; Cai and Lontzek,
2019; Barnett et al., 2020; Lemoine, 2021). While we also examine the SCC resulting from our model,
our paper focusses on the pricing of fixed-income instruments. The empirical literature on the pricing of
climate risks in financial products is rapidly growing. Several articles assess the relative value of green
or environmental, social, and governance (ESG) bonds, pointing to small premiums to otherwise similar
ordinary bonds (Baker et al., 2018; International Monetary Fund, 2019; Larcker and Watts, 2020). Other
studies look for market price evidence of climate risk premiums: Huynh and Xia (2020) find that corporate
bonds whose value tend to increase when bad news about the climate occur trade at a premium; Painter
(2020) shows that long-dated municipal bond yields are higher for counties with large expected losses due
to sea level rise. Since investors have been considering climate risk for a relatively short period of time,
quantitative estimates of climate risk premiums based on (short) historical samples should be taken with
caution (Giglio et al., 2020). After having constructed a climate-news index, Engle et al. (2020) propose
an approach to dynamically hedging the associated risks using stocks-based factor-mimicking portfolios.
Andersson et al. (2019) show that one can closely track leading equity indices with portfolios featuring a

carbon footprint 50% smaller than the benchmark.

The present paper is particularly close to those studies that investigate asset pricing in the context of
stochastic integrated assessment models (IAMs). In this literature, some studies rely on models whose
tractability is obtained by simplifying the climate block of the Dynamic Integrated Climate-Economy
model (DICE) of Nordhaus (1992) (e.g. Bansal et al., 2016; Karydas and Xepapadeas, 2019; Bansal
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et al., 2019). Other studies employ standard DICE-related IAMs and look for efficient pricing solutions
(e.g., Daniel et al., 2019; Barnett et al., 2020). We manage to combine approximate DICE-type equations
and closed-form pricing solutions. This is achieved by making the state variables’ dynamics depend on
combinations of deterministic and stochastic components. As in Traeger (2021), the stochastic components
are such that the conditional Laplace transform of the state vector is affine in its past values—in a time-
dependent but deterministic fashion.* The model tractability hinges on the properties of affine processes
(see, e.g., Duffie, 1996; Duffie et al., 2003; Piazzesi, 2010). Equipped with closed-form formulas for
expectations and covariances of the state variables—at any horizon—we propose an original calibration
approach to make the model replicate benchmark scenarios and outputs of reference climate models.-°
The remainder of this paper is organized as follows. In Section 2, we expose the rationale behind
climate linkers. Section 3 details how these derivatives could be structured; it also discusses the concept
of climate risk premiums. Section 4 outlines our modelling framework, and Section 5 discusses its
implications in terms of climate derivatives’ pricing. Section 6 concludes. Technical details are gathered

in Appendices A (model) and B (calibration). All pricing formulas are given in the online appendices

(page 38).

2 Rationale behind climate-linkers

2.1 Hedging demand
In the coming decades, the frequency and severity of weather and climate disasters will increase, pushing
insurance and reinsurance claims up. According to the Swiss Re Institute (2020), total economic losses
from weather-related catastrophes amounted to $1°600bn between 2010 and 2019, 60% higher than
2000-2009, and 100% higher than for 1990-1999. Moreover, hedging needs are likely to increase to close
the so-called insurance gap—the difference between insured and total losses (Batten et al., 2016; Wolfrom
and Yokoi-Arai, 2016). This gap has widened over time in absolute terms, as the substantial growth in
insurance penetration was not significant enough to keep up with the increase in weather-related losses.
Growing demand for insurance against weather-related disasters has led to the emergence of alternative
risk transfer solutions (ART), such as insurance-linked securities (ILS), among which stand catastrophe

bonds and the so-called sidecars (special-purpose reinsurance vehicles). Insurers typically use ILS as an

“In spirit, this approach is similar to the one underlying the so-called market models of interest rates (Brace et al., 1997;
Miltersen et al., 1997).

>The model resolution and price calculation run several orders of magnitude faster than those based on dynamic programming
approaches (Cai and Judd, 2014; Cai and Lontzek, 2019; Barnett et al., 2020). For the latter approaches, solving for the model
on a single set of parameters is not fast enough to allow for a calibration approach that necessitates solving the model a large
number of times.

®No grid-based approach—subject to the curse of dimensionality—is needed to solve the model. By way of comparison,
Daniel et al. (2019) employ their approximated solution method in a context where both the number of dates and the number of
states are small (seven dates are considered, from 2015 to 2400; each node is followed by two possible states, leading to 27
possible states in 2400, and only 4 in 2100).
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alternative to traditional catastrophe reinsurance (Charpentier, 2008; Cummins and Weiss, 2009). While
these instruments add to the capacity of the insurance sector to deal with natural catastrophes, they do
not protect against long-term climate risks. Indeed, climate change is a slow-moving and long-term
phenomenon. In contrast, ILS are typically short-term instruments: Most catastrophe bonds have a term
of three years, and private transactions linked to natural catastrophe risk typically provide cover for 12
months (Cummins and Weiss, 2009). Over such horizons, climate change is essentially predictable, and
the risk level of an ILS does not change between inception and redemption. As a result, these instruments
do not help transfer risks associated with long-term climate change effects. This may contribute to the
moderate appetite for this kind of bonds.” The demand for catastrophe bonds also suffers from their relative
illiquidity—the risk covered by each being very specific (in the peril and geographical dimensions).

Unlike existing ILS, the instruments discussed in this paper would allow for the transfer of long-term
climate-related risks. They could benefit the (re)insurance industry by helping them cope with worse-than-
expected long-term scenarios.® They would also provide new perspectives of diversification to long-term
investors such as pension funds. A recent renewed interest in century bonds is suggestive of an increasing
appetite for ultra-long-term bonds.”

It is important to note that these instruments would be fundamentally different from green or environ-
mental, social, and governance (ESG) fixed-income products. The latter are instruments to fund projects
that have a positive environmental and/or climate impact; they are the building blocks of sustainable
finance, defined as the process of taking into account environmental and social considerations in investment
decision-making (Baker et al., 2018; International Monetary Fund, 2019; Larcker and Watts, 2020; Hong
et al., 2020). Nevertheless, since the payoffs of standard ESG bonds are not state-dependent, these products

do not directly allow for the transfer of climate-related risks.'”

2.2 The supply side
Governments constitute potential issuers of climate-indexed debt instruments. Following the global

financial crisis and the Covid19 pandemic, governments worldwide have been facing important funding

"The relative cheapness of these bonds is illustrated by the fact that spreads for catastrophe bonds are substantially larger
than similarly-rated corporate high-yield debt and are typically four times larger than expected losses (Braun, 2016). Note that
the rating of catastrophe bonds is low (typically BB) because the probability of incurring large losses is high.

8Mills (2005) describes the long-run difficulties that an adverse climate scenario would pose to the insurance industry.

° Austria issued a 100-year bond in 2017 and 2019, raising EUR 4.75 billion. Long-dated debt is attractive to institutional
investors like pension or mutual funds looking for investments to match long-term liabilities and hedge funds seeking to
make gains through currency or interest rate swap trades. What makes them specific is a high convexity—a measure of the
curvature of the relationship between bond prices and bond yields. A high-convexity bond is such that a one-unit increase in the
yield-to-maturity results in a bond price decrease that is lower than the price increase following a one-unit drop in interest rates.
In other words, a high-convexity bond is a good hedge against falling yields.

10A derivatives market associated with ESG products is developing (Lannoo and Thomadakis, 2020); the first ESG-linked
sustainability-improvement derivative was issued in 2019. As the underlying ESG bonds, these derivatives do not provide
(direct) insurance against climate risk; instead they allow to hedge against the risk associated with those investments taking
ESG criteria into consideration.
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needs. Thus, issuing novel types of bonds may support the demand for sovereign debt by widening the
investor basis. Importantly, contrary to green bonds (or, more generally, ESG bonds), the proceeds of
climate-indexed bonds do not necessarily have to be invested in environment-related projects. In other
words, the issuance of climate-indexed bonds would not interfere with climate and environmental policies
pursued by governments; these novel debt instruments would complement existing ones (i.e., nominal and
inflation-indexed bonds).

All else being equal, by issuing climate-indexed bonds—with payoffs that positively depend on tem-
perature (say)—governments would increase their long-term exposure to climate risks. Notwithstanding
substantial international coordination problems, this would strengthen their incentives to implement
policies fighting these long-term risks. It can be noted here that governments already provide climate-
risk hedging as “insurers of last resort” (Bruggeman et al., 2010). In several countries, government
(re)insurance facilities have been established to support insurance availability. These facilities provide
direct insurance to property owners for disaster risks or provide reinsurance coverage to insurance compa-
nies for such risks (Wolfrom and Yokoi-Arai, 2016).'! In many countries, such facilities specifically aim
at reducing the maximum risk exposure faced by the insurance sector in the event of a disaster, thereby
addressing a key criterion for insurability (Berliner, 1985).'? By increasing their exposure to climate risk,
governments would also have more incentive to implement policies fighting it.

By providing insurance to bondholders through the issuance of climate-indexed bonds, governments
may expect to earn climate-risk premiums when issuing such instruments. Because these assets would
deliver higher payoffs in “bad states of nature”—characterized by higher marginal utility of consumption—
investors should indeed be willing to buy these bonds even if their expected returns are lower than those of
standard bonds (with fixed payoffs). That is, as of the date of issuance, the government should expect these
issuances to eventually result in lower debt service. This has been one of the arguments in favour of the
issuance of inflation-indexed bonds (see, e.g., Price, 1997, Section I.B). There are however two caveats to
this line of reasoning. The first is that the premium would probably be reduced—if not canceled—in the
early years, due to the existence of a negative “novelty premium”; empirical evidence indeed suggests that
investors tend to ask for premiums to hold new types of asset.'® The second, more theoretical, is that it

is not clear that public debt managers should take the minimization of the average cost of debts as their

"Examples of comprehensive direct insurance facilities include the Consorcio de compensacion de seguros in Spain, and
Iceland Catastrophe Insurance. Direct insurance is also provided by the New Zealand Earthquake Commission, the Turkish
Catastrophe Insurance Pool and the United States National Flood Insurance Program, although for a sub-set of disaster risks.
Examples of reinsurance facilities include the Caisse centrale de réassurance in France (for all disaster risks), and Japan
Earthquake Reinsurance for a smaller sub-set of risks.

12Charpentier and Le Maux (2014) study the conditions under which reinsurance of natural catastrophe risks by the
government improves welfare.

13The novelty premium can reflect potential difficulties in measuring the risks underlying the asset (e.g. due to the absence
of appropriate and well-established models) or the limited liquidity of such bonds relative to conventional ones. Employing a
no-arbitrage term-structure model, D’ Amico et al. (2018) find for instance that inflation-linked bond yields exceeded risk-free
real rates by as much as 100 basis points when they were first issued in the U.S..
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main target; instead, borrowing costs must be considered in relation to risk (Campbell and Shiller, 1996,

Section 2).

By reducing entry costs—materializing through the novelty premium mentioned above—the issuance
of sovereign climate-indexed bonds could open the door to private issuances and promote the development

of a liquid market."

From an asset-liability management perspective, natural issuer candidates would
be firms whose activity relates to climate-risk mitigation (e.g., renewable-energy producers and electric-
vehicle makers). More generally, the introduction of sovereign climate-indexed bonds would contribute to
the development of climate derivatives markets. In this respect, the development of the market of inflation-
indexed derivatives stands as an example: Following the introduction of U.S. government inflation-linked
bonds, the Chicago Board of Trade introduced futures and options referenced to these bonds; mutual funds
benchmarked on these bonds also developed, and inflation-linked investment plans and annuities were

introduced by pension funds (Garcia and Van Rixtel, 2007).

2.3 Informational content

The benefits expected from the development of climate-indexed instruments are also informational. Indeed,
the prices of climate-indexed instruments would reflect the market expectations regarding the future
trajectory of climate-related variables (e.g., temperatures, carbon concentrations). Furthermore, if climate
options were traded, one could also back out measures of the perceived uncertainty associated with these

expected trajectories.

These expectations and trajectories would be adjusted for risk: expectations that are extracted from
market prices embed risk premiums and therefore do not necessarily coincide with physical expectations
of future climate.'® However, as long as the risk premium components of climate-linkers’ prices vary
relatively slowly through time, changes in climate linkers may still be interpreted as changes in expectations.
Moreover, models—such as the one presented in Section 4—could be used to try and extract risk premiums

from observed market prices to recover corrected (physical) expectations.

Naturally, such market-based measures would not, per se, improve our understanding of climate
change. Having the market reveal their expectations would however be valuable in several respects. First,

to price these instruments, market participants would develop and employ climate models, which would

14Such a cost-risk trade-off seem to be consistent with the actual public debt management practices. Indeed, if governments
were essentially minimizing borrowing costs, then they would massively borrow at the Treasury bill rate and would invest the
proceeds in longer-term bonds (thereby earning the term premium) or in stock markets (thereby earning the equity premium).

15 As Campbell and Shiller (1996, p.191) put it: “It is widely acknowledged that the proper role of the government is to
provide public goods, and the demonstration by example of the potential for new financial markets and instruments is really a
public good.”

16 As an example, in the context of the term structure of interest rates, empirical evidence suggests that forward rates do not
coincide with the (physical) expectation of future interest rates. That is, the so-called “expectation hypothesis” does not hold
(see, among many others, Cochrane and Piazzesi, 2005).
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contribute to research efforts on climate modelling.!”-'® Second, the observation of changes in these prices
(available at high frequency) would allow measuring the influence of different types of news on agents’
expectations. Typically, one could observe how markets evaluate the effectiveness of policies announced
during international summits.'?>?" In particular, one could observe whether the objectives of the Paris
agreement of 2015—holding the global average temperature below 2°C above pre-industrial levels—is
deemed credible by market participants.

Third, the trajectories of climate-related variables backed out from observed prices (temperatures, say,
in the case of temperature-indexed bonds) may be used to construct “market-based” scenarios. These
scenarios would complement model-based ones and may be used, e.g., to price long-term insurance
premiums or assets exposed to climate risks. Importantly, if climate options were available, the definition
of worst-/best-cased scenarios (corresponding to specific probabilities) could also be derived. The latter

may for instance help design climate stress tests (Battiston et al., 2017; Bolton et al., 2020).

3 Climate linkers

This section introduces different types of climate linkers. While we focus on derivatives whose payoffs
depend on a temperature index, different climate-related indices could be considered. In particular, we
could replace temperature indices with measures of carbon concentrations or sea level (as is illustrated in
Subsection 5.3).%!

For expository purpose, we abstract from inflation. It seems however appropriate to make climate
linkers’ payoffs indexed to inflation.”” This way, these instruments would constitute pure hedges against
physical climate risk, without being affected by inflation-risk premiums.

Let us start with the definition of a temperature-indexed swap. A swap is a basic derivative product
that materializes the agreement between two counterparties to exchange cash flows at predetermined dates.
The first type of the cash flows is determined at the time the swap is negotiated and paid by the protection
buyer to the protection seller. The second type of cash flows depends on an index that is observed after the

negotiation; these cash flows are paid by the protection seller to the protection buyer. In a Temperature

17According to the OECD, in 2017, the U.S. R&D spending in the finance and insurance sector amounted to $7.6bn, which
compares, e.g., to $8.8bn for R&D expenditures in the chemical sector.

18Relatedly, Purnanandam and Weagley (2016) show that the introduction of weather derivatives by the Chicago Mercantile
Exchange, in the late 1990s, has generated additional scrutiny of the temperature data.

19Central banks, academics, market analysts or practitioners widely resort to such approaches to assess the influence of
announcements or news on inflation expectations (using inflation derivatives). Revealing inflation expectations was among the
principal arguments for the development of inflation-indexed bond markets (see, e.g., Price, 1997).

201n this spirit, Giirtler et al. (2016) investigate how the occurrence of catastrophes lead market participants to reprice
catastrophe bonds.

2l1n any case, the definition and calculation of the index should be precisely defined; in particular, the calculation should be
based on perennial and reliable sources.

22For this, the payoffs given in Definitions 1, 2, and 3 would have to be multiplied by PI, ,;,/PI;, where PI, denotes a price
index prevailing on date ¢. In terms of pricing, the formulas developed in the Online Appendix II would remain valid under the
assumption that the (log) inflation rate m; .+, = log(PL1/PI;) is an affine combination of the state vector components.
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Indexed Swap (TIS), the reference index is a temperature measure. This derivative would allow investors

to either reduce or increase their exposure to climate change.

Definition 1. Temperature Indexed Swap (TIS). A zero-coupon TIS is a derivative in which a
fixed rate payment on a notional amount (N, say) is exchanged for a payment indexed to a given
temperature measure (1;, say).”

Denote the current (negotiation) date by t. If the maturity date is t + h, then the temperature
seller will pay T; ;N to the temperature buyer on date t + h (this is the protection leg of the swap);
and the latter gives Tt‘?hN to the temperature seller (this is the premium leg of the swap). In other
words, the protection buyer and seller respectively receive (T;. ) — 7}‘?}1)N and (Tt,Sh —Tiop)N on
date t + h.

The temperature swap rate ( TlSh ) is negotiated by the the two counterparties on date t; it is such

that the values of the two legs are equal on date t.

“T; here denotes a generic temperature measure. It could be the atmospheric temperature, the ocean temperature, or
a combination of the two.

While the temperature swap rate (thh) 1s negotiated on date ¢ by the two counterparties, 7;,, is observed
on date ¢ + & only. That is, while the value of the premium leg is known as of date ¢, this is not the case of
the protection leg.

Let us take advantage of the simplicity of this instrument to introduce climate risk premiums. To start
with, consider the baseline case where agents are risk-neutral and risk-free interest rates are independent

from temperatures. Under the absence of arbitrage opportunities, we then have:

5 = Eu(Tiin), (1)

where [E; denotes the expectation conditional on the information available on date ¢.

The protection buyers then receives (7;, — E;(7;;,))N at maturity. Thus, when temperature rises
above its expected path, the temperature buyer receives more from the temperature seller than what he
pays, and vice versa.

Let us now relax the risk-neutral assumption, and denote by .#; ;. the stochastic discount factor
(s.d.f.) between dates r and ¢ + h.>> Note that the s.d.f. considered here is general, and the formulas

presented in this section are not specific to the modelling framework described in Section 4.

2In the discrete-time context, it can be shown that under the assumptions of (a) existence of a price, (b) price linearity and
continuity and (c) absence of arbitrage opportunity, there exists a positive SDF. This derives from a conditional version of the
Riesz representation theorem (see e.g. Hansen and Richard, 1987).
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The price of the protection leg is [E, [T,M.///,JM] , and that of the premium leg is T[fhEt [%7,+h] . The

fact that the two legs of the swap have the same value as of date ¢ then gives:
My 141
5, =E f—”*}mh : 2)

The previous equation shows that the TIS rate can be seen as a risk-adjusted expectation of 7;j, and
that the risk-adjustment depends on .#; ;. / E; [,///,Hh} . Formally, T[Sh is called h-forward risk-neutral
expectation of Ty, and ., ;. /By [#, 41 is the Radon-Nikodym derivative linking the physical and
risk-neutral measures.>*

Eq. (2) also rewrites

Cov, [Tt—O—hv «///t,H-h}
E, [///t,t+h] ,

T[S =E; [T;44] + prem; j,,  with  prem; , = 3)
which shows that prem; j, the difference between the swap-implied temperature (TLSh) and the expected
temperature (IE; [7;1]), depends on the covariance between temperatures and the s.d.f.: if states of higher
temperature are perceived as “bad states of the world” (states of high marginal utility, or high s.d.f.) then
the swap-implied temperature is above its expectation because the covariance term is then positive. In that
case, the protection buyer is willing to lose money, on average, to be hedged against temperature risk.

In the context of the pricing model presented in Section 4, Corollary 2 of Appendix II enables the
computation of the two conditional expectations appearing in eq. (2). (In particular, in this model, the

s.d.f. #; ;4 is available in closed form.)

Definition 2. Temperature Indexed Bond (TIB). A zero-coupon TIB is a debt instrument whose
payoff is indexed to a given measure of temperature. Let us denote by t the issuance date and by h

the maturity at issuance. The payoff, settled on date t + h, is of the form:

L+ X (Trn— Tih)s 4)

where Ttoh is a temperature defined by the issuer on the issuance date and where parameter X is a

“leverage factor.” The temperature Tloh could for instance be set to the expected temperature on date

24The h-forward risk-neutral measure Q" is equivalent (in the measure sense) to the physical one. Under Q”, the numeraire
is a zero-coupon bond of maturity % (see e.g. Jamshidian, 1989). That is, conditional on the information available on date ¢, the
risk-adjusted probability of an event Q,, (say) is equal to B, (4, n1yq,,,}) /Bi (A1 4 10).-
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t+h (as of date t), that is Ttoh = E/(T,1p). In that case, the expected payoff of the TIB would be
equal to 1.

While the expected payoff of the TIB is equal to that of a standard zero-coupon bond when Ttoh =
E;(T; 1), the price of the two types of bonds (with matching maturities) are not necessarily equal. Formally,

the TIB price is then given by:

[, [e///r,t+h{1 + X (Tisn —Er(THh))H = K [///t,erh} -+ X premy p,

where prem, j, is defined in eq. (3). Therefore, the difference between the TIB price and I, ['%U'Hl} —that
is the price of a zero-coupon bond with a deterministic payoff of 1 at maturity—is equal to ) prem; .

It can be noted that the TIB payoff turns negative if 7;,, < Tl?h — % (eq. (4)). To prevent this, TIBs
could embed options for the payoff to be equal to max[1 + x (7}, — T&), 0].>> In the context of our pricing
model, the TIB valuation formulas given in Corollary 3 of Appendix II would then have to be adjusted

with option prices. We now introduce such options.

Definition 3. Temperature options. A remperature option is a derivative instrument whose payoff

is nonlinearly indexed to a given temperature measure. We consider three types of options:

Option type Price (notation) Payoff (settled on maturity date t + h)
Digital Dig; n(Tk) Ly, >10}

Call Call, 5(Tk) (Trn —Tx) " = Lz, 510y (T — Tk)
Put Put; (Tx) (Tr+n —Tk)” =Lz, <1y Tk — Tin)

A temperature call of strike 3°C allows, for instance, to get the payoff (7;,, — 3) on date 7 + h if
T, > 3. Proposition 11 of Appendix II enables to price these options’ in the context of the model

presented in Section 4.

4 Model

This section presents a modeling framework that we will subsequently use to get insight into the pricing of
the climate linkers introduced above. At the intersection between the well-known DICE model (Nordhaus,
2017) and the concise climate change economy of Bansal et al. (2019), the model offers closed-form

solutions for pricing different classes of assets. As schematically represented in Figure 1, the model

ZRelatedly, U.S. Treasury Inflation-Protected Securities (TIPS) embed a put option for the nominal redemption value to be
higher than the original principal; this option hedges investors against deflation (see, e.g., Grishchenko et al., 2016).
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captures relationships between economic and climatic variables. In the remainder of this section, we

highlight the fundamental equations and ingredients of the model. Appendix A depicts the full model.

Figure 1. Schematic representation of the model

Production
00

C Damages )
el

©(+) (H)®

Temperature

Mitigation

CO, Emissions)

Note — This schematic representation of the model depicts the main channels relating climatic and
economic variables. (a): Production increases emissions, but mitigation helps to reduce the positive
relationship between the two. (b): Emissions increase temperature anomaly. (c): Larger temperatures
increase the probability of agent’s being hit by climate-driven damages. (d): Damages negatively impact
production due to the destruction of the environment. (e): Temperature raises emissions by increasing
the probability of triggering a climate change feedback loop (triggered, e.g., by releasing tons of methane
trapped in the permafrost or the acidification of oceans).

In the model, temperatures are expressed as temperature anomalies from a baseline period.”® As
proposed in the DICE model, we focus on two global temperatures: lower ocean (77p) and atmosphere
(Tx7). The dynamics of these two temperatures depends on radiative forcings due to greenhouse gases (F):
Earth receives radiant energy from the Sun and emits some energy back into space; at equilibrium, Earth
should absorb as much radiant energy as it radiates out of our atmosphere; the difference between the two
is radiative forcings. When the latter goes up, absorption increases, and Earth warms. Specifically, the

atmosphere temperature—which drives damages to the economy—is determined as follows:>’

T
Tury = Tare—1+ & {Ft - ;TAT,t—l —& [Turs—1 — Troy—1] } . (5)

In the present model, we consider the following linear approximation to the dynamics of radiative

Z6Consistently with the formulation of the Paris Agreement’s objectives, we use the 1850-1900 baseline period as an
approximation of the pre-industrial period.
?7See, e.g., Ramaswamy et al. (2001) for a discussion of the relationship between global temperatures and radiative forcings.
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forcings:®

M_l_

Mpy Mo
log(1+mgp) + B +Fex s+ OFNEy, (6)
+ my

T
F =
! log(2)

where Fgx ; is the exogenous part in radiative forcings due to greenhouse gases different from CO,.”° The
shock ng; is a persistent Gaussian shock aimed at capturing the uncertainty pertaining to this relationship.
This uncertainty notably encompasses that associated with the so-called climate sensitivity parameter,
which characterizes the equilibrium warming response to a doubling of preindustrial CO; concentrations
(e.g., MacDougall et al., 2017; Barnett et al., 2020). In (6), Mpy is the preindustrial concentration of carbon

in the atmosphere, and My7; is one of the three reservoirs describing the carbon cycle, defined as:

Mar,
M; = MUP.,I
Mo,

The carbon cycle determines the journey of all carbon atoms on earth:*” a loop between atmosphere, land,
and ocean. The components of M; are the carbon masses in atmosphere, upper ocean, and lower ocean,

respectively. The carbon cycle dynamics takes the following linear form:

M= oM+ | (7
Y T AR

where ¢ is a square matrix describing the transfers of carbon between atmosphere and oceans. &;_
accounts for total carbon dioxide (CO,) emitted into the atmosphere during period ¢, converted into carbon
masses by applying the conversion rate 1/3.666.>! These total emissions &, are defined similarly as

radiative forcings, with an exogenous and an endogenous components:
5, = Eland,t + Eind,t + N, (8)

where Ej,, ; are industrial emissions due to human activity, and Ej,,g ; represents an exogenous component
including, in particular, emissions due to deforestation. Industrial emissions, which depend on the level
of production in the economy, are the main constituents of temperature warming. The last component

of &;, namely N, is a persistent shock whose probability of occurring increases with temperature in the

28The non-linear equation is: F; = tlog, (%ﬁfﬁ) + Fgx :, (Nordhaus, 2017, equation (6)).

29 Carbon dioxide is considered as the main greenhouse gas that is due to human activity through the burning of fossil fuels.

30The main greenhouse gases containing carbon are also the most active in the atmosphere: carbon dioxide (CO,) and
methane (CHy).

31Tn (7), the conversion rate is multiplied by 5 because one period lasts 5 years.
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atmosphere. This variable intends to capture those feedback effects documented in the literature on tipping
points (Lenton et al., 2008). Tipping points stem from the existence of feedback loops in our environment;

1.32 A positive feedback loop amplifies the positive

they are represented by arrows (b)<>(e) in Figure
imbalances in radiative forcings by creating a vicious circle strengthening global warming. Examples of
positive feedback loop commonly accepted by the scientific community include (a) the release of tons of
methane trapped in the permafrost, and (b) the acidification of oceans—the first CO; absorbers on Earth,
closely followed by the forest ecosystem. If one of these loops is triggered, the probability of triggering the
next one jumps, giving rise to tipping point mechanisms (Lemoine and Traeger, 2016; Steffen et al., 2018;
Dietz et al., 2020). In our econometric specification, this is captured by drawing N, from a gamma-zero
distribution, which is a distribution featuring a Dirac mass at zero (Monfort et al., 2017), and we make the
probability of having a non-zero N; depend on Ty7. In our setting, the probability of having a non-zero N;
is typically small, but if it happens (i.e. when N; jumps), emissions experiment sudden and large increases,
which further increases temperature, and so on. >

Let us now discuss the economic side of the model. As in most IAMs, agents can choose to mitigate
global warming by investing in low carbon emissions technologies. A mitigation rate y; of 1 implies that
agents can fully mitigate industrial emissions (E;,4,) with the technology they invested in.’* However,
increasing the mitigation rate y; is costly. Hence, agents face the following trade-off: investing in
mitigation reduces long-term risks but comes at the cost of lowering immediate consumption. Formally,

we posit the following specification for the log-consumption growth:

Acy = fy+ Gyl — Di(Tar,—1) — Mitigy (1), ©

where 1,; ~ i.i.d..#(0,1) is a consumption innovation shock, D; captures disaster-like (gamma-zero
distributed) shocks whose occurrence probability positively depends on atmospheric temperature (T ),
and Mitig(,) is the consumption reduction stemming from the investment in global warming mitigation.
This investment depends on the rate i, the chosen fraction of total industrial emissions technologies
effectively absorbed.

Agents’ decision regarding mitigation eventually depends on their (risk) preferences, which we take of
the Epstein-Zin-Weil type (Epstein and Zin, 1989; Weil, 1989), which allow disentangling the risk aversion

and intertemporal elasticity of substitution (EIS) parameters (see Appendix A.3 for more details).* In

32Earth is composed of an unknown number of feedback loops, positive or negative. Negative feedback loops decrease the
pressure on global warming by absorbing greenhouse gases from the atmosphere.

3 This type of mechanism, called self-excitation, is the essence of the Hawkes (1971) process (see Ait-Sahalia et al., 2015,
for an application to the modeling of financial contagion).

3*We do not take into account the possibility of investing in absorbing emissions technologies (i; > 1).

3SEpstein-Zin preferences, or, more generally, recursive preferences, are widely used to capture equity and bond risk
premiums (Bansal and Yaron, 2004). These preferences have been used in numerous recent IAMs (Cai and Lontzek, 2019;
Jensen and Traeger, 2014; Lemoine and Traeger, 2014).
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order to get instant results, we simplify the optimization problem of the agents. The latter optimize their
desire mitigation rate at # = 0—the initial period—for the whole path we are interested in (2015-2515) by
maximizing utility in 2015. They further commit to that parametric path.>® Under the prior assumptions,
we can solve for utilities at any date (Proposition 8); this makes the framework particularly tractable.
The model calibration is detailed in Appendix B.>” While most of the climate-block parameters
are taken from the DICE model (Nordhaus, 2017), the parameters governing economic damages (D;)
and positive feedback loops (V;) are jointly determined by fitting a set of alternative moments found in
the literature, namely: (a) the regression slope of cumulated climate-related damages on atmospheric
temperatures in 2100 (target based on Burke et al., 2015b); (b) the expected global surface temperatures in
2100 (target based on IPCC’s Representative Concentration Pathway, RCP, scenarios);>® (c) the standard
deviation of global surface temperatures in 2100 (target based on RCP scenarios); (d) the expected
contribution of feedback loops on the 2100 global temperature (target based on Burke et al., 2012); (e) the
expected cumulated emissions in 2100 (target based on Burke et al., 2012); (f) the 80-year real risk-free
yield (target based on very-long-term rates computed by the U.S. Department of the Treasury).>” This
fitting exercise is feasible thanks to closed-form solutions to conditional expectations and variances (Online

Appendix I).

5 Results

5.1 Temperature-indexed swaps and bonds

This subsection presents model-implied prices of temperature-indexed swaps and bonds (presented in
Section 3). We also discuss the climate risk premiums, defined as those components of climate linkers’
prices that would be null under the “expectation hypothesis™, i.e. in a world where agents would not be
risk averse.*’

Let us start with temperature-indexed swaps (TIS, see Definition 1). Panel (a) of Figure 2 shows the

term-structure of temperature-indexed swaps, in orange. More specifically, it shows TIS rates (Tt.Sh) for

36The specification of the mitigation rate g, is given by eq. (12), in Appendix A. Two parameters (84,0pr and 6y, ) define
U’s trajectory. Knowing all other model parameters, we look for the values of these two parameters leading to the highest
utility in the current date. This optimization is extremely fast.

3"Moreover, Appendix C discusses the model-implied social cost of carbon (SCC), and compares it to alternative estimates
found in the literature.

38RCP scenarios are based on Clarke et al. (2007); Smith and Wigley (2006); Wise et al. (2009); Fujino et al. (2006); Hijioka
et al. (2008). Specifically, we use RCP45 and RCP60 scenarios.

3High Quality Market (HQM) corporate bond yield curves are computed by the U.S. Department of the Treasury for the
Pension Protection Act. The 100-year rate is available at https://fred.stlouisfed.org/series/HQMCB100YR.
This nominal rate is currently around 4%; we set our real rate target at 1%, which is consistent with an inflation rate
assumption of 2% and a credit spread of 100 basis points (as the rates reported by the Treasury corresponds to corporate—hence
defaultable—bonds). Including the very-long-term real rate among the targets has the advantage of discarding calibrations for
which long-term bonds have infinite prices. (The fact that long-term rates may not exist is not specific to the present model.)

40More precisely, these counterfactual prices would be the one prevailing under the “local expectation hypothesis”, as
convexity adjustments would be taken into account (see Piazzesi, 2010, Section 2.2).
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different maturities 4. The blue line displays expected atmospheric temperatures, i.e., E;(Tar 1p). If
agents were not risk-averse, then TIS rates would coincide with expected temperatures (see eq. (1)). In
other words, the deviation between the blue and the orange lines reflects climate risk premiums. The
results indicate for instance that the TIS rate—which can be seen as a risk-adjusted expected temperature,

as explained below eq. (2)—Ilies about 0.8°C above expected temperatures for 2100.
[Insert Figure 2 about here]

Panel (b) of Figure 2 shows the term structure of Temperature-Indexed Bond rates. Note that these
yields are real rates, as the model does not account for inflation. We consider different values of }, which
determines the sensitivity of the payoff to realized atmospheric temperatures (see Definition 2). The figure
also displays zero-coupon bond yields, in black. As explain in Definition 2, the expected payoffs of a TIB
is equal to one if the reference temperature (Tt(’)h) is set to the expected temperature. Hence, a TIB and a
(standard) zero-coupon bond have the same expected payoff. However, Panel (b) of Figure 2 shows that
the equilibrium prices of TIBs are higher than those of standard bonds (since yields-to-maturity are lower).
This results from the fact that a TIB also provides insurance against temperature risks. Because of these
hedging properties, investors are willing to buy TIBs even if they provide lower expected returns. That is,
the difference between the black and orange lines are risk premiums. Naturally, the higher yx, the higher
the premium. Focussing on y = 1, we obtain that the yield-to-maturity of a TIB maturing in 2100 is about
70 basis points lower than the zero-coupon bond providing the same expected payoff.

The fact that TIBs’ yields-to-maturity depend on the payoff’s sensitivity to realized atmospheric
temperatures () illustrates the fact that appropriate discount rates depend on the climate-risk exposure of
the considered asset. This relates to the debate on the social discount rate to be used to assess climate-
related public policy actions (see, e.g., Gollier, 2013; Arrow et al., 2014; Gollier and Hammitt, 2014;
Bauer and Rudebusch, 2020): similar mechanisms indeed explain why one has to adapt the discount rate
to the risk profile of the flow of net benefits generated by the policy under scrutiny. As discussed in Dietz
et al. (2018), if a policy tends to raise the collective risk borne by a community of risk-averse agents, this
policy should be penalized by increasing the discount rate by a risk premium specific to the policy—and

vice versa if the policy tends to hedge collective risk.
[Insert Figure 3 about here]

Figure 3 illustrates the sensitivity of swap-embedded climate risk premiums to the magnitude of
disasters (up) and of the feedback loops (ty). These two parameters are crucial to characterize climate-
related risks. In Panel (a), we show how expected temperatures and TIS rates—that can be interpreted
as risk-adjusted expected temperatures—are affected by changes in these two parameters. It appears in

particular that expected temperatures only weakly depend on the magnitude of economic disasters. On the
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contrary, TIS rates (i.e. risk-adjusted temperatures) strongly depend on both parameters. As explained
above, the difference between TIS rates and expected temperatures is a climate risk premium. Panel (b)
of Figure 3 displays the contribution of these premiums in the TIS rate. It appears that risk premiums

increase w.r.t. to both parameters.
[Insert Figure 4 about here]

Figure 4 provides another illustration of the sensitivity of risk premiums to the magnitude of disasters.
More precisely, Panel (a) shows how TIS-embedded risk premiums vary with tp for three different values
of the feedback loop magnitude (ty): the first is zero, the second is its calibrated value (uy =~ 30), and
the third is larger (uy = 50). Three remarks are in order. First, the risk premium is highly nonlinear
in the magnitude of disasters. Second, for very low values of up, the risk premium is negative. In this
case, high temperatures are not worrying because they do not give rise to disasters. On the contrary, high
temperatures then reflect periods of higher-than-expected growth—with no risk attached. Therefore, for
such specification (i.e., Up ~ 0), agents perceive high-temperature states as “good states”. Accordingly,
financial instruments that pay relatively more in these states, such as TIS, embed negative risk premiums.
Let us stress that this situation, which prevails only for very small values of up, is far from our baseline
specification. In the latter, up is substantial, and high temperatures have disastrous implications. Third,
for each value of wy, there exists a value of up for which risk premiums explode, resulting in a vertical
asymptote. (The higher uy, the lower this maximal value of up.) Hence, when disasters are expected to be
large, insuring against climate change can become infinitely costly in our model, a situation that echoes that
studied by Weitzman (2009, 2014). Panels (b) and (c) of Figure 4 show that these limit parameterizations
also correspond to infinite model-implied social costs of carbon (SCCs), and infinitely-negative long-term

interest rates, respectively.

5.2 Temperature options

In the present section, we discuss the pricing of options, whose payoffs nonlinearly depend on temperatures
(see Definition 3), contrary to TISs and TIBs. Our framework offers quasi-closed-form valuation formulas
for these options.*! These formulas rely on Fourier analysis, that allows to recover probability density
functions (p.d.f.) of any linear combination of the state variables, at any horizon. This is illustrated by
Figure 5, whose Panels (a) and (b) respectively represent the physical and risk-adjusted (i.e., including
risk premiums) p.d.f. of atmospheric temperatures, up to 2100.*> Taken together, the plots show that the

risk-adjusted p.d.f. is shifted up w.r.t. the physical one. That is, when it comes to price temperature-indexed

41Solutions are quasi-explicit as they involve numerical computations of integrals. Importantly, these integrals are one-
dimensional, whatever the number of state variables considered in the model. See Proposition 11 of the online appendix for
more details; this proposition builds on Duffie et al. (2000).

42See discussion below eq. (2), and Footnote 24, for details onrisk-adjusted probabilities.
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instruments, risk-adjusted probabilities overweight those states of the world where temperature is higher.
This is because the model recognizes that high temperatures characterize states of high marginal utility
(lower consumption), which tends to increase the associate risk-adjusted (or Arrow-Debreu) probabilities.
Panel (c) of Figure 5 plots the model-implied physical and risk-adjusted p.d.f. of atmospheric temperatures
in 2100. Consistently with what precedes, we see that the risk-adjusted p.d.f. is shifted to the right w.r.t. the
physical one. Moreover, it appears that the risk-adjusted p.d.f. is flatter than the physical one, indicating
that the overall quantity of risk is higher in the risk-adjusted world.

[Insert Figure 5 about here]

Let us show how this translates into option prices. For expository purposes, we will focus on digital
options, whose prices can be interpreted as risk-adjusted probabilities that future temperatures will exceed
a certain threshold—namely, the option’s strike (Tx in Definition 3). Figure 6 plots the prices of such
digital options for Tx =2.5, 3 and 4, and maturities up to 2100. More precisely, we report option prices
divided by the prices of zero-coupon of matching maturities; this makes these prices comparable to
probabilities, and we call them risk-adjusted probabilities. (See Footnote 24 for a detailed definition of
risk-adjusted probabilities.) Consistently with what precedes, we observe that risk-adjusted probabilities
are substantially higher than their physical counterparts. We also find that ratios between risk-adjusted
and physical probabilities increase with the temperature strike. The ratio can be substantial for high
temperature. For Tx = 4°C and, focussing on the 2100 maturity, the risk-adjusted probabilities are about 5
times larger than the model-implied physical probability of exceeding this threshold. That type of result is
reminiscent of a finding of the disaster-risk pricing literature: risk premiums can represent the bulk of the
prices of those financial instruments providing larger payoffs in disastrous situations (financial meltdowns,
defaults of large corporate or sovereign entities, e.g., Elton et al., 2001; Coval et al., 2009; Monfort et al.,
2021; Gouriéroux et al., 2021).

[Insert Figure 6 about here]

5.3 Alternative indexation variables
While temperature stands as an indexation variable of interest, other variables can be considered. Def-
initions 1, 2, and 3 could be easily adjusted to introduce, respectively, swaps, bonds, and options with
payoffs depending on these alternative climate-related variables. In this subsection, we focus on two of
them, namely the atmospheric carbon concentration, and the sea level.**

Since carbon concentrations are included in the state vector X;, the pricing formulas are similar to
the ones used to price temperature-linked instruments. Figure 7 displays the physical and risk-adjusted

distributions of future carbon concentrations. As for temperatures, the risk-adjusted distribution of carbon

“Derivatives indexed on sea levels are discussed in Bloch et al. (2010, 2011).
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concentrations is more disperse and shifted to the right compared to its physical counterpart (see Panel
(c) of Figure 7). This would translate, in particular, in the existence of positive risk premiums in carbon-
concentration swaps; these risk premiums correspond to the difference between the orange and blue lines
in Panel (b).

[Insert Figure 7 about here]

Sea level rise stands as one of the most critical climate change’s dangers (see, e.g., Hauer et al., 2016;
Desmet et al., 2021, for evaluations of associated costs). We borrow from Vermeer and Rahmstorf (2009)

the following dynamics for global mean sea level (denoted by H,):**
H; = H;_1 + 5asar (Tary — Tos) + bsar ATary, (10)

where T s is the average atmospheric temperature for the period from 1951 to 1980. (Parameter values
can be found in Table 3.) As shown by Figure 8, the model predicts an increase in the mean sea level of
about 0.35 meter by 2100. The corresponding risk-adjusted increase is of 0.40 meter. That is, if sea level

swaps were to be traded, market quotes would overestimate physical expectations of sea level rises.

[Insert Figure 8 about here]

6 Concluding remarks

This paper makes a case for climate linkers. We define climate linkers as long-dated financial instruments
(bonds, swaps, and options) with payoffs indexed to climate-related variables, e.g., temperatures, carbon
concentrations, or sea levels.

Naturally, even if a liquid market for climate-indexed instruments was to emerge, it could not eliminate
the fundamental risk that society faces, as associated net exposures eventually cancel out. Some entities
will have to bear the risks. We, however, argue that such instruments may contribute to the sharing of
long-term climate risks. Another key benefit would be informational, as the prices of such instruments
would reveal real-time market expectations regarding future climate. This information would, for instance,
be useful to appraise how investors assess the credibility of measures aimed at fighting climate risks, or
how they view the influence of economic or political news on climate. Furthermore, these measures would
be available in real-time, and at high frequency.

On the methodological front, we develop a tractable climate-risk pricing framework and exploit it to
study the cost and risk characteristics of long-dated climate-linked instruments. We examine, in particular,

climate risk premiums. Because of the insurance provided by a bond (positively) indexed on temperature,

#Studies investigating the relationship between temperatures and sea level also include, among others, Rahmstorf (2007),
Rahmstorf (2010), Kopp et al. (2016), and Mengel et al. (2018).
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investors would demand a lower average return on such a bond than on conventional bonds. Our findings
highlight the sensitivity of climate risk premiums to the assumptions regarding damages associated with

temperature increases and feedbacks between temperatures and emissions.
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Figure 2. Term structures of temperature-indexed bond yields and swaps

(a) — Term structures of Temperature-Indexed Swap rates
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Panel (a) shows the term-structure of temperature-indexed swaps (see Definition 1). More specifically, it shows temperature
swap rates (Ttsh) for different maturities / (in orange). The blue line is the expected atmospheric temperature, i.e., E;(Taz s41).
If agents were not risk-averse, the orange line would coincide with the blue one; in other words, the deviation between the two
lines reflects climate risk premiums. Panel (b) shows the term structure of Temperature-Indexed Bond (TIB) real rates, for
different values sensitivity factors y (see Definition 2). Note that the model does not account for inflation; reported TIB rates
therefore are homogenous to real rates. Specifically, denote by P, () the price of this bond, the associated yield-to-maturity
(represented by the orange line) is then given by —% logP, »(x). The black line shows yields-to-maturity associated with

standard zero-coupon (real) bonds (these yields are given by —% log E; (A, 111)).
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Figure 3. Sensitivity of expected temperatures (in 2100) to ty and up
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This figure illustrates the sensitivity of Eo (77 2100) and Tos,zloo (the Temperature-Indexed Swap of maturity 2100, see eq. (3))
to up and . The former parameter is the magnitude of climate related disasters (see eq. (21)); the latter is the magnitude of
feedback loops (see eq. (22)). On Panel (a), blue lines correspond to expected temperatures (Eo(Zar2100)), and orange lines
correspond to temperature swaps (Toéjzloo)- Panel (b) displays the fraction of the swap price that corresponds to climate risk

premiums, i.e., (Tos‘zmo —Eo(Tar2100))/ T(fz] oo- The grey squares, in the middle of the plots, locate our baseline calibration.
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This figure shows the difference between the temperature swap price of maturity 2100 (Tos,zloo’ see eq. (3)) and expected
temperature Eo(Tx72100). This difference is a risk premium; it would be equal to zero if agents were not risk averse. The plot
highlights that this risk premium non linearly depends on tp (the magnitude of climate related disasters, see eq. (21)). The two
dashed lines are obtained for two different values of the magnitudes of feedback loops (ty, see eq. (22)); the solid line uses our
baseline (calibrated) value of py. The vertical dashed line locates our baseline (calibrated) value of up.
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Figure 5. Conditional distribution of future temperatures (swaps versus physical)

(a) — Trajectory of atm. temperature (b) — Trajectory of atm. temperature including Risk—Premium
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Panel (a) displays the conditional distribution of future atmospheric temperatures. The shaded areas are 50%, 80%, 90%,
and 95% confidence intervals. The central blue line shows the medians of the distributions. The dashed lines indicates two
IPCC’s Representative Concentration Pathway (RCP) scenarios, namely RCP45 and RCP60 (see Footnote 38 for references).
The orange solid line in Panel (b) is the term structure of temperature swap prices (TOS7 1) that can be seen as risk-adjusted
distributions (see Footnote 24 for technical details regarding risk-adjusted probabilities). The shaded areas shown in Panel
(b) are 50%, 80%, 90%, and 95% confidence intervals, using risk-adjusted probabilities. Panel (c) shows the conditional
distributions of Tyr 2100 under the physical (blue) and risk-adjusted (orange) measures.

27/50



Figure 6. Price of digital options, with contributions of risk premiums
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This figure shows the prices of digital options (see Definition 3) for different strikes (7x) and maturities (x axis). More
specifically, the solid lines display, for different maturities (h), Dig; 5(Tx)/B: », Where Dig, j, is the date-f price of an option
providing the payoff 1,7, -7 ondate s+ h (see Definition 3) and B, , = E, (A, 441) 1s the date-t price of a zero-coupon
bond of maturity 4. The dashed lines show the probabilities that Ty7 4, > Tk. If agents were not risk-averse, then solid lines
would coincide with dashed lines; in other words, the deviations between solid and dashed lines reflect climate risk premiums.
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Figure 7. Conditional distribution of future carbon concentration (swaps versus physical)

(a) - Trajectory of carbon concentration in the atmosphere (b) - Trajectory of carbon concentration in the atmosphere including Risk-Premium
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Panel (a) displays the conditional distribution of future atmospheric carbon concentrations. The shaded areas are 50%, 80%,
90%, and 95% confidence intervals. The central blue line shows the medians of the distributions. The dashed lines indicates two
IPCC’s Representative Concentration Pathway (RCP) scenarios, namely RCP45 and RCP60 (see Footnote 38 for references).
The orange solid line in Panel (b) is the term structure of temperature swap prices (M({ 1) that can be seen as risk-adjusted
distributions (see Footnote 24 for technical details regarding risk-adjusted probabilities). The shaded areas shown in Panel
(b) are 50%, 80%, 90%, and 95% confidence intervals, using risk-adjusted probabilities. Panel (c) shows the conditional
distributions of M4 100 under the physical (blue) and risk-adjusted (orange) measures.
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Figure 8. Conditional distribution of future global sea level (swaps versus physical)

(a) — Trajectory of global sea level rise (b) — Trajectory of global sea level rise including Risk—Premium
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Panel (a) displays the conditional distribution of future global sea level. The shaded areas are 50%, 80%, 90%, and 95%
confidence intervals. The central blue line shows the medians of the distributions. The dashed lines indicates two IPCC’s
Representative Concentration Pathway (RCP) scenarios, namely RCP45 and RCP60 (see Footnote 38 for references). The
orange solid line in Panel (b) is the term structure of temperature swap prices (H(i ) that can be seen as risk-adjusted
distributions (see Footnote 24 for technical details regarding risk-adjusted probabilities). The shaded areas shown in Panel
(b) are 50%, 80%, 90%, and 95% confidence intervals, using risk-adjusted probabilities. Panel (c) shows the conditional
distributions of Hj199 under the physical (blue) and risk-adjusted (orange) measures.
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Figure 9. Social Cost of Carbon (and the contribution of risk premiums)

(a) — Social Cost of Carbon (SCC) (b) — Share of risk premium in SCC
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This figure illustrates the sensitivity of the social cost of carbon (SCC, see eq. (37)) to up and . The former is the magnitude
of climate related disasters (see eq. (21)); the latter is the magnitude of feedback loops (see eq. (22)). On Panel (a), dashed
lines correspond to the SCC that would prevail under the expectation hypothesis, i.e., if agents were risk-neutral. Panel (b)
displays the fraction of the SCC corresponding to climate risk premiums. The risk premium is given by the difference between
the risk-adjusted prices (in orange in Panel (a)) and the price that would prevail under the expectation hypothesis (in blue in
Panel (a)). The grey squares, in the middle of the plots, locate our baseline calibration.
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A Model

A.1 Exogenous equations
Carbon intensity:

O = Gt—l(l +go,t)7 with g6, = gc,t—l(l +5o)5~

Emission reduction rate:

1, = min [exp (— ’9a,opz| + leb,opt| xt):1],

(11)

(12)

where ‘Oapp,] > ‘Obppt‘ T*, with T* = 12. This last inequality ensures that complete mitigation is not

obtained before 2080 (7" = 12).

Backstop price:
BP; = pback(1 — gback)' ™.

Adjusted cost for backstop:

BP;c;

BC, — — "t
"7 1000 x 6,

Exogenous land emissions:
ELand,t = 80(1 —P)t_1~

Exogenous radiative forcings:

Frv — Po + %(m —@o)(t—1) ifr <18 (r= 18 corresponds to 2100)
EXE= o ifr>18.

Abatement costs:

A = 12BC,.

A.2 Endogenous equations
Output growth:

Ay, = Uy + OyN; — Dy,

where 1), follows a Gaussian vector autoregressive process of order one:

Ny =P +&py, with Var(en,) =Xn; =1Idy, xn,-

Consumption growth (equivalent to (9)):

1= A
ACt = MUy + OyTys — D, + lOg 1—/\1 .
— A

(13)

(14)

(15)

(16)

7)

(18)

(19)

(20)
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It can be noted that Ac; = Ay, + Alog(1 — A;).

Industrial Damage function:

D=1 (ﬁé’)) —MED) TAT,r—hHD) ;

21

where Y denotes the gamma-zero distribution (Monfort et al., 2017). This distribution features a Dirac

mass at zero; specifically, the probability of having D, = 0 is equal to exp(—/

Persistent Damage to Nature function:

N=" (Z_Z]Vt—l +€(()N) +£§N)TATJ—17“N) .

Industrial emissions due to human activity:
Epay =K [1+7:],
with
)
K =0y (1 —py)qoexp | t |ty + Ecy ,

and

Total emissions (equivalent to (8)):

é? = ELand,t + Elnd,t +N;.

Radiative forcing (equivalent to (6)):

Mar; 1 —my

loo(1 Mp T
(Og( o)+ 1 +myg

t:

T
F .
log(2) ) + rEx: + OFNF;

Carbon cycle - carbon concentration increase (equivalent to (7)):

Mar, ] [ou=1-0n  ¢n=nid 0
Myp, | = P12 P =1—00— 05 @n=pnid
Mo, L 0 023 P33 =1—03
[0.88 0.196 0 Mz s [6a
= 0.12 0.797 0.00147| [Myp,_1 | +=——| 0 |,
| 0 0007 0.99853] [Mpo,_y| 9P| 0

(()D) - €§D) TAT 1—1)-
Mar -1 5 i1
Mypi—1| +5—=| O

’ 3.666
Mros—1 0

(22)

(23)

(24)

(25)

(26)

27)

(28)
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Temperature increase in the atmosphere (equivalent to (5)):

Tury =Tar—1+ & {Fz - %TAT,z—l —& [Turs—1 — Troy—1] } . (29)
Temperature increase in the ocean:

Tros=Trog—1+ & {Tar—1—Tros—1} - (30)
Sea level increase (equivalent to (10)):

H; = H;—1 + 5asar (Tar — To s) + bsar ATar. (31
A.3 Agents’ preferences

We consider an agent featuring Epstein and Zin (1989) preferences, with a unit elasticity of intertemporal
substitution (EIS).*> Specifically, the time- utility of a consumption stream (C;) is recursively defined by:

log (Esexp [(1 = Y)ur+1]), (32)

0
U — (1—5)Ct+1

where ¢; denotes the logarithm of the agent’s consumption level C;, 6 the time discount factor and 7y the
risk aversion parameter.*°
We assume that Ac; = ¢; — ¢, is affine in X;. Formally:

Acy = Ueoy+ Hé@Xt; (33)

where U, 1S a deterministic process. Moreover, we assume that X; admits an exponential affine log-
Laplace transform:

%(H,X[) = log]E[ (eXp(M/Xt+1)) = Ott(u) +ﬁl(u)/Xl7 (34)

where functions a; and b, are deterministic.
Appendix I1.1 shows that, in this context, the s.d.f. is given by:

Misr1 = exp|—(nos+ TI{,;Xt) + T X1 — W (M, Xe) ] (35)

where the vector of prices of risk 7; as well as 1o, and 1 ; are deterministic objects whose computation is
detailed in Proposition 9 (Appendix I1.1).

B Calibration

Most of the model parameters are directly borrowed from the literature (see Table 3), and in particular
from DICE16 (Nordhaus, 2017). Additional parameters, that are more specific to the model used in this
paper, are calibrated in such a way as to make the model-implied dynamics of our model consistent with

45Using a unit EIS facilitates resolution (Piazzesi and Schneider, 2007). In an IAM context, Hambel et al. (2021) also work
under the assumption of a unit EIS. This value is however slightly below the lower bound of the 90% confidence interval found
by Schorfheide et al. (2018). Daniel et al. (2019) take an EIS of 0.9.

46Eq. (32) results from a first-order Taylor expansion around p = 1 of the general Epstein and Zin (1989) recursive utility

1—
defined by: u; = ﬁ log ((1 —8)C P + 8 (E; [exp{(1 — ')/)Mt+1}])ll;'> , where p is the inverse of the EIS.
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different moments found in the literature (see Table 1). In practice, this is achieved by minimizing a loss
function expressing the deviation between targeted and model-implied moments. Formally, define by y
the vector of targeted moments, by 6 the vector of (free) parameters, and by y(6) the model-implied

moments. The calibrated parameters 6 solve for the following optimization problem:
6 = argmin (7 - y(6))'Q(y - y(0)), (36)
6

where Q is a diagonal matrix whose diagonal entries are weights associated with the different moments
we consider. Alternatively put, (v — y(60))'Q(y— y(0)) is a loss function that is minimized for 6 = 6.
Table 2 shows the parameters resulting from this moment-fitting approach.

Table 1. Targeted and model-implied moments (in 2100)

Moment Target Model-implied Source
Expectation of GMST 2.75°C 2.65°C RCP4.5+RCP6.0
Standard deviation of GMST 0.25°C 0.25°C RCP4.5+RCP6.0
Expected contribution of FL to GMST 0.25°C 0.24°C Burke et al. (2012)
Expected increase in cumulated emissions due to FL 188 GtCO, 202 GtCO, Burke et al. (2012)
Linear regression slope of cumulated damages on GMST —-0.12 —0.13 Burke et al. (2015b)
Long-term rate target 1.00% 0.99% US Treasury

Note: This table compares targeted and model-implied moments, after having minimized a loss function that reflects the
distance between these two sets of moments. Resulting parameters are shown in Table 2. All moments are for 2100 and are
conditional on the information available on date t = 0. FL stands for “Feedback Loops” (see Section 4). Numbers for FL.
targets are in line with alternative estimations (Schaefer et al., 2014). Temperatures anomalies in Representative Concentration
Pathway (RCP) scenarios are expressed relative to the 1850-1900 baseline period (IPCC, 2014). RCP scenarios are based
on Clarke et al. (2007); Smith and Wigley (2006); Wise et al. (2009); Fujino et al. (2006); Hijioka et al. (2008). For details
regarding the long term rate target, see Footnote 39.

Table 2. Estimated parameters

Parameter Notation Equation Value Unit/Note
Size of disasters Up 21 7.52 %
Constant term in damage specification KOD 21) 0.00

Slope coefficient in damage specification é’]:’ 21) 0.17

Size of carbon releases Un 22) 29.93 GtCO,
Constant term in carbon-release specification 68’ 22) 0.10

Slope coefficient in carbon-release specification 611\' (22) 0.05

Auto-correlation of carbon releases PN 22) 0.02

Standard deviation radiative forcings shock On.f (27) 0.51

Note: This table presents the parameters obtained by minimizing a loss function measuring the distance between model-implied
and targeted moments (see Table 1).
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Table 3. Calibrated parameters (period = 5 years)

Parameter Notation Equation Value Unit/Note Reference
Average growth rate (if Ty7 = 2°C) ty — up (€5 +20P)  (18) 10% per period (5 years)
Standard deviation of the consumption growth innovationo, (18) 0.025
Average for approximation term mo 27 % —
Rate of preference for present o (32) 0.95
Risk aversion Y (32) 7
Carbon emissions from land 2015 & (15) 2.6 GtCO; per year DICE2016
Decline rate in land emissions (Eq. 15) p (15) 0.115 per period DICE2016
Equilibrium concentration in atmosphere mateq (28) 588 GtC DICE2016
Equilibrium concentration in upper strata mueq (28) 360 GtC DICE2016
Equilibrium concentration in lower strata mleq (28) 1720 GtC DICE2016
2015 forcings of non-CO, GHG & (16) 0.5 Wm-2 DICE2016
2100 forcings of non-CO, GHG 0 (16) 1 Wm-2 DICE2016
Preindustrial concentration of carbon in the atmosphere Mp; (27) 588 GtC DICE2016
Climate equation coefficient for upper level & (29) 0.1005 DICE2016
Transfer coefficient upper to lower stratum & (29) 0.088 DICE2016
Transfer coefficient for lower level & 30) 0.025 DICE2016
Forcings of equilibrium CO, doubling T 27)+(29) 3.6813 Wm-2 DICE2016
Equilibrium temperature impact Y (29) 3.1 °C per doubling CO, DICE2016
Decline rate of decarbonization Oc (11) —0.001 per period DICE2016
Carbon intensity 2010 Lo} (11) ﬁ kgCO; per output 2005 USD 2010 DICE2016
o1l —Ho
Industrial emissions in 2015 e (00) + (&3015) 35.85 GtCO, per year DICE2016
Initial world gross output in 2015 q0 (24)+(0p) 105.5 trillions of 2010 USD DICE2016
Initial emision control rate in 2015 Uo (12) 0.03 DICE2016
Initial growth of sigma 8o,1 (11) —0.0152 per year DICE2016
Initial cost decline backstop cost gback (13) 0.025 per period DICE2016
Cost of backstop pback (13) 550 2010$ per tCO, 2015 DICE2016
Exponent of control cost function 6, (14)+(17) 2.6 DICE2016
Persistence of the radiative forcings shock P (19) 0.95
Global surface temperature weights [Ta7, T10] weightst [0.6,0.4] IPCC
Base Temperature (sea level equilibrium) To,s 31 —0.375 °C, Baseline [1951-1980] Vermeer and Rahmstorf (2009)
Coefficient attached to ATy Ty s) asat 31 0.0008 m per °C per year Vermeer and Rahmstorf (2009)
Coefficient attached to ATyr, bsar (1) 0.025 m Vermeer and Rahmstorf (2009)

Note: This table presents the parameters used in our baseline model. DICE16 refers to Nordhaus (2017). IPCC refers to [IPCC (2014, Table 2.1)



C Social cost of carbon

In this subsection, we examine the model-implied Social Cost of Carbon (SCC) and the influence risk
premiums have on this measure of economic costs of carbon emissions. Following the literature, we define
the SCC as the marginal rate of substitution between atmospheric carbon concentration and consumption,
that is:

aU; dU;

“oMar,/ 9C ©7)

SCC, =

In our framework, the SCC is available in closed-form (Online Appendix II.3). Table 4 shows how our
baseline SCC estimate (of $88 per tC) compares to those obtained in alternative studies.

Figure 9 depicts how the SCC depends on the two key parameters that are tp (magnitude of climate-
related disasters) and up (magnitude of adverse feedback loops). On Panel (a), the orange lines show
the model-implied SCC. We observe that the SCC is particularly sensitive to the average disaster size
(Up). On the same panel, the blue lines indicate the SCC that would prevail if agents were not risk-averse.
Our results suggest that risk aversion has a strong influence on SCC or, alternatively put, risk premiums
account for a large share of the SCC. For the baseline calibration of up and uy (see the central point of
the plot), risk premiums account for more than half of the SCC. Panel (b) further shows that this share
positively depends on both up and .

[Insert Figure 9 about here]

Table 4. SCC comparison

Study SCC (U.S. $ per tC) Tipping points Stochastic IAM Discount Rate
Nordhaus (2017) 113 1.5%
Stern (2007) 312 0
Jensen and Traeger (2014) [40;70] v 1.5%
Barnett et al. (2020) [240;411] v 1%

Cai and Lontzek (2019) [40;100] v v 1.5%
Bansal et al. (2016) [4;104] v v 1%
Lemoine and Traeger (2014) [37;55] v v 1.5%
This paper 271 v v 1%

Note: This table reports different SCC estimates. While cited studies differ along many dimensions, the last three columns
highlight particularly important ones.
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—Online Appendix—

Climate Linkers: Rationale and Pricing

Pauline CHIKHANTI and Jean-Paul RENNE

| State vector’s conditional moments and Laplace transform

.1 Rewriting the model in matrix form

We decompose the state variable, denoted by X;, as follows:

CAe ]

Yt

’ N:[2x2]
My, . andW,=| D, |, 11
Mo,

X; = { Z }7 where Z; =
) Nl‘

W;

t t t
where Cump; = =Y, D;, Cumg; =Y, &, and ¢; = Cump.; = Y| Ac;, .

The state variable’s dynamics is presented in Appendix A. This dynamics of Z; can be concisely
written in matrix form:

Ay Zi = AZy + @, + O°W, (12)
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and
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Pre-multiplying both sides of (I.2) by (Aj,) ™', we obtain:

Zy = A1 Z 1+ s + W, (I.3)
with

A= (A5) AL, oo, = (Ag,) gy, o= (AG,) 0
.2 Laplace transform of W,

Proposition 1. The Laplace transform of W;, considering uy = [u% ,up,uy|’, is given by:

wiv (uw) == B, (expluy Wi11]) = exp(ow (uw) + Bw (uw)'X;)  Vt, (1.4)
with
_ uni (D) (N)
aw(uw) = “5t+ il T o o
010x1 (L5)
D N :
Buluw) = | @y | 507+ G
2x1

where ZgN) is such that ZENN X, — Z—%Nt + E(IN)’Xt.

Proof. The shocks being conditionally independent, and using the Laplace transform of the gamma-zero
distribution (Monfort et al., 2017) used to model D; and N; (see (21) and (22)), we have:

[, (CXP (M{/VWHI)) =E [CXP (M% Mer1 +upDyy1 + MNNt—H)]
= exp (u'nCI)n,) E; (exp (u;,, ens+1)) Er (exp (upPp 1)) Er (exp (unPy41))

/
/ Unly UpHp (D) | p(D) Uy iy (N) | p(N)s
= o 14 07X, — |/ 07X,
cxP I/ln nt+ 2 +1—MD[.LD<O + 1 l>+1—uN,LlN<O + 1 t>:|7
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which gives the result. [

1.3 Simple and multi-horizon Laplace transforms of X, = [Z/,W/)/
In Proposition 2 and Corollary 1, we consider a linear combination of the components of X, |, namely
WXii1 = uyZiy +uyWigy (e u = iy, uly]).

Proposition 2. One-period-ahead Laplace transform of X, = [Z/,W/)’. We have:

Wi (u) := By (exp('X,41)) = exp(oy (u) + By (u)'X:),
with
o (u) = uywo, 1+ ow(uw + @ uz)

Al 1.6
ﬁt(u) — |: 7 1t+1 uz :| +ﬁW(uW+a)t+]uZ) ( )
(np+2)x1

Proof. We have:
E:(exp(u'X;+1)) = E[exp(uzZes1 + uyy Wit )]
E, (exp(uz(A141Zt + @0 4+1 + Ow 1 Wig1) + uwWit1))
= exp [uz (A1 412+ 00,41) | B [exp ({uyy + uz @1} Wis1)]
= ¢eXp |:M/Z(A]7t+]zt + CO()J+1> + o (l/lW + a)t/+1uz) +BW (MW + a)[/+1uZ)/Xti| 5
which gives the result. [

Proposition 3. Multi-horizon Laplace transform of X, = [Z/,D;]'. We have:

h
I//,()(ul,...,uh) = E(explti Xt1+- -+ uXipn)

= €xXp |:II/(()7h[)(u17"'auh)+llfl(fi)<ula"'7uh>/Xt:| ) (17)

where, for all t and for h > 1:
(h) (h—1) (h—1

II/()J (Ml,...,uh) = WOJ-Q—l (u27"'7uh)+al‘ <M1+Wl7t;1)(u27"'7uh))

()

B (1.8)
‘l’1,; (Lt],. X ,l/th) = ﬁl <l/t] + Wl(f;_g_l])(u% 000 ,l/lh)) )

and with, for all s, l//(g}s)(u) o (u) and l[/1 3 ( ) = Bs(u), functions o and By being defined in (1.6).

In practice: Using the notation U, = l//l( Z)Jrh y(Uh—kg1,. .. up) [with, notably, Uy = l;/l(ht)(ul, cesup)],
the second equation of (1.8) implies that, fork>2:

Uk = Br+h—k(p—k+1+Uk—1),

which allows to compute the Uy (k = 1,...,h) by backward recursions, starting from U; =
Biin—1(up). Oncethe Uy (k=1,... h) are computed, the first equation of (1.8) gives l;/é}? (ty,y. .. up).
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Specifically, for h > 1, we have:
h
II/((),,)(M, costty) = 0 (uy +Up—1) + 01 (w2 +Up—2) + -+ 0 p2(up—1+Ur) + 01 (un).

Proof. We have:

Et(eXP[”/lXtH +oe M;’le-i-/’l])
= K (EH-] (eXP[MIIXtH +eeet ”;:Xt+h]))
(

= E (exp [MIIXH-I + W(gf;;ll) (l/lz, o ,l/th) + Wlﬁ;? (l/lz, X 7uh)/Xt+l] )
- _ _ '
= ©eXxp |:ll/(§{,;+]1) (l/lz, o 7uh) + 0 <M1 + Wl({/:+11) (l/lz, o 7uh)> + Bt (I/t1 + llll(f;+]1) (u27 e 7”/’1)) Xt:| )

which leads to the result by induction. 0

Corollary 1. (Simple) multi-horizon Laplace transform of X; = [Z], D,|'. Using the y notation
introduced in Proposition 3 (via equation 1.7), we have:

w0, ..., 0,u) = By(exp(u/X; 41)) = exp [ar s (u) + by (u)'X] ,
where b, j(u) = Bro---oBik—1(u), and

A= Opyn—1() + O 1p—2(brpn—1,1 () + -+ 11(bry2p—2)) + 04 (byy1p-1(u)),
where functions o and B are defined in (1.6).

In practice: Using the notation U, = Wl(kt)+h—k<0’ ...,0,u) [with, notably, Uy, = wl(ﬁ) 0,...,0,u) =

by y(u)], the second equation of (1.8) implies that, for k > 2:

Uk = Brsn—k(Uk—1),

which allows to compute the Uy (k= 1,...h) by backward recursions, starting from Uy = B, 1,1 (u).
Once the Uy (k =1,...,h) are computed, the first equation of (1.8) gives a, ,(u) = l[/(gi?(ul, ooy Up).
Specifically, for h > 1, we have:

a; p(u) = & (Up—1) + Q1 (Up—2) + - + 012 (Ut) + 0 p—1(u).

1.4 Conditional mean and variance of W,

Proposition 4. The conditional mean of W, 1, given the information available at t, is given by:

E: (Wei1) = o) + By X,, (19)
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where

( 0(10+nn)><1
Ty = woty” |
|4
[010x10  O10%n, O10x1 O10x1 310x13 310><13
1 0., %10 Puyxny Onpx1 Onpxi nyx13 nyx13
B’ = 0110 Olnxm.,n 0 0 [T E?D)’ s Oln><13
[ 01x10  O1xp, 0 PN 01413 E&N)’

Proof. We have W, = [n/,D,,N,]', where the dynamics of 1, D, and N; are respectively defined by (19),

(21), and (22). We have:

o1,
q)nt+8n,t+1 (D) (D)
EWis1)=E | Dy |=]| Hp (fo 4 ’Xr)
Niyi ot -+ (57 + V7%,
which gives the result. U
Proposition 5. The conditional variance of W1, given the information available at t, is given by:
2 2
Vec (Vart(ult+1)) = (X‘gv) + ﬁV(V )Xt, (110)
with
( _Id,,n xny 0 0
Ot‘(;) = Vec O”n xny ZLLgE(()D) 0
| Oppny, 0 203
Ony 0 0 Opny 0 0
By = Vee| |Ouxn, 203 0] | 6PV 4Vee [ |Onysn, 0 0 | ]2V
\ Onysny O O Onny 0 2013
where ZEN) is such that ZEN)’ X, = Z_th + KEN)’XI.
Proof. The shocks being conditionally independent, we have:
[Var,(1;41) 0 0
Vart (VV[+1) = 0 Vart (DH—I ) 0
L 0 0 Vart (NI—H )
_Idnn Xy 0 0
| Ouyn, 203 (67 447X, 0 |
[ 00, 0 20} (BN + 0" + M%)
[

which gives the result.
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1.5 Conditional mean and variance of X, = [Z/,W/]’

Proposition 6. The conditional mean of X;., given the information available at t, is given by:

E(X4n) = o, +BYX, (L11)
where
1n _ h—1
Oy = Hxrh—1 Py prn—1Mx +n—2+ -+ Py L Hx s,
ﬁ,(;,) = Pxin1Pxs4n—2---Pxy,
with
0o, r+1 010x10 W11 } (1)
= ’ + oy, and
H [0<n,,+2)x1] {%wz)xlo Id (s, 12)x (g v2)]
By, :[ Al 010 (ny+2) ]Jr[ 010x10 41 }[5(1).
’ 001, +2)x10 Omp+2)x(nn+2)]  [On+2)x10 Mny12)x(ny+2) |

Proof. Using (1.3), we have:

X\ = { Ziq ] _ {ALtHZt‘i‘w‘%}t[i‘f’wzﬂmﬂ ] 7 (L12)

and therefore

A1t+IZt+a)Ot+1:| { 010x10 041 ] (1) | ()
E(X1) = | " oy oV 4 gWx,).
(K1) { 00, +2)x1 000, +2)x10  Td(n, 12)x (ny+2) (o + By X,)

which gives the result for 7 = 1.
The law of iterated expectation implies that the conditional expectation E,(X; ;) is given by:

E/(Xi1n) = Ux s+h—1 +Px rpn—1E (X1p—1),

which leads to the result. O]

Proposition 7. The conditional variance of Xy, given the information available at t, is given by:

Ve (Var,(X+1)) = o) + B3 X,, (L13)
where
2 2 2 1 1 1 2
{ O‘{é; = at((er))hl,l Jr(fzgzl,l (()it;h)l + (ﬂér}al,l ® gt)%n) at(,h)fl (1.14)
By = BBt (ﬁH—h—l,l ® Bt-i—h—l,l)ﬁz,h—l ;
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with

I, T al

B (1.15)
= (I,®T) B,

—

BN yQ,—\

G
~~

W41
h I, = )
WRere S {Idmwz)x(nwz)}

Proof. Let us start with the case 7 = 1. Using (I.12), we have:

Wr 41

] Wt+l) =T, Var, (W)L 4,
(nn+2)x (ny+2)

Var,(X;41) = Var, < [ 1d
where Var; (W, 1) is given by (I.10). This implies that:

Vee (Vary(X;1)) = (Tt @ Ty )Vee (Var (W) = (T @) (o) + 87X )

where the last equality is obtained by applying Proposition 5. This proves (I.13) for # =1 (using [.15). Let
us make the inductive hypothesis that (I.13) holds for 4 — 1. More precisely, assume that, for any date #:

Vec (Var(Xy1p-1)) = t(i)_l + Bt(i)_ X
The law of total variance yields:
Var(Xi+n) = B (Var, -1 (Xiqn)) + Var (Brpp—1 (Xi41))-

We get:

2 2 1 1
Vec (Var, (X[+h)) = ]EI < al‘(-i-)h—l,l —+ ﬁl(-Fil—l,IXt"'h_l ) + Vec (Var, ( (Xl(+)h_171 + Bt(-i-gl—l,le'i'h_l >)

using the inductive hypothesis using?l.l 1)

2 2 1 1 1 1 !
= az(—i—)h—l,l +ﬁt(+%z—1,1 (ixt(7h)—1 +:Bt(7h)—1xi> + Vec (ﬁt(-i—}z—learf(Xt-l-h—l)ﬁt(-&-%l—Ll )

using;zl. 11)

2 2 1 2 1
= at(+)hfl,1 + ﬁt(Jr%zfl,l at(,h)fl + ﬁtgrlzfl,lﬁz(,h)fle +

1 1
(ﬁt(+3’lfl,l ® ﬁr&;zq,l)vec (Var(Xi41))
_ 2 (2) (1) ) (1)
= O 11 T B 11 B B X
(1) (1) (2) (2)
(Bin11©@Brn 1) (@ + B Xe),
using (I.13) forh = 1.
To summarize, we have shown that: (I.13) is satisfied for 4~ = 1, and we have shown that, if it is
satisfied for &7 — 1 (with & > 2), then it is also satisfied for 4 (see equation [.13). By induction, it comes
that it is satisfied for any & > 1.

]

In practice, in order to use (I.14), we need:
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. (xt(i)k 1 ﬁl(& , for all k of interest, using (I.15);
1 1 :
¢ at(ﬁgl = HX t+ks B;(+3< | = Px 4« for all k of interest;

. Ott(}{), Bt(}c) for all k of interest, using (I.11).

Il Pricing
Il.1 Solving for the s.d.f.

Proposition 8. In the context described by A.3, i.e. under (32), (33) and (34), and if, for t > ty:

M0 = a0y Mt = M1y He 0 = He 05 Hety = Ue 1, O(o) = a(e) and (o) = (o),
then we have:

Ur = Cr+ M 00 + My 1 (X, (IL.1)
where

Mo = O(Mu0s+1+ Me0r+1)+
a{(l _’}/)(Hu,l,t+1+uc,l,t+l)} (112)

1
Mue = ﬁt{( V) (M1 041+ Me g 0+1) 3

and where, fort > to, W, 1 solves:

5
M1 = mﬁ{(l — ) (M1 + He,1) }s (I1.3)

and [, o s satisfies:

o 3
.u'u,O S.uc0+ (X{( )(,uu,l +.uc,1)}- (H-4)

Proof. We start by positing a specification for the log-utility of the form of (II.1). Our objective is to
determine whether a utility of this form can satisfy (32), and the conditions that then have to be satisfied
by w0, and p, 1. Under (II.1), we have:
Erexp[(1—=Y)ur1] = Erexp [(1 —Y)(Cr1+ Mu0+1+ “1:71,t+1Xt+1):|
= Erexp [(1—7)(c +Acrt + o411+ “;,I,I—HXI—Q—I)}
= exp[(1 = ¥)(cr + Mu00+1 + Heo41)] X
E; exp [(1 — V) (M1 141+ ,uc,l,t+1),Xt+1]
= exp[(1—¥)(cr + tuos+1 + He0s+1)] X
exp [at{( —¥) (Mu, 101+ Be1041) F 4+ B (1= 9) (M 1041+ He1041) } Xt]
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Substituting for E,; exp [(1 — 7)u;41] in (32) gives:
w = 4+ 8(MUu0s+1+ Heos+1)+

m(%{( =) (a1 41+ Me1041) F B (1= 7) (M, 1,041 + Hey1,041) } Xt)

Therefore, for u; to be equal to ¢; + 0 + ,Ll,:JJXt, we need to have (I1.2).

Equations (I1.3) and (I1.4) are obtained by setting ;1 = My.1; = Hu1 41 and t, 0 = Uy 0 = Hu01+1
in (I1.2). O

In practice, we start by solving (II.3), which can be done by using the Gauss-Newton algorithm. This
yields u, 1. Then, we obtain u, o by (I1.4). Once 1, 04, (= Hu0) and W, 14, (= Wy,1) are known, one can
deduce the previous y, ;,’s by backward computations. Specifically, knowing L, 1 ;+1, one can deduce
M1, by using the second equation of (I1.2). And knowing L, 0,1 and Ly 1 41, the first equation of (I1.2)
yields p, 0.

Proposition 9. We have:

My i1 = exp[—(Mo, + N1, X)) + 7/ X1 —oy(m) — B,(n,)’XL],

=y (m), ;;e Prop. 2
with

m o= (1— Y)!lu,l,t+1 — YHe1,0+1
Moy = —1ogd+ Ueosr1+0{(1 =) (K141 + Me141)} — 0 () (IL.5)
My = B{(1—7) (W11 + Hea+1)} — Br(m),

where the (recursive) computation of Ly 1 ;1 results from Proposition 8.
The short-term risk-free rate, that is —10gE; (4} 1+1), is given by:

Tt = TNoy ‘f‘n{,tXt-

Proof. When agents’ preferences are as in (32), the s.d.f. is given by (e.g. Piazzesi and Schneider, 2007):

o (G - exp[(1 — ¥)uy41]
Mri1=0 ( G ) E;(exp[(1 —Y)ur41])

Therefore, we have:
log ;11 = logd —Aci1+ (1 —7)ur1 —logE,(exp[(1 — Y)ur41])
= 1ogd —Acri1+ (1 =) (e + A1+ o1+ My 11 Xi1)
—(1=y)(cr + Mu0,041 + He04+1)
— 0 { (1= 9) (M1 141+ Hera+1) = BA(I =) (Mgt 411 + Me 1) Y X
= 10g6 — te 041 — 04 { (1 =) (M1 41 + He1041) }
/
+ ((1 — V) Mu,1 141 — Wc,1,z+1> X1 — BT =) (M1 1+ Me 1 001) Y X,
which leads to the result. O]
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1.2 Asset pricing

Proposition 10. Consider an asset whose payoff, settled on date t + h, is exp(®'X; ). The date-t
price of this asset is given by:

0" (@) :=exp (@f}) (@) + 9/ (@)'X,).

where

{‘P(()ﬁ)(a)) = Moy — 04(M) =+ —Mosin- 1—Oﬂt+h—1(7fz+h—1)+‘/’(§?(”1""’uh) (IL.6)

(Pl({/;)(a)) = —MNit— ﬁf( )‘Hl’];)(ul» l/th),

where the 1o;’s, the N ,’s and the T,’s are defined in (11.5), where functions l[/(()}? and %(l;) are
defined in (1.8) and where:

U = { Motk = Bk (Tek) + i for k=1,....h—1, (IL7)

Tik—1 1+ O for k=h.

Proof. The price of this asset is given by:
[ (v///z,ﬂrh eXP(w/Xz+h))
= K {exp (— [Nos + 04 (m) + {m1, + B (m) }'X; ]
— [Mos+1+ 01 (Tt) + {net + Bt () Y X ] + 7/ X

— [Mosn—1 + Cn1 (Trn—1) + {M g1+ Brsn1 (Tsn—1) Y Xesn1 | + o Xen—1
+7rt/+h71Xt+h + w/Xt+/’l) }
= exp(—Nos— % (m) = —MNosrn—1— Crn—1(Trn—1))exp(—{N1; + B (m)}' X;) x
h h
exp [l//(()’t)(ul, oo up) + wl(yt)(ul,...,uh)’X,] ,

where functions l/l(ght) and l[/l(}? are defined in (I.8) and the u;’s are given in (I1.7). 0

Corollary 2. Consider an asset whose payoff, settled on date t + h, is @'X; . The date-t price of
this asset is:

_n®
e—0 E

where the computation of @t(h) (w) is given by Proposition 10.

Proof. The derivative of exp(x®'X; ) w.r.t. x is @'X, ,exp(x®'X, ). Evaluated at x = 0, this derivative
is equal to ®'X;j,, which leads to the result. 0
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Corollary 3. Consider the temperature-indexed bond defined in 2. Denote by @r the vector that is
such that T, = a)'TX,. The date-t price of this TIB is:

(1= 279%™ (0) + 29" (7).

where the computation of (p,(h) (0) and @t(h)(w) are respectively given by Proposition 10 and

Corollary 2.

Proposition 11. Consider an asset whose payoff, settled on date t + h, is:

exp (0'X4n) Ligx,, ,<b}-
The date-t price of this asset is given by:

(k) w (h) . »
A(h)(w’a’b) _ ¢ (@) l/ Im[@,"” (@ + iax) exp( lbx)]dx,
0

L 2 T X

(n)

where Im(x) denotes the imaginary part of x and where function @, is defined in Proposition 10.

Proof. This is a direct application of Proposition 2 (equation 2.12) of Duffie et al. (2000). U

Corollary 4. Consider an asset whose payoff, settled on date t + h, is:

!/
O Xethl{ax,,,<b}-
The date-t price of this asset is:

(h) _ )
(pt(h)(w,a’b) — 111’1'1 (pl‘ (8w7a7b) (pt (O,Cl,b),
£—0 £

where the computation of @(h) (w,a,b) is given by Proposition 11.
Proof. The proof is the same as that of Corollary 2. [

1.3 Social cost of carbon
This subsection describes the computation of the Social Cost of Carbon (SCC), as defined by eq. (37).
As shown by Proposition 8, with preferences defined by (32), we have:

u, = log(Us) = ¢ + Hous + .u{,u,tXtv
or
U = Crexp (Hous + 11 4, Xr) - (IL8)
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According to eq. (37), the SCC is given by:

aU; dU;

SCCr=—=—+—/ ==+
! aMATJ aC;

Given (I1.8), we have oU; /dC; = U, /C; and 0U; / OMar, = 1 41,6Us (because Mar, is the 6 component
of X;, see (I.1)). Therefore:

SCCr = =i us,6Crs IL9)

In other words, agents are willing to accept an increase in M7, of one unit if they are given an extra
consumption of |1ty .+ 6|C;.

According to the World Bank, from 2015 to 2019, global final consumption expenditures (Cy) were
of $299tr (299 x 10'?). Therefore, if Myt s expressed in GtC, the social cost of carbon, expressed in
dollars per ton of carbon, is given by:

|1 06l X 299 x 10" /10° = |1y 41 6] X 299000,

Our framework also offers closed-form formulas for expectations of future SCCs. Indeed, using
eq. (I1.9), we get:
E (SCCrin) = [Hiuso

= |.u1,u,l,6
= |1 us6|CoEs (exp(@/X11))s

E;(exp(cr44))
CoE; (exp(Cumacyp)), where Cumacyp = Y Aci

where @, = [0,...,0,1] (see eq. I.1). This conditional expectation can be computed using Corollary 1.
Furthermore, since:

Liseciin<at = Wiuusslexperim <t = WlmusolCoexploptm <y =Ty - : ,
OcAr+h <108 Coltt u14h,6]

it comes that the cumulative distribution function of future SCCs can be obtained by Fourier analysis.
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