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Abstract

We estimate the risk premium for firm-level climate change exposure from 2003 to 2019. Ex-
posure is constructed from discussions of climate-related risks and opportunities in earnings
calls. When extracted from realized returns, the unconditional risk premium is zero. This
insignificant overall effect masks risk premium increases during the sample period, but with
a slump in the financial crisis. Forward-looking proxies deliver an unconditionally positive
expected risk premium, with subtle differences in the time series depending on the treatment
of tail risks and opportunities. When the underlying model uses variance as the sufficient risk
statistic, the premium gradually increases over time. When the model considers tails, the
premium declines after 2015, because investors now link climate change exposure to higher
opportunities and lower crash risk. This finding arises as the priced part of the risk premium
primarily originates from climate-related opportunity shocks rather than downside physical
or regulatory shocks.
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1 Introduction

Climate change poses huge challenges for financial markets. How should firm-level exposure to
climate-related risk and opportunities be measured? How are risk and return quantities affected
by climate change exposure? Which firms will benefit from climate change, and why? In light of
these challenges, significant resources have recently been allocated to develop the area of climate
finance to better grasp how the transition to a low-carbon economy affects financial markets.
Yet, this body of literature is still in its infancy, and additional evidence is needed to more fully

understand how climate-related risks and opportunities affect stock returns and risks.

Some first steps have recently been taken in this direction, using carbon emissions and ESG
scores as proxies for climate change exposure. Bolton and Kacperczyk (2021, 2020) demonstrate
the existence of a carbon risk premium, that is, stocks with higher carbon emissions earn higher
expected returns, and Ilhan, Sautner, and Vilkov (2021) find that firms with higher carbon
emissions exhibit higher tail risk. Engle, Giglio, Kelly, Lee, and Stroebel (2020) develop a
procedure to hedge climate change risks, using ESG scores by data vendors to measure firm-level
climate risk exposure. Survey evidence in Krueger, Sautner, and Starks (2020) also indicates that
institutional investors believe that climate risks, especially those related to carbon emissions,

have begun to be priced in financial markets.

The insights from these studies lay the foundation for further work, and the focus on carbon
emissions and ESG scores originates from the lack of broad firm-level exposure measures. How-
ever, this comes with limitations. Carbon emissions primarily capture downside regulatory (or
transition) risks but do not capture physical risks or climate opportunities. In addition, they re-
flect firms’ historic business models, do not allow researchers to distinguish between “good” and
“bad” emissions, and suffer from selection bias, as they are voluntarily reported (Matsumura,
Prakash, and Vera-Mufioz (2014)).! Further complications arise because some of the largest car-
bon emitters are also key innovators in green technologies (Cohen, Gurun, and Nguyen (2020)),
and some of them even issue green bonds to fund climate-friendly projects (Flammer (2021)).

Likewise, for ESG scores, a challenge is that they are only available for select firms, and that

1Some firms’ emissions are “good” in the sense of supporting the transition to a greener economy (these firms
are called “climate enablers”). Ramadorai and Zeni (2020) provide an initial analysis of future emissions by
examining planned emission abatement data.



they cover rather short periods of time.? In a recent review of the climate finance literature,
Giglio, Kelly, and Stroebel (2020) therefore highlight the lack of comprehensive measures as a

key impediment toward understanding the pricing of climate change exposure.

In this paper, we make significant progress toward overcoming this impediment. We show
how a broad measure of firm-level climate change exposure is related to stock returns and risk
quantities. Instead of relying on carbon emissions or ESG scores, we make use of an exposure
measure available for a broad sample of firms from 2002 to 2019. The measure is constructed
by Sautner, van Lent, Vilkov, and Zhang (2020) (hereinafter SVLVZ), and it is extracted from
conversations between analysts and management in earnings conference calls. The measure
captures risks and opportunities associated with climate change, and it is not subject to the
selection bias of prior measures. Intuitively, it reflects the fraction of the conference call discus-
sion that is centered on climate change topics. SvLVZ provide an aggregate measure of overall
climate change exposure, and three topic-based measures reflecting exposure to climate-related
opportunity, physical, and regulatory shocks. We relate climate change exposure to realized

returns, ex ante expected returns, and risk quantities capturing the entire return distribution.?

Why should climate change exposure command a risk premium? The reason is that the
effects of climate change on individual stocks are highly uncertain, and Barnett, Brock, and
Hansen (2020) provide a theoretical framework which demonstrates that this uncertainty should
be priced. Climate change uncertainty arises because it is highly unclear just how much global
temperatures will rise, and also because it is uncertain how strongly emissions must be curbed
to limit global warming. This in turn makes it difficult for investors to evaluate how indi-
vidual stocks will be affected by climate-related physical and regulatory shocks. Moreover, the
investment opportunities related to technological innovations facilitating the transition to a low-
carbon economy are also highly uncertain (e.g., investments into battery technology or carbon
storage). These considerations imply that the measure of overall climate change exposure, which
encapsulates all of these aspects, should be associated with a risk premium; the same should

hold for each of the three topic-based exposure measures.

2The same limitation holds for the carbon risk ratings that recently became available by ISS and Sustainalytics.

3The definition of “exposure” used in this paper follows prior literature. It is somewhat different from how risk
exposure (e.g., a factor beta) is defined in the asset pricing literature. Hassan, Hollander, van Lent, and Tahoun
(2019) provide a discussion of the relationship between these two areas of literature.



We answer three specific questions: First, how is climate change exposure — that is, the
attention market participants accord to climate-related topics during earnings calls — related
to realized and expected returns? Second, how does compensation for climate change exposure
evolve over time, both in terms of realized and expected returns? Third, which risk quantities
are associated with climate change exposure, and how do investors with different risk preferences

price such risks when configuring return expectations?

In tackling these questions, we provide results that improve our understanding of how climate
change affects financial markets. We begin with establishing a new empirical fact: Uncondition-
ally, that is, across the full sample, the realized risk premium for climate change exposure is
indistinguishable from zero. However, investors who buy stocks with higher climate change
exposure ezpect to earn a risk premium ex ante. We detected such an expected risk premium
using two approaches that exploit option-implied information but differ in terms of the assumed
investor preferences used to derive the risk premium estimates. The risk premium proxy by
Martin and Wagner (2019) assumes that variance is the sufficient risk statistic for investors —
that is, the risk premium is based on the second moments of the returns of the market and
of individual stocks. Somewhat differently, Chabi-Yo, Dim, and Vilkov (2020) assume that in-
vestors also consider extreme risks and opportunities, so their approach explicitly accounts for
returns’ higher-order moments in the risk premium estimation. In a nutshell, both approaches

use different pieces of information from the options market to estimate expected returns.

When considering time-series dynamics, we observe that the divergence between the realized
and the expected risk premiums is largely driven by a “crowding out” of the realized premium
during the financial crisis. Specifically, realized compensation for climate change exposure rises
steadily over the sample period, from zero in 2003 to 2% p.a. before the financial crisis. The
realized premium then declines sharply into negative terrain between 2007 and 2009, and it
subsequently resumes its upward trend until 2019 (with a positive premium since 2015/2016).
The patterns for the two proxies for the expected risk premium look different, relative to the
realized premium, and also relative to each other. For investors using variance as the sufficient
risk statistic (Martin and Wagner (2019)), the expected risk premium increases from an initial

level of zero to 0.5% in 2012, and it then plateaus (or slightly increases) around this level for



the next decade. Until 2015, this pattern is similar if we construct the premium for investors
also considering extreme risks and opportunities (Chabi-Yo, Dim, and Vilkov (2020)). How-
ever, we observe a remarkably different pattern after 2015: for investors with higher-order risk

preferences, there has been a steady decline in the premium since that year to zero in 2019.

What can we learn from these diverging patterns? An initial conclusion is that climate change
exposure has nuanced effects: the associated risk premiums exhibit non-monotone effects that
change over time depending on which investor risk preferences are assumed in the risk premium
estimations.? A second conclusion is that our understanding of how climate change exposure
affects financial markets requires a detailed analysis of how exposure affects risk quantities beyond
the second moment. A third conclusion is that we need to acquire a better understanding of

how climate change exposure maps to financial risk quantities since 2015.

These insights prompt us to explore in detail how climate exposure affects higher-order mo-
ments and tail risks, conditional on different time periods. We demonstrate that the dynamics
of the two expected risk premiums can be attributed to how investors map climate exposure into
variance and higher-order risks: beginning around 2015, investors started to associate relatively
smaller crash risks and relatively higher opportunities with climate change exposure. This real-
location of likelihood from left- to right-tail events reduces the required compensation for climate
exposure in the eyes of investors with preferences that take higher-order risks into account. We
capture these effects as our exposure measure reflects upside and downside aspects. Moreover,
these effects arise as large parts of the expected risk premium for climate change exposure — and
of the risks associated with this exposure — originate from climate-related opportunity shocks;
such opportunities are risky, as they require significant and uncertain investments. There is also
a positive risk premium effect of regulatory shocks, but overall, the effect of upside opportu-
nity shocks dominates that of downside regulatory shocks (we cannot detect a risk premium for
physical shocks). What are the implications of this for the two expected risk premium proxies?
Firms with better climate-related opportunities may command a higher risk premium because

of a higher expected variance (as we find for the proxy by Martin and Wagner (2019)). How-

“This conclusion is consistent with Bolton and Kacperczyk (2020), whose analysis also reveals nuanced effects
of the carbon risk premium over time and across countries.



ever, the proxy by Chabi-Yo, Dim, and Vilkov (2020) may be reduced to zero if higher climate

exposure means better growth potential and smaller downside crash risk.

This answer this leaves open the question of what happened in 2015, the year in which the
Chabi-Yo, Dim, and Vilkov (2020) proxy began its decline to zero. We offer two non-mutually
exclusive explanations. First, 2015 was the year of the Paris Agreement, and markets may
have in turn updated their views on the likelihood of the success of climate-related investment
opportunities; this should lower downside crash risk and increase upside financial potential for
firms with high climate-related opportunities.® Second, Azar, Duro, Kadach, and Ormazabal
(2021) document that since 2015, there has been increased climate-related engagement by the
“Big Three” (BlackRock, Vanguard, and State Street), which has lead to emission reductions.

This effect may in turn have reduced downside tail risks of firms with high regulatory exposure.

In this paper, we address two challenges identified by Giglio, Kelly, and Stroebel (2020) in the
analysis of how climate change affects asset prices. The first challenge is to obtain a firm-level
exposure measure, which separates between physical and transition climate risks and captures
climate-related upside and downside potential. The second challenge is the short time period
for which climate exposure data is usually available, and, importantly, changes in investors’

recognition and perception of climate-related risks during that short period.

We offer a partial solution to both challenges. First, we use a firm-level exposure measure
to quantify investor attention to (or preoccupation with) climate-related topics. We are able
to split exposure into opportunity, regulatory, and physical shocks, and to trace the financial
market effects of these facets of climate change. Second, instead of relying solely on a noisy
measure of realized returns, we make use of conditional forward-looking proxies of expected
returns constructed from option prices. Such proxies have been shown to work well as unbiased
predictors of unconditional expected excess returns, and they can serve as conditional predictors
under most economic conditions (Back, Crotty, and Kazempour (2020)). The use of different
expected return proxies allows us to disentangle the effects of second-order (variance) risks from

those of tail and higher-order risks not spanned by the variance.’

5The Paris Agreement contains legally binding commitments to allocate large amounts of capital toward
climate-friendly projects.

SFor example, they allow us to consider the relative effects of crash risk, represented by the left tail, versus
those of opportunities, reflected by the right tail.



A further advantage is that our exposure measure is adaptive, in the sense that it does not
represent an observable quantity linked to climate change.” Instead, it reflects the revealed
need for information by, and attention of, investors with regard to climate topics considered
relevant for their investment decisions. As a result, the exposure measure varies within-firm
and reflects a range of issues potentially driving returns (e.g., temperature changes, ESG aware-
ness of investors, or climate beliefs). The compensation for climate change exposure inherits
these adaptive dynamics, and it reflects, at any point in time, the current mapping by market

participants from information flows in earnings calls into return and risk quantities.®

These features open interesting channels for the development of climate finance models. For
example, the diminishing risk premium of climate exposure for some investors since 2015 can
be linked to the ESG-CAPM framework of Pedersen, Fitzgibbons, and Pomorski (2020) and the
increasing awareness of climate topics among investors. The positive unconditional risk premium
lends support to the models that Giglio, Kelly, and Stroebel (2020) categorize as models with
“uncertainty about the path of climate change.” In these models, a high exposure to climate
change commands a risk premium. However, a decreasing conditional risk premium due to the
attribution of higher opportunities for firms with higher exposure also means that these models

need an extra dynamic component linking climate change exposure to growth opportunities.

2 Data, Estimation Choices, and Procedures

2.1 Data on Firm-Level Climate Change Exposure
2.1.1 Firm-level Climate Change Metrics

We use the measures of climate change exposure recently developed by SvLVZ, who construct
their measures from the transcripts of quarterly earnings conference calls. Earnings calls allow
market participants to listen to management and inquire about material current and future

developments (Hollander, Pronk, and Roelofsen (2010)). Most relevant for our setting, earnings

"This is different from the use of emissions as in Bolton and Kacperczyk (2021), the use of a draught index
as in Hong, Li, and Xu (2019), or the use of elevations above sea level as in Giglio, Maggiori, Rao, Stroebel, and
Weber (2018).

8A step in the same direction is provided by Kélbel, Leippold, Rillaerts, and Wang (2020), who show that a
10-K-based measure of climate change exposure affects the CDS term structure.



calls provide a forum for market participants to query firms’ exposure to the risks and opportu-
nities related to climate change. We restrict our analysis to U.S. firms in the S&P 500 to ensure
that we meet data quality requirements with respect to our measures of expected returns and

risk. The data are available for the years 2002 to 2019.°

To capture exposure, that is, the proportion of the earnings call devoted to talk about climate
change, SvLLVZ develop a computational linguistics algorithm that identifies when the discussion
between analysts and executives turns to climate change.'? The innovation in SvLVZ is to adapt
the keyword discovery algorithm by King, Lam, and Roberts (2017) to produce a set of bigrams C
that are unique to climate change discussions. Furthermore, SvLVZ refine their overall measure
of exposure by separating out three categories of specific bigrams related to climate-related

opportunity, regulatory, and physical shocks (COPP, CR¢9, and CF", respectively).

Based on each of these four sets of bigrams, SvLLVZ construct four metrics to quantify, for
each quarter, a firm’s exposure to climate change. These metrics have a straightforward inter-
pretation: they capture how frequently a set of climate change bigrams appears in a conference
call transcript, scaled by the length of the conference call transcript, and thus can be interpreted
as the share of the conversation devoted to climate change:

Bit
CCEzxposure; = BLZ (1[b € CJ), (1)

it
where b = 0,1, ... B;; are the bigrams appearing in the transcript of firm ¢ in quarter ¢, where 1]
is the indicator function, and where C is a given set of climate change bigrams (C, COPP, CRed,
or CP"). The measure of total exposure is labelled as CCExposure, and the three topic-
based measures as CCExposure®?P, CCExposure’®d, and CCFExposure’™, respectively.'!
OA Table 1 provides the top-100 bigrams used to create CCFExposure, and OA Table 2 to

4 those used for the three topic-based exposure measures.

°The SvLVZ data can be accessed on https://osf.io/fd6jq/ .

10T order to identify such discussions, the algorithm determines the salient word combinations that are used
in talks about climate change. As SvLVZ explain, this step is not obvious to implement, as the language used in
earnings calls tends to be tailored to the specific business models and ecosystems of firms.

1YWe use “exposure” not in the traditional asset pricing sense, but consistent with the terminology introduced
in Hassan, Hollander, van Lent, and Tahoun (2019).
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To investigate whether exposure is firm-specific or is instead driven by investor attitudes
toward particular industries, we compute a measure of industry-level exposure (C’CEa:posureI ”d)

by averaging C'C Exposure across all firm years in an industry. We then compute for each firm

Res ( Ind)'

month the firm-specific component C'C Exposure CCFEzxposure - CCExposure

2.2 Time Structure and Matching of Climate Change Exposure Data

For three reasons, we transform the exposure metrics in order to match them with return and
risk variables. First, we want to ensure that there is no look-ahead bias — in other words, that
the exposure measures are available at the time we construct the risk and return quantities.
Second, the exposure measures are observed at the quarterly frequency, while data on returns
and risk quantities are available monthly. Third, when specific climate topics are discussed
in an earnings call, subsequent calls may not inspire interest in the same topic, implying that
subsequent transcripts may not contain climate bigrams.!? To address these data features, we
process the exposure measures in two steps. In the first step, we match the month of a given
transcript date with the end-of-month data in the Monthly Stock File from CRSP. We then
merge the two datasets while retaining the monthly frequency of the data. This allows us to
eliminate look-ahead bias, because information from earnings calls is now available to investors
before the stock data date. In the second step, we exponentially smooth monthly observations
of the exposure measures using a half-life of six months.!> Hence, we replace each exposure

measure z; with its exponentially weighted moving average y;:

S ti—z(1 = @)
Sio(l—a)r

Yt =

where the decay « is related to half-life 7 as a = 1 — exp(—In(2) /7).

Before employing these smoothed exposure measures, we standardize the measures for each

T— g
10004

month using ; this allows us to express risk premiums in percentages.

128yILVZ circumvent this issue by using annual averages of quarterly transcript-based exposure measures.
13Results are not sensitive to the parameters of the smoothing, and using half-lives between three and 12 months
yields similar results.



2.3 Data on Expected Returns and Risk Characteristics

We collect data on returns and risk quantities for S&P 500 stocks that belonged to the index
between 2000 and 2019. Data on climate change exposure are available since 2002, but our
subsequent tests start in January 2003 to allow for a burn-in period — that is, to ensure that
a reasonable number of stocks obtain non-zero climate change exposure values at the begin-
ning of the estimation. Data on the S&P 500 constituents and on firm fundamentals are from

Compustat, and data on returns and stock prices are from CRSP.'4

We estimate standard multi-factor models at the end of each month using daily returns
over the past 12 months (Fama and French (1993), Carhart (1997), Fama and French (2015)).
For company characteristics, we use size, book-to-market ratio, momentum, profitability, and
investment. Size is the log of the year-end market cap for the year preceding the month of
interest. Book-to-market ratio is the log of the ratio of the book value of equity to the market
cap at the end of the preceding fiscal year. Investment and profitability are computed as in Hou,
Xue, and Zhang (2015): investment equals the annual change in total assets scaled by lagged
total assets, and profitability is income before extraordinary items (year preceding the month
of interest) divided by the book value of equity. To ensure that the fundamentals are based on
available data, we assume at least a six-month gap between the end of the fiscal year and the

time at which the fiscal-year-end data become publicly available (Fama and French (1992)).

2.3.1 Measures of Expected Returns

Due to our short sample period, and the infrequently observed climate change metrics, it is
important to use up-to-date conditional expected return proxies. Notably, the use of realized
excess returns as a proxy for expected excess returns may not work well in terms of producing
reasonable risk premiums. As Edwin J. Elton noted in his Presidential Address (Elton (1999)):

“Almost all the testing I am aware of involves using realized returns as a proxy for expected

1We merge the two datasets through the CCM Linking Table using GVKEY and IID to link to PERMNO,
following the corresponding “second-best” method from Dobelman, Kang, and Park (2014).



returns. [It] relies on a belief that [..] realized returns are therefore an unbiased estimate of

expected returns. However, I believe that there is ample evidence that this belief is misplaced.”?

To address this estimation challenge, we construct proxies for expected returns from forward-
looking, always up-to-date, option-implied quantities as proposed by Martin and Wagner (2019),
Kadan and Tang (2020), and Chabi-Yo, Dim, and Vilkov (2020).!® Though similar, there are
differences across the three proxies with implications for understanding the effects of climate
change exposure. Martin and Wagner (2019) and Kadan and Tang (2020) (hereinafter MW
and KT') derive their proxies as lower bounds £B; for the conditional expected excess return
under assumptions for option-based quantities — that is, as Ey[R;11] — Rfy > LB;. While the
derivations make a statement about the lowest estimate of the conditional expected return, and
not about the expected return itself, one can test whether the bound is valid (the expected
excess returns cannot be lower than the bound) and tight (the bound is an unbiased predictor
of the expected excess return). Important for us is that the bounds by MW and KT are based
on the second-order, risk-neutral moments of the return distribution, and thus, to some extent,
do not consider the effects of (priced) tail risks and asymmetry in the return distribution (in
the portion not spanned by the variance). In other words, the bounds by MW and KT capture

the expected returns of investors who consider second moments to be a sufficient risk statistic.

The MW proxy for the expected excess return is constructed for stock ¢ at the end of month

t by using the variances of an index and its components:

N

1
MWigtrar/Rpe = Vigpar+ 5 | Vigrear =) wid Vigrsar | (2)
=1

5Researchers developed remedies for this parameter estimation problem because early tests rejected the CAPM
(Black, Jensen, and Scholes (1972)) and because the performance of optimized portfolios using historical returns
as proxies for expected returns was unsatisfactory. In the meantime, a number of corrections exist for beta
estimates, from simple fixes as in Elton, Gruber, and Urich (1978), to more complex remedies (Buss and Vilkov
(2012), Boloorforoosh, Christoffersen, Fournier, and Gouriéroux (2019). For expected returns, researchers propose
the correction of historical averages to reduce the noise (e.g., shrinkage), or to build a proxy for expected returns
from less noisy information (Elton (1999), Cochrane (2011)).

16GQeveral expected return proxies have also recently been developed for the market index (e.g., Martin (2017),
Chabi-Yo and Loudis (2020), or Schneider and Trojani (2019)). Although the use of option-based bounds as a
proxy for expected returns is nascent, there are several applications: Cieslak, Morse, and Vissing-Jgrgensen (2019)
use the equity risk premium proxy by Martin (2017), and Ai, Han, Pan, and Xu (2019) take an implied variance
measure (log contract of Bakshi, Kapadia, and Madan (2003)) as a proxy for stocks’ expected returns.

10



where w; ; is the value-weight of stock i, where I'V; ;1 a¢ is the implied variance of market returns

(S&P 500), and where I'V; ;4 a¢ is the return variance of individual stocks.

The generalized lower bounds of Chabi-Yo, Dim, and Vilkov (2020) (hereinafter GLB) ac-
count for the entire risk-neutral distribution, implicitly considering all higher-order moments —
it in turn captures the expected returns of investors who also care about higher moments in the

portion unspanned by the variance.!” The proxy by GLB is calculated as follows:

* « [ PO R‘,t,t At
GLBitt+ar = max {Et (00 [Rit-a0]) /B <[ ne }) - Rf,t,t+At}7 (3)
0ee, , Rit vt
where E} denotes the risk-neutral expectation, where @p(xz) = 2!, and where 0, is the

stock- and time-varying set identified from historical parameters as described in Proposition 2

in Chabi-Yo, Dim, and Vilkov (2020).!®

We focus on the proxies provided by MW and G LB and consider the K'T" proxy for robustness
(results are similar to those using the MW bounds). We emphasize any potential differences in
results between these two proxies to obtain insights into climate-related higher-order risks, as

well as whether and how the respective risk premiums are priced by market participants.

2.3.2 Option-Based Measures of Central Moments and Tail Risk Proxies

We make use of options data to estimate central moments of the return distribution and proxies
for tail risk. While these “risk quantities” do not directly reflect expectations of risk in the real
(physical) world, they efficiently aggregate the forward-looking consensus of market participants

with respect to the future return distribution up to a given option maturity.!® For example,

1"Back, Crotty, and Kazempour (2020) test the validity and tightness of the MW and KT methods to find that
in conditional settings, bounds based on second-order moments are not necessarily tight — that is, they provide
a well-performing, but still biased, proxy for conditional expected returns. Chabi-Yo, Dim, and Vilkov (2020)
find that the GLB is conditionally valid and is a tight proxy of expected excess returns. Grammig, Hanenberg,
Schlag, and Sonksen (2020) compare several theory-based proxies with machine learning-based expected returns
to demonstrate that option-implied bounds provide a superior expected return proxy for short horizons (of up to
several months). Moreover, they show that the GLB approach typically outperforms the alternative methods.

8The data are available on https://doi.org/10.17605/OSF.10 /72486, see Vilkov (2020).

19This approach of using risk-neutral quantities follows the literature. The benefit of option-implied variables,
compared to equivalents under the physical probability measure, is their forward-looking character. The cost
includes a potential bias stemming from the risk premium effect (for discussions of related issues, see Vanden
(2008), Chang, Christoffersen, Jacobs, and Vainberg (2012), Cremers, Halling, and Weinbaum (2012), DeMiguel,
Plyakha, Uppal, and Vilkov (2013)).

11
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the implied variance is a strong predictor of the future realized variance (Poon and Granger
(2003)), the implied skewness allows for the quantification of the asymmetry of the risk-neutral
distribution, and the implied volatility slope represents a heuristic proxy for the relative price

of protection against tail risk (Kelly, Pédstor, and Veronesi (2016)).

Higher-order central moments: Implied Variance, Skewness, Kurtosis. To measure
implied variance (IV'), we take the Martin (2017) variance swap rate I'V; 14 ¢ for a given maturity
t + At, constructed from the prices of out-of-the-money (OTM) calls C(¢,¢t + A, K) and puts

P(t,t + A, K) with strike prices K observed at ¢.2

2Rf7t
St

Fii4nt 00
Nisai= 2 | [ peev s+ [T caaramar|, @
0

Fyivat

where S; and F} ;1 A¢ are the spot and forward prices of the underlying stock, and where Ry, is
the gross risk-free rate. We use a similar approach for the implied skewness, I.Skew, and for the
implied kurtosis, I Kurt, applying the formulas for the log returns provided in Bakshi, Kapadia,
and Madan (2003). We approximate each integral in Equation (4) for IV using a finite sum of
500 option prices (we do likewise for similar integrals in the formulas for [Skew and IKurt).
As our data source, we use the Volatility Surface File of Ivy DB OptionMetrics, which contains

option-implied volatilities for standard maturities and delta points.?!

Implied Volatility Slope. We measure the steepness of the implied volatility slope on
the left (SlopeD) and right (SlopeU) from the at-the-money (ATM) point. As in Kelly, Péstor,
and Veronesi (2016), the measures are the slopes of functions relating implied volatilities of
OTM options to their deltas. We estimate SlopeD by regressing implied volatilities of puts with
deltas between —0.1 and —0.5 on their deltas (and a constant). For SlopeU, we regress implied

volatilities of calls with deltas between 0.1 and 0.5 on their deltas. An increase in the measures

20We use the simple return variance as the variance proxy because it is the primary ingredient for computing
the expected excess returns (Martin and Wagner (2019)). Results based on the log return variance computed as
in Bakshi, Kapadia, and Madan (2003) are similar.

21The matching of stock variables to options data is implemented through the historical CUSIP link of Option-
Metrics. To prepare the Volatility Surface for computations, we select OTM options with absolute deltas strictly
smaller than 0.5 for puts, and weakly smaller for calls, for the maturity of 30 days. We then interpolate the
implied volatilities available for each maturity as a function of moneyness (strike over spot price) for the range
between available moneyness points, and we then extrapolate by filling in the missing extreme data by the implied
volatility values from the left and right boundaries to fill in the moneyness range of [1/3,3] with a total of 1,001
points. For the interpolations, we use a piece-wise cubic Hermite interpolating polynomial.

12



indicates that deeper OTM options become more expensive, reflecting a relatively higher cost
of protection against tail risks. The measures are on average positive as far OTM options are

typically more expensive (in terms of implied volatilities) than ATM options.

2.3.3 Option-Based Measures of Risk Premiums for Particular Risks

We calculate risk premiums for particular risks by comparing expected quantities under the

physical and risk-neutral probability measures.??

Variance Risk Premium. The variance risk premium (VRP) allows us to evaluate the
cost of protection against general variance risk (or uncertainty, as suggested in Bali and Zhou
(2016)). VRP is computed as the difference between the risk-neutral expected and the past

realized variances (the latter acting as a proxy for expected variance under the physical measure):

VRP, pine = IVigione — RVioavg, (5)

where RV;_a4¢ is computed from daily simple returns over the rolling window [t — At, t].

Upside and Downside Variance Risk Premium. We construct the downside (VRPD)
and upside (VRPU) semi-variance risk premiums to predominantly quantify the compensation
for downside and upside jumps (Kilic and Shaliastovich (2019), Feunou, Jahan-Parvar, and
Okou (2018)). These measures are computed in a manner similar to the variance risk premium,
but semi-variances are used in place of implied and realized variances. For VRPD, we use the
implied downside semi-variance and the realized downside semi-variance. The implied downside
semi-variance is computed using only the first component (OTM puts) in the simple variance
swap rate formula (Equation (4)). The realized downside semi-variance is the variance of negative

returns over a given time window. Similarly, for V RPU, we use the upside semi-variances.

Skewness Risk Premium. Following Feunou, Jahan-Parvar, and Okou (2018), we con-
struct the risk premium for skewness (SRP) as the difference between the upside and downside

semi-variance risk premiums: SRP = VRPU — VRPD.

22The theoretically sound definition of the finite-period risk premium is the expectation under the risk-neutral
(@) measure minus expectation under the physical (P) measure; for convenience, we follow an information tradi-
tion of computing the finite-period risk premium as the @) minus P expectation.
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Variable Mean Std. 10% 25% 50% 75% 90% Obs.

Market cap., mil USD 23965 50343 1953 4108 9420 21575 53034 121380
Climate Change Exposure Metrics

CCExposure 941.766 2334.929  53.984  131.469 277.809 668.858 1838.931 121878
CCExposure! ™ 937.236 1691.387 222.928  277.619  433.918 862.426 1207.647 121331
CC Exposureltes -0.000 1614.602 -663.072 -332.663 -144.502  74.219 617.928 121331
CCExposure®rp 364.643 1097.871 0.206 15.434 81.155  221.835 667.882 121878
CCExposur’ies 59.643  240.222 0.000 0.000 0.000 10.465  116.740 121878
CC Exposure’™ 12.452 68.529 0.000 0.000 0.000 0.088 22.905 121878

Betas for 4- and 5-factor Models

Market 1.051 0.374 0.614 0.807 1.020 1.257 1.515 121219
Size (SMB) 0.198 0.531 -0.344 -0.148 0.101 0.429 0.856 121219
Value (HML) 0.127 0.770 -0.642 -0.295 0.040 0.469 1.001 121219
Mom. (WML) -0.065 0.552 -0.639 -0.308 -0.038 0.200 0.440 121219
Prof. (RMW) -0.011 0.835 -0.977 -0.366 0.086 0.451 0.810 121219
Inv. (CMA) 0.110 0.963 -0.988 -0.333 0.183 0.651 1.100 121219
Expected Excess Return Prozies

RET, p.a. 0.150 1.066 -1.087 -0.422 0.155 0.716 1.350 120650
MW, p.a. 0.063 0.079 0.008 0.019 0.039 0.075 0.141 118836
GLB, p.a. 0.081 0.087 0.022 0.033 0.054 0.094 0.159 117885
Option-based Risk Measures

v 0.143 0.151 0.040 0.059 0.095 0.163 0.289 118836
1Skew -0.572 0.467 -1.116 -0.795 -0.542 -0.316 -0.080 118836
IKurt 4.772 1.904 3.263 3.548 4.070 5.224 7.476 118836
SlopeU -0.101 0.255 -0.411 -0.135 -0.016 0.034 0.082 118836
SlopeD 0.299 0.285 0.078 0.138 0.215 0.355 0.620 118836
Option-based Risk Premiums

VRP, p.a. 0.019 0.119 -0.056 0.001 0.026 0.057 0.107 118821
VRPD, p.a. 0.013 0.060 -0.026 0.004 0.017 0.035 0.059 118821
VRPU, p.a. 0.007 0.083 -0.042 -0.004 0.011 0.030 0.065 118821
SRP, p.a. -0.006 0.090 -0.066 -0.025 -0.006 0.014 0.057 118821

Table 1: Summary Statistics. This table reports summary statistics at the firm-month level for our sample.
The climate change exposure metrics are scaled up by 10°. The sample covers the years 2003 to 2019 and includes
stocks in the S&P 500.

2.4 Summary Statistics

Table 1 reports summary statistics at the firm-month level. CCFExposure is quite volatile,
and it is on average available for most of the sample observations (10th percentile is posi-

Ind

tive). CCFEzposure is on average similar to the general measure, but less volatile, and

Res i5 on average zero (as expected). The topic-based exposure measures are more

CCEzxposure
sparse than the general measure. The annualized realized excess return equals 15% per year
on average, which compares to 6.3% and 8.1% for the MW and GLB proxies, respectively.

Realized excess returns are far more noisy across time and firms (standard deviation of 106.6%)

compared to the MW and GLB proxies (standard deviations of 7.9% and 8.7%, respectively).
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3 Risk Premium for Climate Change Exposure

3.1 Risk Premium for Climate Change Exposure: Cross-Sectional Analysis

We first test whether CC' Exposure is related to excess returns in the cross-section of stocks using
the two-stage approach by Fama and MacBeth (1973). We employ realized excess returns (RET)
as well as the MW- and GLB-based proxies for expected excess returns (in annual terms).
CCEzposure reflects the perceived importance of climate-related topics in a firm’s current
and future activities. If these perceptions are priced by market participants, then we expect
CC Exposure to be positively associated with excess returns; such a relationship would indicate
that a high degree of attention to climate topics represents a priced risk from the perspective of

investors. We also investigate whether any such risk premium is firm-specific (CC Exposure®ies)

or is instead driven by investor attitudes toward particular industries (CCExposure!™?).

Table 2 reports the risk premiums for climate change exposure, controlling for the standard
risk factors using 4- and 5-factor models. Columns 1 and 2 report estimates for realized excess
returns (RET'), Columns 3 and 4 for the MW proxy of expected returns, and Columns 5 and
6 for the GLB proxy. Panel A uses CCFExposure as the climate change metric, and Panel B

Res respectively. The estimates for the realized excess

uses CCExposure!™ and CC Exposure
return in Columns 1 and 2 deliver insignificant climate-related risk premiums, both in Panel A
and in Panel B. These insignificant outcomes are not unexpected, given that the risk premiums
for most standard risk factors in the two columns are also insignificant (with the exception of

SM B). As explained above, these insignificant estimates likely reflect the large amounts of noise

in realized excess returns in our short sample period.

To the contrary, CC Exposure is positively associated with expected excess returns. Consid-
ering in Columns 3 and 4 of Panel A the MWW -based proxy, stocks are expected to deliver higher
excess returns when CC Exposure is higher (t-stats of 2.9 and 3.0, respectively). Panel B shows
that the industry- and the firm-level components of CC Exposure are priced. The findings in
both panels convey an important message: higher climate change exposure — in other words,
more conversations on climate-related topics in earnings calls — is associated with a higher risk

premium, and firms do not simply inherit an industry-average premium for such exposure.
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Expected Return RET MW GLB
(1) (2) (3) (4) (5) (6)
Panel A: Total CCExposure Risk Premium

Constant 0.1394  0.1290  0.0104 0.0105 0.0393  0.0394
(4.38)  (4.92) (2.38) (3.48) (5.03) (5.78)
Market -0.0056  0.0073  0.0386  0.0386  0.0365  0.0365
(-0.14)  (0.20)  (4.16)  (4.52)  (5.33)  (4.77)
Size (SMB) 0.0381  0.0482 0.0499 0.0522 0.0152  0.0149

(2.32)  (2.81) (12.68) (12.11) (5.13)  (5.03)
Value (HML)  -0.0193 -0.0191 0.0036 0.0078 0.0052  0.0049
(-1.24)  (-1.24)  (0.79)  (1.62)  (2.44)  (1.90)

Mom. (WML) 0.0103 -0.0248 -0.0076
(0.36) - (-2.43) - (-1.13) -
Prof. (RMW) - 0.0085 - -0.0203 - -0.0067
- (0.62) - (-7.79) - (-4.89)
Inv. (CMA) - -0.0170 - 0.0018 - -0.0002
- (-1.42) - (0.63) - (-0.20)
CCFEzxposure -0.2085 -0.0807 0.2239 0.2250 0.1615 0.1395
(-0.48)  (-0.18) (2.92) (3.04) (1.93) (1.60)
Obs. 117632 117632 117972 117972 117362 117362
R? 0.0005  0.0012 0.1999 0.2173  0.0439  0.0541
Panel B: Industry Decomposition of CC Exposure Risk Premium
Constant 0.1403  0.1293 0.0100  0.0100 0.0392  0.0394
(4.50) (4.98) (2.31) (3.36) (5.04) (5.82)
Market -0.0063 0.0072  0.0391 0.0392 0.0365 0.0365
(-0.16) (0.21) (4.16) (4.60) (5.31) (4.74)
Size (SM B) 0.0368  0.0464 0.0500 0.0522 0.0154 0.0150

(222)  (272)  (1220) (12.01) (5.09)  (4.97)
Value (HML)  -0.0186 -0.0188 0.0035 0.0076  0.0052  0.0049
(-1.14)  (-1.11)  (0.74)  (157)  (2.44)  (L.91)

Mom. (WML)  0.0103 - -00245  —  -0.0076 -
(0.38) - (-2.37) - (-1.14) -
Prof. (RMW) - 0.0088 ~ 200202~ -0.0068
- (0.65) - (-7.75) - (-4.90)
Inv. (CMA) - 00168 - 0.0017 ~  -0.0002
(-1.47) (0.59) (-0.15)

CCExposure?  -0.3944 -0.2812  0.1900 0.2124  0.1230  0.0905
(-0.74)  (-0.51) (244) (275) (1.83)  (1.24)
CCEzposure®es 01023 0.1429  0.1339  0.1131  0.1089  0.1099
(0.34)  (047)  (267)  (212)  (1.94)  (1.96)

Obs. 117093 117093 117426 117426 116823 116823
R? 0.0005  0.0012  0.2005 0.2181  0.0442 0.0544

Table 2: Risk Premium for Climate Change Exposure: Cross-Sectional Analysis. This table reports
the results of the Fama-MacBeth regressions at the firm-month level. We report in Panel A the risk premium
estimates for firm-specific climate change exposure (CC Exposure) and in Panel B for the exposure measure’s two
components, industry average climate change exposure (CCEwposureI"d) and the residual (CCExzposure™®®).
All risk premiums are reported after controlling for 4- and 5-factor models (in decimals p.a.). As proxies for
expected excess returns, we use in Columns 1 and 2 the realized excess returns (RET), in Columns 3 and 4 the
forward-looking proxy by Martin and Wagner (2019) (MW), and in Columns 5 and 6 the forward-looking proxy
by Chabi-Yo, Dim, and Vilkov (2020) (GLB). t-statistics based on Newey and West (1987) standard errors are
reported in parentheses. The sample covers the years 2003 to 2019 and includes stocks in the S&P 500.

We obtain a more nuanced picture when we consider in Columns 5 and 6 the GLB proxy. In

Panel A, the magnitude of the climate risk premium decreases when compared to the MW proxy:
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the coefficients for CC Exposure decline by 25% to 40%, and the t-stats drop to 1.93 and 1.60,
respectively. When we split CC Exposure in Panel B into its industry and residual components,
both exposure measures have similar coefficients, but the risk premium for CCExposure®® is

slightly more significant (¢-stats of 1.94 and 1.96 vs. 1.83 and 1.24, respectively).

The differences between the MW - and G L B-based risk premiums raise the question of which
climate-related factors cause the two premiums to deviate? Recall that a difference between the
two proxies stems from differences in (model-implied) investor risk attitudes. While the MW
proxy is based on preferences that do not consider higher-order risks unspanned by a stock’s
variance, the GLB proxy reflects more general risk preferences (inasmuch as it also considers the
role of unspanned higher-order risks). The divergence in results may hence be explained by two
(non-mutually exclusive) mechanisms. First, investors allocate relatively high upside potential
(right tail) and relatively low crash risk (left tail) to firms with high climate change exposure.
This conclusion emerges because, compared to the MW proxy, the GLB proxy increases more
strongly in the left tail and decreases more strongly in the right tail. This causes firms with high
climate-related opportunities and low crash risk to earn smaller expected returns for the GLB
proxy.?? Second, the prices of left- and right-tail risks are misaligned — that is, either left-tail

events are underpriced or the right-tail potential is overpriced by the market.?*

We pursue three directions to better understand these mechanisms: (i) we analyze the dy-
namics of the conditional risk premiums; (ii) we directly examine the link between C'C Exposure
and higher-order risks and their respective risk premiums; and (iii) we decompose CC Exposure

into its topic-based components.

Before turning to these tests, we note that the MW- and GLB-based estimates exhibit
meaningful risk premiums for the standard risk factors. Unlike Columns 1 and 2, there is
significant compensation for market, size, and profitability exposure (consistent with Martin

and Wagner (2019), Kadan and Tang (2020), Chabi-Yo, Dim, and Vilkov (2020)). The same

ZWe provide evidence corroborating this interpretation below, where we split exposure into its opportunity,
regulatory, and physical shock components.

220A Table 5 re-runs the risk premium estimations using the ISS Carbon Risk Rating (ISS CRR), which
assesses the carbon-related performance of firms. It takes values between 1 (poor performance) and 4 (excellent
performance). The rating data is available only for a subset of S&P 500 firms and for the years 2015 to 2018.
The ISS rating relates positively to the realized risk premium and negatively to the MW -based expected risk
premium, and it is unrelated to the GLB proxy. The effects of CC Ezposure are unchanged when controlling for
the ISS rating (the insignificant effect of the GLB-based risk premium is consistent with the next subsection).
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holds for the negative momentum risk premium. The insignificant CMA risk premium may
be due to our sample period. Overall, these estimates corroborate that option-implied risk

premiums in our context are more appropriate than are realized return proxies.

3.2 Risk Premium for Climate Change Exposure: Time-Series Dynamics

Climate-related risk premiums may vary over time. SvLVZ demonstrate that CC Exposure fluc-
tuates over time due to changes in investor attention to climate change, and that climate topics
can temporarily be crowded out by other topics (e.g., COVID-19). Figure 1, Panel A, therefore
depicts the time-series evolution of the MW - and G LB-based risk premiums for CC Exposure.
We provide two versions of the risk premiums’ time-series: a raw estimate, and a trend obtained
by applying the STL decomposition of the series into additive seasonal, trend, and residual
components (Cleveland, Cleveland, McRae, and Terpenning (1990)). As before, we extract the

risk premiums jointly with factor model risk premiums using the Fama-MacBeth procedure.

Figure 1 shows that Table 2 mask important time-series heterogeneity. Before 2010, the
MW and GLB risk premium for CC' Exposure fluctuate around zero. Starting in 2010, however,
both premiums turn positive, with the MW premium gradually rising to about 0.5% in 2012,
and remaining at this level thereafter (until 2019). Somewhat differently, the GLB premium
experiences a faster increase to 0.75% between 2012 and 2014 but then reverts back to a level

of around zero by 2015, remaining at this level thereafter.

What can we learn from these diverging dynamics? If higher-order risks are not explicitly
considered in the risk premium proxy, then climate change exposure is priced since 2010. If
instead all risks encoded in the return distribution are considered, then climate-related exposure
was priced only between 2010 and 2014. These differences signify the importance of understand-
ing how CCFExposure is linked to the pricing of higher-order risks, notably the left and right

tails, and how the pricing of these risks evolves over time.

Before turning to this analysis, we consider the dynamics of the realized risk premium.
Figure 1, Panel B, shows that the insignificant overall effect for the realized premium masks that
before the financial crisis, the compensation for climate exposure trended upwards. This increase

was abruptly ended with a sharp decline with the financial crisis in 2008. The realized premium
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Figure 1: Risk Premium for Climate Change Exposure: Time-Series Dynamics. This figure shows the
time series of the risk premium for CC Exposure, estimated in Panel A from the expected excess return proxies
of MW and GLB, and in Panel B from realized excess returns (risk premium in % p.a.). Risk premiums are
obtained jointly with the 5-factor model premiums using the Fama-MacBeth procedure. Panel A provides two
series: Raw reflects the raw estimate of the risk premium, while Trend captures the trend of the risk premium
based on a decomposition of the raw estimate into additive seasonal, trend and residual components using the STL
decomposition (Cleveland, Cleveland, McRae, and Terpenning (1990)). Panel B contains the trend component
from the STL decomposition and a simple time trend, separately fitted for 2003—2008 and 2009-2019. The sample
covers the years 2003 to 2019 and includes stocks in the S&P 500.

even became negative, indicating an excessive sell-off by investors becoming increasingly worried
about the prospects of uncertain and quite long-term climate-related bets. The crisis-related
drop was then followed by a secular upward trend in the realized premium until the end of the
sample period. The initial trend, and the subsequent recovery after the financial crisis, indicate

that the realized compensation for climate change exposure was non-zero for a substantial time.

The climate-related risk premiums around the financial crisis in both panels is consistent with

two mechanisms: a crowding out of stocks with high climate change exposure during the financial
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crisis (as evidenced from the realized premium dynamics in Panel B); or a higher importance
attributed by market participants to elevated risk regimes, broadly defined and covering any

potential tail risk sources, after the financial crisis (Gennaioli, Shleifer, and Vishny (2015)).

4 Climate Change Exposure and Financial Risks

4.1 Unconditional Link: Central Moments and Tail Risks

The diverging dynamics of the expected return proxies reveal that the pricing of climate change
exposure depends on which investor risk preferences are captured. To better understand the
role of these risk preferences, we examine in Table 3 the relationship between C'C' Exzposure and
different proxies that contain information about the return distribution: the second (IV'), third
(ISkew), and fourth (I Kurt) central risk-neutral moments, and two heuristic variables quanti-
fying the relative expensiveness of the left (SlopeD) and right (SlopeU) tails. Panel A relates
these “risk quantities” to CC Exposure, and Panel B to CCExposure!™ and CC Exposureltes.
To diminish the effects of general market conditions, we standardize the risk quantities and the
exposure measures at each point in time to have zero means and standard deviations of one.

We account for the betas of the underlying returns with respect to the risk factors of the 4- and

5-factor models.?> We further include time and industry fixed effects.

Table 3 documents that climate change exposure affects risk quantities, in particular tail
risks. In Panel A, Columns 3 and 4, CCExposure is significantly associated with a relatively
more negative skewed distribution (I Skew), and in Columns 5 and 6 with fatter tails (I Kurt).
The negative coefficients for SlopeU in Columns 9 and 10 indicate that upside potential becomes
cheaper when CCEzxposure increases, while the positive coefficients on SlopeD in Columns 7
and 8 reflect the increasing costs of left-tail protection when C'C Exposure is higher. Hence, we
observe cheaper upside tail exposure and more expensive downside tail exposure for firms with
higher values of CCFExposure. This finding echoes the results in Ilhan, Sautner, and Vilkov

(2021), who document more expensive tail protection for firms with higher carbon intensities;

Z5Results change only slightly if we use individual stock characteristics (market beta, size, book-to-market
ratio, 12-month momentum, profitability, and investments) instead of factor betas (the IV effect becomes in-
significant). We use factor betas, as the characteristics are observed less frequently than required for monthly
return estimations.
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Risk Metric v 1Skew IKurt SlopeD SlopeU
(1) (2) (3) (4) () (6) (7) (8) (9) (10)
Panel A: Total CC Exposure

Constant -0.8173  -0.8653 -0.2633 -0.2374 0.5766 0.5833  0.0855 0.0560 -0.3125 -0.3305
(-11.31)  (-13.37) (-6.89) (-5.56) (9.23)  (9.36)  (2.01)  (1.23)  (-7.09)  (-8.29)

Market 0.6305  0.6733  0.2151  0.1928 -0.5468 -0.5542 -0.1134 -0.0886 0.3403  0.3579
(9.61)  (11.64)  (5.86)  (4.86) (-9.12) (-9.36) (-2.73) (-2.00)  (7.86)  (9.04)

Size (SMB) 08718  0.8092  0.2391  0.2100 -0.0666 -0.0239 0.1442 0.1768 -0.2140 -0.2356

(11.53)  (11.96)  (11.24) (10.00) (-2.24) (-0.81)  (4.87)  (6.59)  (-5.78)  (-6.94)
Value (HML) ~ 0.0262  0.0683 -0.0241 -0.0208 0.0593 0.0029  0.0569 0.0315 -0.0478  0.0122
(0.40)  (1.22)  (-1.04) (-1.43) (1.33)  (0.10)  (2.37)  (1.11)  (-1.62)  (0.49)

Mom. (WML) -0.1841 - -0.0310 - 0.0383 - -0.0283 - -0.0049 -
(-2.99) - (-1.49) - (1.36) - (-1.17) - (-0.28) -
Prof. (RMW) - -0.3107 - -0.1167 - 0.1322 - 0.0361 - -0.0282
- (-6.71) - (-6.99) - (6.09) - (2.06) - (-2.26)
Inv. (CMA) - -0.00003 - -0.0195 - 0.0473 - 0.0087 - -0.0350
- (-0.00) - (-1.97) - (3.40) - (0.80) - (-2.46)
CCEzxposure 0.0300 0.0338  -0.0360 -0.0340 0.0881 0.0867 0.0806 0.0796 -0.0712 -0.0713
(1.71) (2.19) (-3.83) (-3.44) (8.22) (7.30) (9.85)  (10.37)  (-9.55)  (-9.41)
Obs. 117093 117093 117093 117093 117093 117093 117093 117093 117093 117093
R? 0.3005 0.3201  0.0308 0.0319 0.0949 0.0992 0.0174 0.0164 0.0398  0.0404
Panel B: Industry Decomposition of CCExposure
Constant -0.8168  -0.8651 -0.2637 -0.2377 0.5767 0.5835 0.0859 0.0564 -0.3124 -0.3306
(-11.31)  (-13.35) (-6.91) (-5.58)  (9.21) (9.36) (2.02) (1.24)  (-7.11)  (-8.34)
Market 0.6300 0.6730  0.2154  0.1930 -0.5474 -0.5549 -0.1141 -0.0893 0.3408  0.3586
(9.59) (11.60) (5.89) (4.88)  (-9.10) (-9.36) (-2.75)  (-2.02) (7.88) (9.09)
Size (SMB) 0.8721 0.8092  0.2397 0.2105 -0.0651 -0.0225 0.1449 0.1773 -0.2157 -0.2371

(11.58)  (12.00) (11.31) (10.04) (-2.16) (-0.76) (4.86)  (6.58)  (-5.82)  (-7.00)
Value (HML) — 0.0263  0.0685 -0.0247 -0.0215 0.0589 0.0024 0.0570 0.0316 -0.0472  0.0130
(0.40)  (1.22)  (-1.06) (-1.49) (1.32)  (0.08)  (2.37) (L.11) (-1.60)  (0.52)

Mom. (WML)  -0.1841 - 0.0312 - 0.0378 ~ 00285 - -0.0043 -
(-2.99) - (-1.51) - (1.33) - (-1.18) - (-0.24) -
Prof. (RMW) - -0.3107 - 01170 - 0.1313 - 0.0358 - -0.0273
- (-6.71) - (-7.06) - (6.00) - (2.02) - (-2.16)
Inv. (CMA) - -0.00001 - 200195 - 0.0474 - 0.0088 - -0.0351
- (-0.00) - (-1.98) - (3.39) - (0.81) - (-2.47)

CCExposure™d 00296  0.0218 -0.0057 -0.0035 0.1047 0.1042 0.0753  0.0688 -0.0995  -0.0993
(0.82)  (0.59)  (-0.44) (-0.33) (7.14) (7.14)  (5.88)  (5.31) (-10.92) (-10.34)
CCExposurefes 00178 0.0229  -0.0258 -0.0242 0.0571  0.0555  0.0525 0.0525 -0.0447  -0.0447
(1.30)  (2.05)  (-4.04) (-3.50) (7.58)  (6.47) (8.41)  (9.26) (-8.10)  (-7.85)

Obs. 117093 117093 117093 117093 117093 117093 117093 117093 117093 117093
R? 0.3003 0.3201 0.0309  0.0320 0.0999 0.1041 0.0178 0.0167  0.0447  0.0451

Table 3: Unconditional Link: Climate Change Exposure vs. Central Moments and Tail Risks.
This table reports results of panel regressions at the firm-month level. We report in Panel A regressions relating
option-implied risk quantities (variance, skewness, kurtosis, up and down slope) to firm-specific climate change
exposure (CC Exposure). Panel B splits the exposure measure into its two components, industry average climate
change exposure (CCExposureI"d) and the residual (CCExposure’™*). The regressions control for the 4- and
5-factor model betas. We include fixed effects at the time (month-year) and industry (SIC2 code) level. Variables
(except for factor betas) are standardized at each point in time to have zero means and standard deviations of
one. t-statistics based on standard errors clustered by time and industry are reported in parentheses. The sample
covers the years 2003 to 2019 and includes stocks in the S&P 500.

however, their analysis only captures carbon risks, while we examine climate change exposure

more broadly. When we bifurcate CC Exposure in Panel B into its industry and residual com-
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ponents, the effects for IV and ISkew are fully driven by CC Exposuref®®, while the other risk

quantities are similarly affected by the industry and residual components.

4.2 Conditional Link: Risk Premiums versus Financial Risks’ Sensitivities

To understand how the MW- and GLB-based risk premiums are linked to the particular risks
associated by investors with CC Exposure. Formally, we regress the time-series values of the risk
premiums for CC Ezposure (RP;, estimated in the first stage of the Fama-MacBeth procedure)
on the time-series values of the cross-sectional sensitivities (Sens;) of the risk quantities to
CCFEzxposure. The risk sensitivities are computed each month as slopes from regressing a
particular risk quantity on CC Exposure, controlling for the 5-factor model.?® That is, we are

interested in the  coefficients of the following regressions:

RPcc,prowy,t =a+ Z Yee,risk X Sensrisk,ec,t + €, (6)

risk

where our climate change metric is cc € (CCExzposure), the expected return proxy is proxy €
(MW,GLB), and risk is a risk quantity from (IV, ISkew, IKurt) or (IV, SlopeD, Slopel).?"
Results are reported in Table 4, with the MW premium in Columns 1 and 2, and the GLB
premium in Columns 3 and 4. To understand the drivers of the wedge between the two risk

premiums, we include in Columns 5 and 6 the risk premium difference (MW minus GLB).

Table 4 provides two insights. First, the MW -based premium in Col