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Abstract

We estimate the risk premium for firm-level climate change exposure from 2003 to 2019. Ex-
posure is constructed from discussions of climate-related risks and opportunities in earnings
calls. When extracted from realized returns, the unconditional risk premium is zero. This
insignificant overall effect masks risk premium increases during the sample period, but with
a slump in the financial crisis. Forward-looking proxies deliver an unconditionally positive
expected risk premium, with subtle differences in the time series depending on the treatment
of tail risks and opportunities. When the underlying model uses variance as the sufficient risk
statistic, the premium gradually increases over time. When the model considers tails, the
premium declines after 2015, because investors now link climate change exposure to higher
opportunities and lower crash risk. This finding arises as the priced part of the risk premium
primarily originates from climate-related opportunity shocks rather than downside physical
or regulatory shocks.
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1 Introduction

Climate change poses huge challenges for financial markets. How should firm-level exposure to

climate-related risk and opportunities be measured? How are risk and return quantities affected

by climate change exposure? Which firms will benefit from climate change, and why? In light of

these challenges, significant resources have recently been allocated to develop the area of climate

finance to better grasp how the transition to a low-carbon economy affects financial markets.

Yet, this body of literature is still in its infancy, and additional evidence is needed to more fully

understand how climate-related risks and opportunities affect stock returns and risks.

Some first steps have recently been taken in this direction, using carbon emissions and ESG

scores as proxies for climate change exposure. Bolton and Kacperczyk (2021, 2020) demonstrate

the existence of a carbon risk premium, that is, stocks with higher carbon emissions earn higher

expected returns, and Ilhan, Sautner, and Vilkov (2021) find that firms with higher carbon

emissions exhibit higher tail risk. Engle, Giglio, Kelly, Lee, and Stroebel (2020) develop a

procedure to hedge climate change risks, using ESG scores by data vendors to measure firm-level

climate risk exposure. Survey evidence in Krueger, Sautner, and Starks (2020) also indicates that

institutional investors believe that climate risks, especially those related to carbon emissions,

have begun to be priced in financial markets.

The insights from these studies lay the foundation for further work, and the focus on carbon

emissions and ESG scores originates from the lack of broad firm-level exposure measures. How-

ever, this comes with limitations. Carbon emissions primarily capture downside regulatory (or

transition) risks but do not capture physical risks or climate opportunities. In addition, they re-

flect firms’ historic business models, do not allow researchers to distinguish between “good” and

“bad” emissions, and suffer from selection bias, as they are voluntarily reported (Matsumura,

Prakash, and Vera-Muñoz (2014)).1 Further complications arise because some of the largest car-

bon emitters are also key innovators in green technologies (Cohen, Gurun, and Nguyen (2020)),

and some of them even issue green bonds to fund climate-friendly projects (Flammer (2021)).

Likewise, for ESG scores, a challenge is that they are only available for select firms, and that

1Some firms’ emissions are “good” in the sense of supporting the transition to a greener economy (these firms
are called “climate enablers”). Ramadorai and Zeni (2020) provide an initial analysis of future emissions by
examining planned emission abatement data.
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they cover rather short periods of time.2 In a recent review of the climate finance literature,

Giglio, Kelly, and Stroebel (2020) therefore highlight the lack of comprehensive measures as a

key impediment toward understanding the pricing of climate change exposure.

In this paper, we make significant progress toward overcoming this impediment. We show

how a broad measure of firm-level climate change exposure is related to stock returns and risk

quantities. Instead of relying on carbon emissions or ESG scores, we make use of an exposure

measure available for a broad sample of firms from 2002 to 2019. The measure is constructed

by Sautner, van Lent, Vilkov, and Zhang (2020) (hereinafter SvLVZ), and it is extracted from

conversations between analysts and management in earnings conference calls. The measure

captures risks and opportunities associated with climate change, and it is not subject to the

selection bias of prior measures. Intuitively, it reflects the fraction of the conference call discus-

sion that is centered on climate change topics. SvLVZ provide an aggregate measure of overall

climate change exposure, and three topic-based measures reflecting exposure to climate-related

opportunity, physical, and regulatory shocks. We relate climate change exposure to realized

returns, ex ante expected returns, and risk quantities capturing the entire return distribution.3

Why should climate change exposure command a risk premium? The reason is that the

effects of climate change on individual stocks are highly uncertain, and Barnett, Brock, and

Hansen (2020) provide a theoretical framework which demonstrates that this uncertainty should

be priced. Climate change uncertainty arises because it is highly unclear just how much global

temperatures will rise, and also because it is uncertain how strongly emissions must be curbed

to limit global warming. This in turn makes it difficult for investors to evaluate how indi-

vidual stocks will be affected by climate-related physical and regulatory shocks. Moreover, the

investment opportunities related to technological innovations facilitating the transition to a low-

carbon economy are also highly uncertain (e.g., investments into battery technology or carbon

storage). These considerations imply that the measure of overall climate change exposure, which

encapsulates all of these aspects, should be associated with a risk premium; the same should

hold for each of the three topic-based exposure measures.

2The same limitation holds for the carbon risk ratings that recently became available by ISS and Sustainalytics.
3The definition of “exposure” used in this paper follows prior literature. It is somewhat different from how risk

exposure (e.g., a factor beta) is defined in the asset pricing literature. Hassan, Hollander, van Lent, and Tahoun
(2019) provide a discussion of the relationship between these two areas of literature.
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We answer three specific questions: First, how is climate change exposure – that is, the

attention market participants accord to climate-related topics during earnings calls – related

to realized and expected returns? Second, how does compensation for climate change exposure

evolve over time, both in terms of realized and expected returns? Third, which risk quantities

are associated with climate change exposure, and how do investors with different risk preferences

price such risks when configuring return expectations?

In tackling these questions, we provide results that improve our understanding of how climate

change affects financial markets. We begin with establishing a new empirical fact: Uncondition-

ally, that is, across the full sample, the realized risk premium for climate change exposure is

indistinguishable from zero. However, investors who buy stocks with higher climate change

exposure expect to earn a risk premium ex ante. We detected such an expected risk premium

using two approaches that exploit option-implied information but differ in terms of the assumed

investor preferences used to derive the risk premium estimates. The risk premium proxy by

Martin and Wagner (2019) assumes that variance is the sufficient risk statistic for investors –

that is, the risk premium is based on the second moments of the returns of the market and

of individual stocks. Somewhat differently, Chabi-Yo, Dim, and Vilkov (2020) assume that in-

vestors also consider extreme risks and opportunities, so their approach explicitly accounts for

returns’ higher-order moments in the risk premium estimation. In a nutshell, both approaches

use different pieces of information from the options market to estimate expected returns.

When considering time-series dynamics, we observe that the divergence between the realized

and the expected risk premiums is largely driven by a “crowding out” of the realized premium

during the financial crisis. Specifically, realized compensation for climate change exposure rises

steadily over the sample period, from zero in 2003 to 2% p.a. before the financial crisis. The

realized premium then declines sharply into negative terrain between 2007 and 2009, and it

subsequently resumes its upward trend until 2019 (with a positive premium since 2015/2016).

The patterns for the two proxies for the expected risk premium look different, relative to the

realized premium, and also relative to each other. For investors using variance as the sufficient

risk statistic (Martin and Wagner (2019)), the expected risk premium increases from an initial

level of zero to 0.5% in 2012, and it then plateaus (or slightly increases) around this level for
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the next decade. Until 2015, this pattern is similar if we construct the premium for investors

also considering extreme risks and opportunities (Chabi-Yo, Dim, and Vilkov (2020)). How-

ever, we observe a remarkably different pattern after 2015: for investors with higher-order risk

preferences, there has been a steady decline in the premium since that year to zero in 2019.

What can we learn from these diverging patterns? An initial conclusion is that climate change

exposure has nuanced effects: the associated risk premiums exhibit non-monotone effects that

change over time depending on which investor risk preferences are assumed in the risk premium

estimations.4 A second conclusion is that our understanding of how climate change exposure

affects financial markets requires a detailed analysis of how exposure affects risk quantities beyond

the second moment. A third conclusion is that we need to acquire a better understanding of

how climate change exposure maps to financial risk quantities since 2015.

These insights prompt us to explore in detail how climate exposure affects higher-order mo-

ments and tail risks, conditional on different time periods. We demonstrate that the dynamics

of the two expected risk premiums can be attributed to how investors map climate exposure into

variance and higher-order risks: beginning around 2015, investors started to associate relatively

smaller crash risks and relatively higher opportunities with climate change exposure. This real-

location of likelihood from left- to right-tail events reduces the required compensation for climate

exposure in the eyes of investors with preferences that take higher-order risks into account. We

capture these effects as our exposure measure reflects upside and downside aspects. Moreover,

these effects arise as large parts of the expected risk premium for climate change exposure – and

of the risks associated with this exposure – originate from climate-related opportunity shocks;

such opportunities are risky, as they require significant and uncertain investments. There is also

a positive risk premium effect of regulatory shocks, but overall, the effect of upside opportu-

nity shocks dominates that of downside regulatory shocks (we cannot detect a risk premium for

physical shocks). What are the implications of this for the two expected risk premium proxies?

Firms with better climate-related opportunities may command a higher risk premium because

of a higher expected variance (as we find for the proxy by Martin and Wagner (2019)). How-

4This conclusion is consistent with Bolton and Kacperczyk (2020), whose analysis also reveals nuanced effects
of the carbon risk premium over time and across countries.
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ever, the proxy by Chabi-Yo, Dim, and Vilkov (2020) may be reduced to zero if higher climate

exposure means better growth potential and smaller downside crash risk.

This answer this leaves open the question of what happened in 2015, the year in which the

Chabi-Yo, Dim, and Vilkov (2020) proxy began its decline to zero. We offer two non-mutually

exclusive explanations. First, 2015 was the year of the Paris Agreement, and markets may

have in turn updated their views on the likelihood of the success of climate-related investment

opportunities; this should lower downside crash risk and increase upside financial potential for

firms with high climate-related opportunities.5 Second, Azar, Duro, Kadach, and Ormazabal

(2021) document that since 2015, there has been increased climate-related engagement by the

“Big Three” (BlackRock, Vanguard, and State Street), which has lead to emission reductions.

This effect may in turn have reduced downside tail risks of firms with high regulatory exposure.

In this paper, we address two challenges identified by Giglio, Kelly, and Stroebel (2020) in the

analysis of how climate change affects asset prices. The first challenge is to obtain a firm-level

exposure measure, which separates between physical and transition climate risks and captures

climate-related upside and downside potential. The second challenge is the short time period

for which climate exposure data is usually available, and, importantly, changes in investors’

recognition and perception of climate-related risks during that short period.

We offer a partial solution to both challenges. First, we use a firm-level exposure measure

to quantify investor attention to (or preoccupation with) climate-related topics. We are able

to split exposure into opportunity, regulatory, and physical shocks, and to trace the financial

market effects of these facets of climate change. Second, instead of relying solely on a noisy

measure of realized returns, we make use of conditional forward-looking proxies of expected

returns constructed from option prices. Such proxies have been shown to work well as unbiased

predictors of unconditional expected excess returns, and they can serve as conditional predictors

under most economic conditions (Back, Crotty, and Kazempour (2020)). The use of different

expected return proxies allows us to disentangle the effects of second-order (variance) risks from

those of tail and higher-order risks not spanned by the variance.6

5The Paris Agreement contains legally binding commitments to allocate large amounts of capital toward
climate-friendly projects.

6For example, they allow us to consider the relative effects of crash risk, represented by the left tail, versus
those of opportunities, reflected by the right tail.
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A further advantage is that our exposure measure is adaptive, in the sense that it does not

represent an observable quantity linked to climate change.7 Instead, it reflects the revealed

need for information by, and attention of, investors with regard to climate topics considered

relevant for their investment decisions. As a result, the exposure measure varies within-firm

and reflects a range of issues potentially driving returns (e.g., temperature changes, ESG aware-

ness of investors, or climate beliefs). The compensation for climate change exposure inherits

these adaptive dynamics, and it reflects, at any point in time, the current mapping by market

participants from information flows in earnings calls into return and risk quantities.8

These features open interesting channels for the development of climate finance models. For

example, the diminishing risk premium of climate exposure for some investors since 2015 can

be linked to the ESG-CAPM framework of Pedersen, Fitzgibbons, and Pomorski (2020) and the

increasing awareness of climate topics among investors. The positive unconditional risk premium

lends support to the models that Giglio, Kelly, and Stroebel (2020) categorize as models with

“uncertainty about the path of climate change.” In these models, a high exposure to climate

change commands a risk premium. However, a decreasing conditional risk premium due to the

attribution of higher opportunities for firms with higher exposure also means that these models

need an extra dynamic component linking climate change exposure to growth opportunities.

2 Data, Estimation Choices, and Procedures

2.1 Data on Firm-Level Climate Change Exposure

2.1.1 Firm-level Climate Change Metrics

We use the measures of climate change exposure recently developed by SvLVZ, who construct

their measures from the transcripts of quarterly earnings conference calls. Earnings calls allow

market participants to listen to management and inquire about material current and future

developments (Hollander, Pronk, and Roelofsen (2010)). Most relevant for our setting, earnings

7This is different from the use of emissions as in Bolton and Kacperczyk (2021), the use of a draught index
as in Hong, Li, and Xu (2019), or the use of elevations above sea level as in Giglio, Maggiori, Rao, Stroebel, and
Weber (2018).

8A step in the same direction is provided by Kölbel, Leippold, Rillaerts, and Wang (2020), who show that a
10-K-based measure of climate change exposure affects the CDS term structure.
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calls provide a forum for market participants to query firms’ exposure to the risks and opportu-

nities related to climate change. We restrict our analysis to U.S. firms in the S&P 500 to ensure

that we meet data quality requirements with respect to our measures of expected returns and

risk. The data are available for the years 2002 to 2019.9

To capture exposure, that is, the proportion of the earnings call devoted to talk about climate

change, SvLVZ develop a computational linguistics algorithm that identifies when the discussion

between analysts and executives turns to climate change.10 The innovation in SvLVZ is to adapt

the keyword discovery algorithm by King, Lam, and Roberts (2017) to produce a set of bigrams C

that are unique to climate change discussions. Furthermore, SvLVZ refine their overall measure

of exposure by separating out three categories of specific bigrams related to climate-related

opportunity, regulatory, and physical shocks (COpp, CReg, and CPhy, respectively).

Based on each of these four sets of bigrams, SvLVZ construct four metrics to quantify, for

each quarter, a firm’s exposure to climate change. These metrics have a straightforward inter-

pretation: they capture how frequently a set of climate change bigrams appears in a conference

call transcript, scaled by the length of the conference call transcript, and thus can be interpreted

as the share of the conversation devoted to climate change:

CCExposureit =
1

Bit

Bit∑
b

(1[b ∈ C]), (1)

where b = 0, 1, ...Bit are the bigrams appearing in the transcript of firm i in quarter t, where 1[·]

is the indicator function, and where C is a given set of climate change bigrams (C, COpp, CReg,

or CPhy). The measure of total exposure is labelled as CCExposure, and the three topic-

based measures as CCExposureOpp, CCExposureReg, and CCExposurePhy, respectively.11

OA Table 1 provides the top-100 bigrams used to create CCExposure, and OA Table 2 to

4 those used for the three topic-based exposure measures.

9The SvLVZ data can be accessed on https://osf.io/fd6jq/.
10In order to identify such discussions, the algorithm determines the salient word combinations that are used

in talks about climate change. As SvLVZ explain, this step is not obvious to implement, as the language used in
earnings calls tends to be tailored to the specific business models and ecosystems of firms.

11We use “exposure” not in the traditional asset pricing sense, but consistent with the terminology introduced
in Hassan, Hollander, van Lent, and Tahoun (2019).
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To investigate whether exposure is firm-specific or is instead driven by investor attitudes

toward particular industries, we compute a measure of industry-level exposure (CCExposureInd)

by averaging CCExposure across all firm years in an industry. We then compute for each firm

month the firm-specific component CCExposureRes (CCExposure - CCExposureInd).

2.2 Time Structure and Matching of Climate Change Exposure Data

For three reasons, we transform the exposure metrics in order to match them with return and

risk variables. First, we want to ensure that there is no look-ahead bias – in other words, that

the exposure measures are available at the time we construct the risk and return quantities.

Second, the exposure measures are observed at the quarterly frequency, while data on returns

and risk quantities are available monthly. Third, when specific climate topics are discussed

in an earnings call, subsequent calls may not inspire interest in the same topic, implying that

subsequent transcripts may not contain climate bigrams.12 To address these data features, we

process the exposure measures in two steps. In the first step, we match the month of a given

transcript date with the end-of-month data in the Monthly Stock File from CRSP. We then

merge the two datasets while retaining the monthly frequency of the data. This allows us to

eliminate look-ahead bias, because information from earnings calls is now available to investors

before the stock data date. In the second step, we exponentially smooth monthly observations

of the exposure measures using a half-life of six months.13 Hence, we replace each exposure

measure xt with its exponentially weighted moving average yt:

yt =

∑t
z=0 xt−z(1− α)z∑t

z=0(1− α)z
,

where the decay α is related to half-life τ as α = 1− exp(− ln(2)/τ).

Before employing these smoothed exposure measures, we standardize the measures for each

month using x−µx
100σx

; this allows us to express risk premiums in percentages.

12SvLVZ circumvent this issue by using annual averages of quarterly transcript-based exposure measures.
13Results are not sensitive to the parameters of the smoothing, and using half-lives between three and 12 months

yields similar results.
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2.3 Data on Expected Returns and Risk Characteristics

We collect data on returns and risk quantities for S&P 500 stocks that belonged to the index

between 2000 and 2019. Data on climate change exposure are available since 2002, but our

subsequent tests start in January 2003 to allow for a burn-in period – that is, to ensure that

a reasonable number of stocks obtain non-zero climate change exposure values at the begin-

ning of the estimation. Data on the S&P 500 constituents and on firm fundamentals are from

Compustat, and data on returns and stock prices are from CRSP.14

We estimate standard multi-factor models at the end of each month using daily returns

over the past 12 months (Fama and French (1993), Carhart (1997), Fama and French (2015)).

For company characteristics, we use size, book-to-market ratio, momentum, profitability, and

investment. Size is the log of the year-end market cap for the year preceding the month of

interest. Book-to-market ratio is the log of the ratio of the book value of equity to the market

cap at the end of the preceding fiscal year. Investment and profitability are computed as in Hou,

Xue, and Zhang (2015): investment equals the annual change in total assets scaled by lagged

total assets, and profitability is income before extraordinary items (year preceding the month

of interest) divided by the book value of equity. To ensure that the fundamentals are based on

available data, we assume at least a six-month gap between the end of the fiscal year and the

time at which the fiscal-year-end data become publicly available (Fama and French (1992)).

2.3.1 Measures of Expected Returns

Due to our short sample period, and the infrequently observed climate change metrics, it is

important to use up-to-date conditional expected return proxies. Notably, the use of realized

excess returns as a proxy for expected excess returns may not work well in terms of producing

reasonable risk premiums. As Edwin J. Elton noted in his Presidential Address (Elton (1999)):

“Almost all the testing I am aware of involves using realized returns as a proxy for expected

14We merge the two datasets through the CCM Linking Table using GVKEY and IID to link to PERMNO,
following the corresponding “second-best” method from Dobelman, Kang, and Park (2014).
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returns. [It] relies on a belief that [..] realized returns are therefore an unbiased estimate of

expected returns. However, I believe that there is ample evidence that this belief is misplaced.”15

To address this estimation challenge, we construct proxies for expected returns from forward-

looking, always up-to-date, option-implied quantities as proposed by Martin and Wagner (2019),

Kadan and Tang (2020), and Chabi-Yo, Dim, and Vilkov (2020).16 Though similar, there are

differences across the three proxies with implications for understanding the effects of climate

change exposure. Martin and Wagner (2019) and Kadan and Tang (2020) (hereinafter MW

and KT ) derive their proxies as lower bounds LBt for the conditional expected excess return

under assumptions for option-based quantities – that is, as Et[Rt+1] − Rf,t ≥ LBt. While the

derivations make a statement about the lowest estimate of the conditional expected return, and

not about the expected return itself, one can test whether the bound is valid (the expected

excess returns cannot be lower than the bound) and tight (the bound is an unbiased predictor

of the expected excess return). Important for us is that the bounds by MW and KT are based

on the second-order, risk-neutral moments of the return distribution, and thus, to some extent,

do not consider the effects of (priced) tail risks and asymmetry in the return distribution (in

the portion not spanned by the variance). In other words, the bounds by MW and KT capture

the expected returns of investors who consider second moments to be a sufficient risk statistic.

The MW proxy for the expected excess return is constructed for stock i at the end of month

t by using the variances of an index and its components:

MWi,t,t+∆t/Rf,t = IVt,t+∆t +
1

2

(
IVi,t,t+∆t −

N∑
i=1

wi,tIVi,t,t+∆t

)
, (2)

15Researchers developed remedies for this parameter estimation problem because early tests rejected the CAPM
(Black, Jensen, and Scholes (1972)) and because the performance of optimized portfolios using historical returns
as proxies for expected returns was unsatisfactory. In the meantime, a number of corrections exist for beta
estimates, from simple fixes as in Elton, Gruber, and Urich (1978), to more complex remedies (Buss and Vilkov
(2012), Boloorforoosh, Christoffersen, Fournier, and Gouriéroux (2019). For expected returns, researchers propose
the correction of historical averages to reduce the noise (e.g., shrinkage), or to build a proxy for expected returns
from less noisy information (Elton (1999), Cochrane (2011)).

16Several expected return proxies have also recently been developed for the market index (e.g., Martin (2017),
Chabi-Yo and Loudis (2020), or Schneider and Trojani (2019)). Although the use of option-based bounds as a
proxy for expected returns is nascent, there are several applications: Cieslak, Morse, and Vissing-Jørgensen (2019)
use the equity risk premium proxy by Martin (2017), and Ai, Han, Pan, and Xu (2019) take an implied variance
measure (log contract of Bakshi, Kapadia, and Madan (2003)) as a proxy for stocks’ expected returns.
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where wi,t is the value-weight of stock i, where IVt,t+∆t is the implied variance of market returns

(S&P 500), and where IVi,t,t+∆t is the return variance of individual stocks.

The generalized lower bounds of Chabi-Yo, Dim, and Vilkov (2020) (hereinafter GLB) ac-

count for the entire risk-neutral distribution, implicitly considering all higher-order moments –

it in turn captures the expected returns of investors who also care about higher moments in the

portion unspanned by the variance.17 The proxy by GLB is calculated as follows:

GLBi,t,t+∆t = max
θ∈Θi,t

{
E∗t (ϕθ [Ri,t,t+∆t])/E∗t

(
ϕθ [Ri,t,t+∆t]

Ri,t,t+∆t

)
−Rf,t,t+∆t

}
, (3)

where E∗t denotes the risk-neutral expectation, where ϕθ(x) = xθ+1, and where Θi,t is the

stock- and time-varying set identified from historical parameters as described in Proposition 2

in Chabi-Yo, Dim, and Vilkov (2020).18

We focus on the proxies provided byMW andGLB and consider theKT proxy for robustness

(results are similar to those using the MW bounds). We emphasize any potential differences in

results between these two proxies to obtain insights into climate-related higher-order risks, as

well as whether and how the respective risk premiums are priced by market participants.

2.3.2 Option-Based Measures of Central Moments and Tail Risk Proxies

We make use of options data to estimate central moments of the return distribution and proxies

for tail risk. While these “risk quantities” do not directly reflect expectations of risk in the real

(physical) world, they efficiently aggregate the forward-looking consensus of market participants

with respect to the future return distribution up to a given option maturity.19 For example,

17Back, Crotty, and Kazempour (2020) test the validity and tightness of the MW and KT methods to find that
in conditional settings, bounds based on second-order moments are not necessarily tight – that is, they provide
a well-performing, but still biased, proxy for conditional expected returns. Chabi-Yo, Dim, and Vilkov (2020)
find that the GLB is conditionally valid and is a tight proxy of expected excess returns. Grammig, Hanenberg,
Schlag, and Sönksen (2020) compare several theory-based proxies with machine learning-based expected returns
to demonstrate that option-implied bounds provide a superior expected return proxy for short horizons (of up to
several months). Moreover, they show that the GLB approach typically outperforms the alternative methods.

18The data are available on https://doi.org/10.17605/OSF.IO/Z2486, see Vilkov (2020).
19This approach of using risk-neutral quantities follows the literature. The benefit of option-implied variables,

compared to equivalents under the physical probability measure, is their forward-looking character. The cost
includes a potential bias stemming from the risk premium effect (for discussions of related issues, see Vanden
(2008), Chang, Christoffersen, Jacobs, and Vainberg (2012), Cremers, Halling, and Weinbaum (2012), DeMiguel,
Plyakha, Uppal, and Vilkov (2013)).
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the implied variance is a strong predictor of the future realized variance (Poon and Granger

(2003)), the implied skewness allows for the quantification of the asymmetry of the risk-neutral

distribution, and the implied volatility slope represents a heuristic proxy for the relative price

of protection against tail risk (Kelly, Pástor, and Veronesi (2016)).

Higher-order central moments: Implied Variance, Skewness, Kurtosis. To measure

implied variance (IV ), we take the Martin (2017) variance swap rate IVt,t+∆t for a given maturity

t + ∆t, constructed from the prices of out-of-the-money (OTM) calls C(t, t + ∆,K) and puts

P (t, t+ ∆,K) with strike prices K observed at t.20

IVt,t+∆t =
2Rf,t
S2
t

[∫ Ft,t+∆t

0
P (t, t+ ∆,K)dK +

∫ ∞
Ft,t+∆t

C(t, t+ ∆,K)dK

]
, (4)

where St and Ft,t+∆t are the spot and forward prices of the underlying stock, and where Rf,t is

the gross risk-free rate. We use a similar approach for the implied skewness, ISkew, and for the

implied kurtosis, IKurt, applying the formulas for the log returns provided in Bakshi, Kapadia,

and Madan (2003). We approximate each integral in Equation (4) for IV using a finite sum of

500 option prices (we do likewise for similar integrals in the formulas for ISkew and IKurt).

As our data source, we use the Volatility Surface File of Ivy DB OptionMetrics, which contains

option-implied volatilities for standard maturities and delta points.21

Implied Volatility Slope. We measure the steepness of the implied volatility slope on

the left (SlopeD) and right (SlopeU) from the at-the-money (ATM) point. As in Kelly, Pástor,

and Veronesi (2016), the measures are the slopes of functions relating implied volatilities of

OTM options to their deltas. We estimate SlopeD by regressing implied volatilities of puts with

deltas between −0.1 and −0.5 on their deltas (and a constant). For SlopeU , we regress implied

volatilities of calls with deltas between 0.1 and 0.5 on their deltas. An increase in the measures

20We use the simple return variance as the variance proxy because it is the primary ingredient for computing
the expected excess returns (Martin and Wagner (2019)). Results based on the log return variance computed as
in Bakshi, Kapadia, and Madan (2003) are similar.

21The matching of stock variables to options data is implemented through the historical CUSIP link of Option-
Metrics. To prepare the Volatility Surface for computations, we select OTM options with absolute deltas strictly
smaller than 0.5 for puts, and weakly smaller for calls, for the maturity of 30 days. We then interpolate the
implied volatilities available for each maturity as a function of moneyness (strike over spot price) for the range
between available moneyness points, and we then extrapolate by filling in the missing extreme data by the implied
volatility values from the left and right boundaries to fill in the moneyness range of [1/3,3] with a total of 1,001
points. For the interpolations, we use a piece-wise cubic Hermite interpolating polynomial.
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indicates that deeper OTM options become more expensive, reflecting a relatively higher cost

of protection against tail risks. The measures are on average positive as far OTM options are

typically more expensive (in terms of implied volatilities) than ATM options.

2.3.3 Option-Based Measures of Risk Premiums for Particular Risks

We calculate risk premiums for particular risks by comparing expected quantities under the

physical and risk-neutral probability measures.22

Variance Risk Premium. The variance risk premium (V RP ) allows us to evaluate the

cost of protection against general variance risk (or uncertainty, as suggested in Bali and Zhou

(2016)). V RP is computed as the difference between the risk-neutral expected and the past

realized variances (the latter acting as a proxy for expected variance under the physical measure):

V RPt,t+∆t = IVt,t+∆t −RVt−∆t,t, (5)

where RVt−∆t,t is computed from daily simple returns over the rolling window [t−∆t, t].

Upside and Downside Variance Risk Premium. We construct the downside (V RPD)

and upside (V RPU) semi-variance risk premiums to predominantly quantify the compensation

for downside and upside jumps (Kilic and Shaliastovich (2019), Feunou, Jahan-Parvar, and

Okou (2018)). These measures are computed in a manner similar to the variance risk premium,

but semi-variances are used in place of implied and realized variances. For V RPD, we use the

implied downside semi-variance and the realized downside semi-variance. The implied downside

semi-variance is computed using only the first component (OTM puts) in the simple variance

swap rate formula (Equation (4)). The realized downside semi-variance is the variance of negative

returns over a given time window. Similarly, for V RPU , we use the upside semi-variances.

Skewness Risk Premium. Following Feunou, Jahan-Parvar, and Okou (2018), we con-

struct the risk premium for skewness (SRP ) as the difference between the upside and downside

semi-variance risk premiums: SRP = V RPU − V RPD.

22The theoretically sound definition of the finite-period risk premium is the expectation under the risk-neutral
(Q) measure minus expectation under the physical (P ) measure; for convenience, we follow an information tradi-
tion of computing the finite-period risk premium as the Q minus P expectation.
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Variable Mean Std. 10% 25% 50% 75% 90% Obs.

Market cap., mil USD 23965 50343 1953 4108 9420 21575 53034 121380

Climate Change Exposure Metrics
CCExposure 941.766 2334.929 53.984 131.469 277.809 668.858 1838.931 121878
CCExposureInd 937.236 1691.387 222.928 277.619 433.918 862.426 1207.647 121331
CCExposureRes -0.000 1614.602 -663.072 -332.663 -144.502 74.219 617.928 121331
CCExposureOpp 364.643 1097.871 0.206 15.434 81.155 221.835 667.882 121878
CCExposurReg 59.643 240.222 0.000 0.000 0.000 10.465 116.740 121878
CCExposurePhy 12.452 68.529 0.000 0.000 0.000 0.088 22.905 121878

Betas for 4- and 5-factor Models
Market 1.051 0.374 0.614 0.807 1.020 1.257 1.515 121219
Size (SMB) 0.198 0.531 -0.344 -0.148 0.101 0.429 0.856 121219
V alue (HML) 0.127 0.770 -0.642 -0.295 0.040 0.469 1.001 121219
Mom. (WML) -0.065 0.552 -0.639 -0.308 -0.038 0.200 0.440 121219
Prof. (RMW ) -0.011 0.835 -0.977 -0.366 0.086 0.451 0.810 121219
Inv. (CMA) 0.110 0.963 -0.988 -0.333 0.183 0.651 1.100 121219

Expected Excess Return Proxies
RET, p.a. 0.150 1.066 -1.087 -0.422 0.155 0.716 1.350 120650
MW, p.a. 0.063 0.079 0.008 0.019 0.039 0.075 0.141 118836
GLB, p.a. 0.081 0.087 0.022 0.033 0.054 0.094 0.159 117885

Option-based Risk Measures
IV 0.143 0.151 0.040 0.059 0.095 0.163 0.289 118836
ISkew -0.572 0.467 -1.116 -0.795 -0.542 -0.316 -0.080 118836
IKurt 4.772 1.904 3.263 3.548 4.070 5.224 7.476 118836
SlopeU -0.101 0.255 -0.411 -0.135 -0.016 0.034 0.082 118836
SlopeD 0.299 0.285 0.078 0.138 0.215 0.355 0.620 118836

Option-based Risk Premiums
V RP, p.a. 0.019 0.119 -0.056 0.001 0.026 0.057 0.107 118821
V RPD, p.a. 0.013 0.060 -0.026 0.004 0.017 0.035 0.059 118821
V RPU, p.a. 0.007 0.083 -0.042 -0.004 0.011 0.030 0.065 118821
SRP, p.a. -0.006 0.090 -0.066 -0.025 -0.006 0.014 0.057 118821

Table 1: Summary Statistics. This table reports summary statistics at the firm-month level for our sample.
The climate change exposure metrics are scaled up by 106. The sample covers the years 2003 to 2019 and includes
stocks in the S&P 500.

2.4 Summary Statistics

Table 1 reports summary statistics at the firm-month level. CCExposure is quite volatile,

and it is on average available for most of the sample observations (10th percentile is posi-

tive). CCExposureInd is on average similar to the general measure, but less volatile, and

CCExposureRes is on average zero (as expected). The topic-based exposure measures are more

sparse than the general measure. The annualized realized excess return equals 15% per year

on average, which compares to 6.3% and 8.1% for the MW and GLB proxies, respectively.

Realized excess returns are far more noisy across time and firms (standard deviation of 106.6%)

compared to the MW and GLB proxies (standard deviations of 7.9% and 8.7%, respectively).
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3 Risk Premium for Climate Change Exposure

3.1 Risk Premium for Climate Change Exposure: Cross-Sectional Analysis

We first test whether CCExposure is related to excess returns in the cross-section of stocks using

the two-stage approach by Fama and MacBeth (1973). We employ realized excess returns (RET )

as well as the MW - and GLB-based proxies for expected excess returns (in annual terms).

CCExposure reflects the perceived importance of climate-related topics in a firm’s current

and future activities. If these perceptions are priced by market participants, then we expect

CCExposure to be positively associated with excess returns; such a relationship would indicate

that a high degree of attention to climate topics represents a priced risk from the perspective of

investors. We also investigate whether any such risk premium is firm-specific (CCExposureRes)

or is instead driven by investor attitudes toward particular industries (CCExposureInd).

Table 2 reports the risk premiums for climate change exposure, controlling for the standard

risk factors using 4- and 5-factor models. Columns 1 and 2 report estimates for realized excess

returns (RET ), Columns 3 and 4 for the MW proxy of expected returns, and Columns 5 and

6 for the GLB proxy. Panel A uses CCExposure as the climate change metric, and Panel B

uses CCExposureInd and CCExposureRes, respectively. The estimates for the realized excess

return in Columns 1 and 2 deliver insignificant climate-related risk premiums, both in Panel A

and in Panel B. These insignificant outcomes are not unexpected, given that the risk premiums

for most standard risk factors in the two columns are also insignificant (with the exception of

SMB). As explained above, these insignificant estimates likely reflect the large amounts of noise

in realized excess returns in our short sample period.

To the contrary, CCExposure is positively associated with expected excess returns. Consid-

ering in Columns 3 and 4 of Panel A the MW -based proxy, stocks are expected to deliver higher

excess returns when CCExposure is higher (t-stats of 2.9 and 3.0, respectively). Panel B shows

that the industry- and the firm-level components of CCExposure are priced. The findings in

both panels convey an important message: higher climate change exposure – in other words,

more conversations on climate-related topics in earnings calls – is associated with a higher risk

premium, and firms do not simply inherit an industry-average premium for such exposure.
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Expected Return RET MW GLB
(1) (2) (3) (4) (5) (6)

Panel A: Total CCExposure Risk Premium
Constant 0.1394 0.1290 0.0104 0.0105 0.0393 0.0394

(4.38) (4.92) (2.38) (3.48) (5.03) (5.78)
Market -0.0056 0.0073 0.0386 0.0386 0.0365 0.0365

(-0.14) (0.20) (4.16) (4.52) (5.33) (4.77)
Size (SMB) 0.0381 0.0482 0.0499 0.0522 0.0152 0.0149

(2.32) (2.81) (12.68) (12.11) (5.13) (5.03)
V alue (HML) -0.0193 -0.0191 0.0036 0.0078 0.0052 0.0049

(-1.24) (-1.24) (0.79) (1.62) (2.44) (1.90)
Mom. (WML) 0.0103 – -0.0248 – -0.0076 –

(0.36) – (-2.43) – (-1.13) –
Prof. (RMW ) – 0.0085 – -0.0203 – -0.0067

– (0.62) – (-7.79) – (-4.89)
Inv. (CMA) – -0.0170 – 0.0018 – -0.0002

– (-1.42) – (0.63) – (-0.20)
CCExposure -0.2085 -0.0807 0.2239 0.2250 0.1615 0.1395

(-0.48) (-0.18) (2.92) (3.04) (1.93) (1.60)

Obs. 117632 117632 117972 117972 117362 117362
R2 0.0005 0.0012 0.1999 0.2173 0.0439 0.0541

Panel B: Industry Decomposition of CCExposure Risk Premium
Constant 0.1403 0.1293 0.0100 0.0100 0.0392 0.0394

(4.50) (4.98) (2.31) (3.36) (5.04) (5.82)
Market -0.0063 0.0072 0.0391 0.0392 0.0365 0.0365

(-0.16) (0.21) (4.16) (4.60) (5.31) (4.74)
Size (SMB) 0.0368 0.0464 0.0500 0.0522 0.0154 0.0150

(2.22) (2.72) (12.20) (12.01) (5.09) (4.97)
V alue (HML) -0.0186 -0.0188 0.0035 0.0076 0.0052 0.0049

(-1.14) (-1.11) (0.74) (1.57) (2.44) (1.91)
Mom. (WML) 0.0103 – -0.0245 – -0.0076 –

(0.38) – (-2.37) – (-1.14) –
Prof. (RMW ) – 0.0088 – -0.0202 – -0.0068

– (0.65) – (-7.75) – (-4.90)
Inv. (CMA) – -0.0168 – 0.0017 – -0.0002

– (-1.47) – (0.59) – (-0.15)
CCExposureInd -0.3944 -0.2812 0.1900 0.2124 0.1230 0.0905

(-0.74) (-0.51) (2.44) (2.75) (1.83) (1.24)
CCExposureRes 0.1023 0.1429 0.1339 0.1131 0.1089 0.1099

(0.34) (0.47) (2.67) (2.12) (1.94) (1.96)

Obs. 117093 117093 117426 117426 116823 116823
R2 0.0005 0.0012 0.2005 0.2181 0.0442 0.0544

Table 2: Risk Premium for Climate Change Exposure: Cross-Sectional Analysis. This table reports
the results of the Fama-MacBeth regressions at the firm-month level. We report in Panel A the risk premium
estimates for firm-specific climate change exposure (CCExposure) and in Panel B for the exposure measure’s two
components, industry average climate change exposure (CCExposureInd) and the residual (CCExposureRes).
All risk premiums are reported after controlling for 4- and 5-factor models (in decimals p.a.). As proxies for
expected excess returns, we use in Columns 1 and 2 the realized excess returns (RET ), in Columns 3 and 4 the
forward-looking proxy by Martin and Wagner (2019) (MW ), and in Columns 5 and 6 the forward-looking proxy
by Chabi-Yo, Dim, and Vilkov (2020) (GLB). t-statistics based on Newey and West (1987) standard errors are
reported in parentheses. The sample covers the years 2003 to 2019 and includes stocks in the S&P 500.

We obtain a more nuanced picture when we consider in Columns 5 and 6 the GLB proxy. In

Panel A, the magnitude of the climate risk premium decreases when compared to the MW proxy:
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the coefficients for CCExposure decline by 25% to 40%, and the t-stats drop to 1.93 and 1.60,

respectively. When we split CCExposure in Panel B into its industry and residual components,

both exposure measures have similar coefficients, but the risk premium for CCExposureRes is

slightly more significant (t-stats of 1.94 and 1.96 vs. 1.83 and 1.24, respectively).

The differences between the MW - and GLB-based risk premiums raise the question of which

climate-related factors cause the two premiums to deviate? Recall that a difference between the

two proxies stems from differences in (model-implied) investor risk attitudes. While the MW

proxy is based on preferences that do not consider higher-order risks unspanned by a stock’s

variance, the GLB proxy reflects more general risk preferences (inasmuch as it also considers the

role of unspanned higher-order risks). The divergence in results may hence be explained by two

(non-mutually exclusive) mechanisms. First, investors allocate relatively high upside potential

(right tail) and relatively low crash risk (left tail) to firms with high climate change exposure.

This conclusion emerges because, compared to the MW proxy, the GLB proxy increases more

strongly in the left tail and decreases more strongly in the right tail. This causes firms with high

climate-related opportunities and low crash risk to earn smaller expected returns for the GLB

proxy.23 Second, the prices of left- and right-tail risks are misaligned – that is, either left-tail

events are underpriced or the right-tail potential is overpriced by the market.24

We pursue three directions to better understand these mechanisms: (i) we analyze the dy-

namics of the conditional risk premiums; (ii) we directly examine the link between CCExposure

and higher-order risks and their respective risk premiums; and (iii) we decompose CCExposure

into its topic-based components.

Before turning to these tests, we note that the MW - and GLB-based estimates exhibit

meaningful risk premiums for the standard risk factors. Unlike Columns 1 and 2, there is

significant compensation for market, size, and profitability exposure (consistent with Martin

and Wagner (2019), Kadan and Tang (2020), Chabi-Yo, Dim, and Vilkov (2020)). The same

23We provide evidence corroborating this interpretation below, where we split exposure into its opportunity,
regulatory, and physical shock components.

24OA Table 5 re-runs the risk premium estimations using the ISS Carbon Risk Rating (ISS CRR), which
assesses the carbon-related performance of firms. It takes values between 1 (poor performance) and 4 (excellent
performance). The rating data is available only for a subset of S&P 500 firms and for the years 2015 to 2018.
The ISS rating relates positively to the realized risk premium and negatively to the MW -based expected risk
premium, and it is unrelated to the GLB proxy. The effects of CCExposure are unchanged when controlling for
the ISS rating (the insignificant effect of the GLB-based risk premium is consistent with the next subsection).
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holds for the negative momentum risk premium. The insignificant CMA risk premium may

be due to our sample period. Overall, these estimates corroborate that option-implied risk

premiums in our context are more appropriate than are realized return proxies.

3.2 Risk Premium for Climate Change Exposure: Time-Series Dynamics

Climate-related risk premiums may vary over time. SvLVZ demonstrate that CCExposure fluc-

tuates over time due to changes in investor attention to climate change, and that climate topics

can temporarily be crowded out by other topics (e.g., COVID-19). Figure 1, Panel A, therefore

depicts the time-series evolution of the MW - and GLB-based risk premiums for CCExposure.

We provide two versions of the risk premiums’ time-series: a raw estimate, and a trend obtained

by applying the STL decomposition of the series into additive seasonal, trend, and residual

components (Cleveland, Cleveland, McRae, and Terpenning (1990)). As before, we extract the

risk premiums jointly with factor model risk premiums using the Fama-MacBeth procedure.

Figure 1 shows that Table 2 mask important time-series heterogeneity. Before 2010, the

MW and GLB risk premium for CCExposure fluctuate around zero. Starting in 2010, however,

both premiums turn positive, with the MW premium gradually rising to about 0.5% in 2012,

and remaining at this level thereafter (until 2019). Somewhat differently, the GLB premium

experiences a faster increase to 0.75% between 2012 and 2014 but then reverts back to a level

of around zero by 2015, remaining at this level thereafter.

What can we learn from these diverging dynamics? If higher-order risks are not explicitly

considered in the risk premium proxy, then climate change exposure is priced since 2010. If

instead all risks encoded in the return distribution are considered, then climate-related exposure

was priced only between 2010 and 2014. These differences signify the importance of understand-

ing how CCExposure is linked to the pricing of higher-order risks, notably the left and right

tails, and how the pricing of these risks evolves over time.

Before turning to this analysis, we consider the dynamics of the realized risk premium.

Figure 1, Panel B, shows that the insignificant overall effect for the realized premium masks that

before the financial crisis, the compensation for climate exposure trended upwards. This increase

was abruptly ended with a sharp decline with the financial crisis in 2008. The realized premium
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A: Premium for CCExposure: MW and GLB proxies
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Figure 1: Risk Premium for Climate Change Exposure: Time-Series Dynamics. This figure shows the
time series of the risk premium for CCExposure, estimated in Panel A from the expected excess return proxies
of MW and GLB, and in Panel B from realized excess returns (risk premium in % p.a.). Risk premiums are
obtained jointly with the 5-factor model premiums using the Fama-MacBeth procedure. Panel A provides two
series: Raw reflects the raw estimate of the risk premium, while Trend captures the trend of the risk premium
based on a decomposition of the raw estimate into additive seasonal, trend and residual components using the STL
decomposition (Cleveland, Cleveland, McRae, and Terpenning (1990)). Panel B contains the trend component
from the STL decomposition and a simple time trend, separately fitted for 2003–2008 and 2009–2019. The sample
covers the years 2003 to 2019 and includes stocks in the S&P 500.

even became negative, indicating an excessive sell-off by investors becoming increasingly worried

about the prospects of uncertain and quite long-term climate-related bets. The crisis-related

drop was then followed by a secular upward trend in the realized premium until the end of the

sample period. The initial trend, and the subsequent recovery after the financial crisis, indicate

that the realized compensation for climate change exposure was non-zero for a substantial time.

The climate-related risk premiums around the financial crisis in both panels is consistent with

two mechanisms: a crowding out of stocks with high climate change exposure during the financial
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crisis (as evidenced from the realized premium dynamics in Panel B); or a higher importance

attributed by market participants to elevated risk regimes, broadly defined and covering any

potential tail risk sources, after the financial crisis (Gennaioli, Shleifer, and Vishny (2015)).

4 Climate Change Exposure and Financial Risks

4.1 Unconditional Link: Central Moments and Tail Risks

The diverging dynamics of the expected return proxies reveal that the pricing of climate change

exposure depends on which investor risk preferences are captured. To better understand the

role of these risk preferences, we examine in Table 3 the relationship between CCExposure and

different proxies that contain information about the return distribution: the second (IV ), third

(ISkew), and fourth (IKurt) central risk-neutral moments, and two heuristic variables quanti-

fying the relative expensiveness of the left (SlopeD) and right (SlopeU) tails. Panel A relates

these “risk quantities” to CCExposure, and Panel B to CCExposureInd and CCExposureRes.

To diminish the effects of general market conditions, we standardize the risk quantities and the

exposure measures at each point in time to have zero means and standard deviations of one.

We account for the betas of the underlying returns with respect to the risk factors of the 4- and

5-factor models.25 We further include time and industry fixed effects.

Table 3 documents that climate change exposure affects risk quantities, in particular tail

risks. In Panel A, Columns 3 and 4, CCExposure is significantly associated with a relatively

more negative skewed distribution (ISkew), and in Columns 5 and 6 with fatter tails (IKurt).

The negative coefficients for SlopeU in Columns 9 and 10 indicate that upside potential becomes

cheaper when CCExposure increases, while the positive coefficients on SlopeD in Columns 7

and 8 reflect the increasing costs of left-tail protection when CCExposure is higher. Hence, we

observe cheaper upside tail exposure and more expensive downside tail exposure for firms with

higher values of CCExposure. This finding echoes the results in Ilhan, Sautner, and Vilkov

(2021), who document more expensive tail protection for firms with higher carbon intensities;

25Results change only slightly if we use individual stock characteristics (market beta, size, book-to-market
ratio, 12-month momentum, profitability, and investments) instead of factor betas (the IV effect becomes in-
significant). We use factor betas, as the characteristics are observed less frequently than required for monthly
return estimations.

20

Electronic copy available at: https://ssrn.com/abstract=3792366



Risk Metric IV ISkew IKurt SlopeD SlopeU
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Total CCExposure
Constant -0.8173 -0.8653 -0.2633 -0.2374 0.5766 0.5833 0.0855 0.0560 -0.3125 -0.3305

(-11.31) (-13.37) (-6.89) (-5.56) (9.23) (9.36) (2.01) (1.23) (-7.09) (-8.29)
Market 0.6305 0.6733 0.2151 0.1928 -0.5468 -0.5542 -0.1134 -0.0886 0.3403 0.3579

(9.61) (11.64) (5.86) (4.86) (-9.12) (-9.36) (-2.73) (-2.00) (7.86) (9.04)
Size (SMB) 0.8718 0.8092 0.2391 0.2100 -0.0666 -0.0239 0.1442 0.1768 -0.2140 -0.2356

(11.53) (11.96) (11.24) (10.00) (-2.24) (-0.81) (4.87) (6.59) (-5.78) (-6.94)
V alue (HML) 0.0262 0.0683 -0.0241 -0.0208 0.0593 0.0029 0.0569 0.0315 -0.0478 0.0122

(0.40) (1.22) (-1.04) (-1.43) (1.33) (0.10) (2.37) (1.11) (-1.62) (0.49)
Mom. (WML) -0.1841 – -0.0310 – 0.0383 – -0.0283 – -0.0049 –

(-2.99) – (-1.49) – (1.36) – (-1.17) – (-0.28) –
Prof. (RMW ) – -0.3107 – -0.1167 – 0.1322 – 0.0361 – -0.0282

– (-6.71) – (-6.99) – (6.09) – (2.06) – (-2.26)
Inv. (CMA) – -0.00003 – -0.0195 – 0.0473 – 0.0087 – -0.0350

– (-0.00) – (-1.97) – (3.40) – (0.80) – (-2.46)
CCExposure 0.0300 0.0338 -0.0360 -0.0340 0.0881 0.0867 0.0806 0.0796 -0.0712 -0.0713

(1.71) (2.19) (-3.83) (-3.44) (8.22) (7.30) (9.85) (10.37) (-9.55) (-9.41)

Obs. 117093 117093 117093 117093 117093 117093 117093 117093 117093 117093
R2 0.3005 0.3201 0.0308 0.0319 0.0949 0.0992 0.0174 0.0164 0.0398 0.0404

Panel B: Industry Decomposition of CCExposure
Constant -0.8168 -0.8651 -0.2637 -0.2377 0.5767 0.5835 0.0859 0.0564 -0.3124 -0.3306

(-11.31) (-13.35) (-6.91) (-5.58) (9.21) (9.36) (2.02) (1.24) (-7.11) (-8.34)
Market 0.6300 0.6730 0.2154 0.1930 -0.5474 -0.5549 -0.1141 -0.0893 0.3408 0.3586

(9.59) (11.60) (5.89) (4.88) (-9.10) (-9.36) (-2.75) (-2.02) (7.88) (9.09)
Size (SMB) 0.8721 0.8092 0.2397 0.2105 -0.0651 -0.0225 0.1449 0.1773 -0.2157 -0.2371

(11.58) (12.00) (11.31) (10.04) (-2.16) (-0.76) (4.86) (6.58) (-5.82) (-7.00)
V alue (HML) 0.0263 0.0685 -0.0247 -0.0215 0.0589 0.0024 0.0570 0.0316 -0.0472 0.0130

(0.40) (1.22) (-1.06) (-1.49) (1.32) (0.08) (2.37) (1.11) (-1.60) (0.52)
Mom. (WML) -0.1841 – -0.0312 – 0.0378 – -0.0285 – -0.0043 –

(-2.99) – (-1.51) – (1.33) – (-1.18) – (-0.24) –
Prof. (RMW ) – -0.3107 – -0.1170 – 0.1313 – 0.0358 – -0.0273

– (-6.71) – (-7.06) – (6.00) – (2.02) – (-2.16)
Inv. (CMA) – -0.00001 – -0.0195 – 0.0474 – 0.0088 – -0.0351

– (-0.00) – (-1.98) – (3.39) – (0.81) – (-2.47)
CCExposureInd 0.0296 0.0218 -0.0057 -0.0035 0.1047 0.1042 0.0753 0.0688 -0.0995 -0.0993

(0.82) (0.59) (-0.44) (-0.33) (7.14) (7.14) (5.88) (5.31) (-10.92) (-10.34)
CCExposureRes 0.0178 0.0229 -0.0258 -0.0242 0.0571 0.0555 0.0525 0.0525 -0.0447 -0.0447

(1.30) (2.05) (-4.04) (-3.50) (7.58) (6.47) (8.41) (9.26) (-8.10) (-7.85)

Obs. 117093 117093 117093 117093 117093 117093 117093 117093 117093 117093
R2 0.3003 0.3201 0.0309 0.0320 0.0999 0.1041 0.0178 0.0167 0.0447 0.0451

Table 3: Unconditional Link: Climate Change Exposure vs. Central Moments and Tail Risks.
This table reports results of panel regressions at the firm-month level. We report in Panel A regressions relating
option-implied risk quantities (variance, skewness, kurtosis, up and down slope) to firm-specific climate change
exposure (CCExposure). Panel B splits the exposure measure into its two components, industry average climate
change exposure (CCExposureInd) and the residual (CCExposureRes). The regressions control for the 4- and
5-factor model betas. We include fixed effects at the time (month-year) and industry (SIC2 code) level. Variables
(except for factor betas) are standardized at each point in time to have zero means and standard deviations of
one. t-statistics based on standard errors clustered by time and industry are reported in parentheses. The sample
covers the years 2003 to 2019 and includes stocks in the S&P 500.

however, their analysis only captures carbon risks, while we examine climate change exposure

more broadly. When we bifurcate CCExposure in Panel B into its industry and residual com-
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ponents, the effects for IV and ISkew are fully driven by CCExposureRes, while the other risk

quantities are similarly affected by the industry and residual components.

4.2 Conditional Link: Risk Premiums versus Financial Risks’ Sensitivities

To understand how the MW - and GLB-based risk premiums are linked to the particular risks

associated by investors with CCExposure. Formally, we regress the time-series values of the risk

premiums for CCExposure (RPt, estimated in the first stage of the Fama-MacBeth procedure)

on the time-series values of the cross-sectional sensitivities (Senst) of the risk quantities to

CCExposure. The risk sensitivities are computed each month as slopes from regressing a

particular risk quantity on CCExposure, controlling for the 5-factor model.26 That is, we are

interested in the γ coefficients of the following regressions:

RPcc,proxy,t = α+
∑
risk

γcc,risk × Sensrisk,cc,t + ε, (6)

where our climate change metric is cc ∈ (CCExposure), the expected return proxy is proxy ∈

(MW,GLB), and risk is a risk quantity from (IV, ISkew, IKurt) or (IV, SlopeD, SlopeU).27

Results are reported in Table 4, with the MW premium in Columns 1 and 2, and the GLB

premium in Columns 3 and 4. To understand the drivers of the wedge between the two risk

premiums, we include in Columns 5 and 6 the risk premium difference (MW minus GLB).

Table 4 provides two insights. First, theMW -based premium in Columns 1 and 2 is explained

almost perfectly by the sensitivities of the risk quantities, with adjusted R2’s of about 90%. This

effect primarily originates from Senscc,IV . In fact, if we remove all variables except Senscc,IV ,

the adjusted R2 is largely unchanged (it goes down to 83%). This confirms that the MW

premium is based on second-order moments, and hence is most suitable for investors who do not

care about higher-order risks unspanned by variance. In Columns 3 and 4, the GLB regressions

exhibit a much lower adjusted R2 (only around 30%). If we only keep Senscc,IV , the regression

fit is diminished by about one fourth only (to an R2 of 25.96%). Thus, tails and higher-order

26Effectively, the sensitivities are the coefficients obtained in the first stage of the Fama-MacBeth procedure
applied to the risk quantities as the dependent variables, and CCExposure (and factor-model controls) as the
independent variables.

27We split the risk quantities into two sets to avoid multicollinearity; the sensitivities of asymmetry ISkew and
tail fatness IKurt measures are highly correlated with the sensitivities of the slope measures SlopeD and SlopeU .
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Risk Premium RPMW RPGLB RPMW −RPGLB

(1) (2) (3) (4) (5) (6)

Constant 0.0340 0.0051 -0.1997 -0.1567 0.2337 0.1618
(2.14) (0.27) (-4.10) (-2.59) (4.30) (2.38)

Senscc,IV 5.5048 5.4781 3.1422 4.0856 2.3626 1.3925
(37.18) (37.90) (6.91) (8.95) (4.66) (2.71)

Senscc,ISkew – 0.0561 – 0.4453 – -0.3892
– (0.49) – (1.24) – (-0.96)

Senscc,IKurt – -0.0126 – 1.1804 – -1.1931
– (-0.10) – (2.84) – (-2.56)

Senscc,SlopeD -0.0625 – 0.9445 – -1.0070 –
(-0.47) – (2.33) – (-2.23) –

Senscc,SlopeU 0.2705 – -1.3260 – 1.5965 –
(1.94) – (-3.10) – (3.34) –

Obs. 203 203 203 203 203 203
Adj. R2 0.8937 0.8907 0.3399 0.2820 0.1684 0.0814

Table 4: Conditional Link: Risk Premiums versus Financial Risk Sensitivities. This table reports
results of time-series regressions at the monthly level. We report the slope coefficients (γcc,risk) from regressing
the time-series estimates of the risk premiums for CCExposure on the time-series estimates of the cross-sectional
sensitivities (Senscc,risk) of different risk quantities to CCExposure. The specification is given in Equation (6).
t-statistics are in parentheses. The sample covers the years 2003 to 2019 and includes stocks in the S&P 500.

risk sensitivities play a much more important role for the risk premium of investors considering

the full shape of the return distribution; it is therefore unsurprising that the IV sensitivity

significantly contributes to the risk-premium difference in Columns 5 and 6.

Second, beyond IV , the other significant risk sensitivities that explain the risk premium

estimates differently are (i) Senscc,SlopeD, sensitivity of left tail protection to CCExposure; (ii)

Senscc,SlopeU , the same sensitivity for the upside potential; and (iii) Senscc,IKurt, which reveals

the effects of how fat the tails are. These estimates allow us to make several observations. When

the sensitivity of the tail protection cost (Senscc,SlopeD) decreases, then the GLB premium

decreases, but the MW premium is unchanged (Columns 1 and 3); as a result, the MW -GLB

gap in Column 5 is positively affected. When Senscc,SlopeU increases, the two premiums change

in opposite directions (Columns 1 and 3), with the difference between the the risk premiums

again positively affected (i.e., increasing for a positive gap, and becoming narrower for a negative

gap) (Columns 5). The picture for Senscc,IKurt in Columns 2, 4, and 6 is similar to Senscc,SlopeD.

A conclusion is that the increasingly positive gap between the two premiums from 2015 onward

can be explained by a larger upside potential, and/or smaller left tail risk, for stocks with high

climate change exposure.
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4.3 Conditional Link: Climate Change Exposure, Risks, and Period Effects

Our evidence suggests that any relationship between CCExposure and risk quantities is likely

to be time dependent. We follow this intuition by estimating in Table 5 the relationship between

CCExposure and higher-order moments and tail risks, thereby explicitly accounting for time

dependencies. To capture the regimes that emerged from Figure 1, we interact the risk quantities

with two time-period dummies, which capture our prior observation that (i) from 2010 onward,

the risk premium for CCExposure increased for the MW and the GLB proxy (D2010−2014); and

(ii) from 2015 onward, the GLB premium disappeared (D2015−2019). Results for CCExposure

are in Columns 1 and 2, and for CCExposureInd and CCExposureRes in Columns 3 to 6.

The estimates reveal three insights: First, between 2010 and 2014, the positive association

between CCExposure and IV is much stronger compared to the base period before 2010. We

find the same pattern for SlopeD. These results, coupled with those in Table 4, explain why

CCExposure exhibits a non-zero risk premium after 2009. Second, the MW -GLB wedge since

2015 can be attributed to the perception of tail risks. Specifically, the D2015−2019 interactions

show that higher tail fatness (IKurt) is associated with lower values of CCExposure since 2015,

while the relative costs for obtaining exposure to both tails (SlopeU and SlopeD) increases in

CCExposure. In terms of magnitude, the right tail effect is about twice as strong as the left

tail effect. This means that since 2015, investors associate disproportionately higher growth

opportunities with CCExposure (relative to the left tail risks). These forces contribute to the

growth in the MW -GLB gap, and they indicate that since 2015, investors who take all risks and

opportunities into account do not expect a risk premium from stocks with high CCExposure.

To the contrary, investors who care primarily about variance continue to expect a positive risk

premium (they do not consider the trade-off between opportunities and tail risks). Third, in

most cases, the risk quantities are related in similar ways to the industry and residual exposure

components. Yet, in some cases, discrepancies arise. In Columns 1 and 2 of CCExposure, IV x

D2010−2014 is positive – that is, between 2010 and 2014, stocks with a high overall exposure had

relatively higher volatility. However, for the same years, industries with high exposure exhibited

lower IV s, implying that the total effect is driven by the residual component. For the same

period, SlopeU and SlopeD are insignificantly related to overall exposure. Yet, the variables
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Climate Exposure CCExposure CCExposureInd CCExposureRes

(1) (2) (3) (4) (5) (6)

IV 0.0229 -0.0016 0.0306 0.0041 0.0041 -0.0016
(1.65) (-0.11) (1.72) (0.24) (0.53) (-0.19)

ISkew 0.0667 – 0.0576 – 0.0361 –
(5.42) – (4.12) – (5.62) –

IKurt 0.1606 – 0.1610 – 0.0599 –
(12.64) – (11.66) – (7.15) –

SlopeD – 0.0191 – 0.0159 – 0.0073
– (1.88) – (1.47) – (0.97)

SlopeU – -0.1081 – -0.1116 – -0.0365
– (-8.89) – (-8.40) – (-4.63)

IV ×D2010−2014 0.0546 0.0354 -0.0292 -0.0363 0.0998 0.0765
(2.77) (1.96) (-1.47) (-2.07) (7.18) (6.11)

ISkew ×D2010−2014 -0.0565 – 0.0147 – -0.0950 –
(-2.94) – (0.76) – (-6.19) –

IKurt×D2010−2014 -0.0061 – 0.0301 – -0.0295 –
(-0.40) – (1.99) – (-1.86) –

SlopeD ×D2010−2014 – 0.0404 – -0.0010 – 0.0598
– (1.82) – (-0.06) – (3.10)

SlopeU ×D2010−2014 – 0.0123 – -0.0256 – 0.0342
– (0.67) – (-1.60) – (2.03)

IV ×D2015−2019 0.0241 0.0188 0.0505 0.0540 -0.0204 -0.0338
(1.59) (1.44) (2.10) (2.60) (-2.44) (-3.81)

ISkew ×D2015−2019 -0.0888 – -0.0664 – -0.0589 –
(-5.88) – (-3.99) – (-6.17) –

IKurt×D2015−2019 -0.0505 – -0.0651 – -0.0009 –
(-3.15) – (-4.73) – (-0.05) –

SlopeD ×D2015−2019 – 0.0451 – 0.0322 – 0.0353
– (2.94) – (2.24) – (2.54)

SlopeU ×D2015−2019 – 0.0792 – 0.0819 – 0.0257
– (5.21) – (5.03) – (1.98)

Constant Yes Yes Yes Yes Yes Yes
5-Factor Betas Yes Yes Yes Yes Yes Yes
Period Dummies Yes Yes Yes Yes Yes Yes

Obs. 117093 117093 119218 119218 117093 117093
R2 0.0548 0.0485 0.0709 0.0639 0.0084 0.0067

Table 5: Conditional Link: Climate Change Exposure and Financial Risks. This table reports the
results of panel regressions at the firm-month level. We report regressions, explaining in Columns 1 and 2 firm-
specific climate change exposure (CCExposure), in Columns 3 and 4 industry average climate change exposure
(CCExposureInd), and in Columns 5 and 6 the residual (CCExposureRes). The regressions include risk quanti-
ties (variance, skewness, kurtosis, up and down slope), time-period dummies, and interactions between the risk
quantities and the time-period dummies. We also control for the 5-factor model based on stock returns. All
variables (except for the factor betas) are standardized at each point in time to have zero means and standard
deviations of one. t-statistics are based on standard errors robust to heteroskedasticity, serial correlation and
spatial correlation (Driscoll and Kraay (1998)). The sample covers the years 2003 to 2019 and includes stocks in
the S&P 500.
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have a positive and significant effect on residual exposure, and a negative and insignificant one

on the industry metric. The picture partially reverses after 2015: Now, volatility has a stronger

effect on the industry metric, while the opposite holds for the residual measure. For the tail

variables, we find positive effects between 2015 and 2019 for both components.

We offer two non-mutually exclusive explanations for what happened after 2015. First, 2015

was the year of the Paris Agreement, and markets may have started to update their views on the

likelihood of climate-related investment opportunities eventually succeeding. This may have led

to lower downside crash risk and higher upside potential for firms with high CCExposure (we

document below that significant components of the risk premium originate from opportunity

shocks). Second, Azar, Duro, Kadach, and Ormazabal (2021) document that since 2015, there

has been increased shareholder engagement by the Big Three with the objective to reduce firms’

carbon emissions. This engagement lowered carbon emissions, which in turn plausibly reduced

downside tail risks of firms with high CCExposure, at least to the extent that this is captured

in overall climate change exposure.

4.4 Climate Change Exposure and Risk Premiums for Higher-Order Risks

Table 6 relates CCExposure to the risk premium for higher-order risks: the variance risk pre-

mium; the upside and downside semi-variance risk premiums; and the skewness risk premium.28

Documenting a link between climate change exposure and these risk premiums is important,

because these relationships indicate how these risks are priced in options markets. As before,

we consider total climate change exposure in Panel A and its two components in Panel B.

In Panel A, Columns 1 and 2, CCExposure is positively related to the compensation for

variance risk (t-stats of 2.82 and 3.45). Further, Columns 3 and 5 indicates that CCExposure

affects the risk premium for downside jump risk (V RPD) 60% more strongly than the premium

28These variables have been shown to explain some portion of the equity risk premium. Most models developed
to date link the risk premiums embedded in options to the equity risk premium at the aggregate market level;
we instead work with the cross-section of stocks. For example, Bollerslev, Tauchen, and Zhou (2009) develop a
model in which the equity and variance risk premiums on the market level share a common component arising
from the volatility of volatility. Similarly, models exist that link equity risk premium and premiums for jumps and
tail risks (Bollerslev and Todorov (2011), Bollerslev, Todorov, and Xu (2015), Kilic and Shaliastovich (2019)).
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Risk Premium V RP V RPD V RPU SRP
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Total CCExposure
Constant 0.1111 0.1146 0.0941 0.0531 0.0709 0.1079 0.0104 0.0643

(2.35) (2.33) (1.95) (1.19) (1.68) (2.36) (0.33) (2.06)
Market -0.1481 -0.1477 -0.1314 -0.0886 -0.1041 -0.1371 -0.0164 -0.0683

(-3.46) (-3.38) (-3.01) (-2.23) (-2.74) (-3.38) (-0.56) (-2.46)
Size (SMB) 0.2316 0.1969 0.2224 0.2046 0.2125 0.1801 0.0551 0.0404

(5.46) (4.65) (5.66) (5.58) (5.29) (4.39) (2.08) (1.53)
V alue (HML) 0.0116 -0.0108 -0.0017 -0.0131 0.0119 -0.0127 0.0047 -0.0089

(0.57) (-0.45) (-0.08) (-0.61) (0.64) (-0.54) (0.31) (-0.46)
Mom. (WML) -0.0214 – -0.0472 – -0.0013 – 0.0287 –

(-1.00) – (-2.17) – (-0.06) – (1.37) –
Prof. (RMW ) – -0.0345 – -0.0389 – -0.0327 – -0.0097

– (-2.04) – (-2.31) – (-2.04) – (-0.77)
Inv. (CMA) – 0.0441 – 0.0203 – 0.0416 – 0.0209

– (3.57) – (1.78) – (3.21) – (1.83)
CCExposure 0.0249 0.0255 0.0269 0.0279 0.0165 0.0167 -0.0033 -0.0034

(2.82) (3.45) (5.61) (6.01) (1.58) (2.01) (-0.48) (-0.69)

Obs. 117093 117093 117093 117093 117093 117093 117093 117093
R2 0.0124 0.0119 0.0117 0.0097 0.0092 0.0098 0.0004 0.0010

Panel B: Industry Decomposition of CCExposure
Constant 0.1112 0.1147 0.0943 0.0532 0.0709 0.1080 0.0103 0.0642

(2.35) (2.34) (1.96) (1.20) (1.68) (2.37) (0.32) (2.06)
Market -0.1483 -0.1479 -0.1317 -0.0888 -0.1042 -0.1373 -0.0163 -0.0683

(-3.47) (-3.39) (-3.02) (-2.24) (-2.74) (-3.38) (-0.56) (-2.46)
Size (SMB) 0.2318 0.1971 0.2224 0.2046 0.2127 0.1803 0.0554 0.0406

(5.47) (4.66) (5.66) (5.59) (5.31) (4.41) (2.09) (1.54)
V alue (HML) 0.0117 -0.0108 -0.0015 -0.0129 0.0119 -0.0128 0.0045 -0.0091

(0.57) (-0.45) (-0.07) (-0.60) (0.64) (-0.55) (0.29) (-0.48)
Mom. (WML) -0.0215 – -0.0472 – -0.0014 – 0.0286 –

(-1.00) – (-2.17) – (-0.06) – (1.37) –
Prof. (RMW ) – -0.0347 – -0.0389 – -0.0329 – -0.0099

– (-2.05) – (-2.31) – (-2.05) – (-0.78)
Inv. (CMA) – 0.0441 – 0.0203 – 0.0416 – 0.0209

– (3.57) – (1.78) – (3.22) – (1.84)
CCExposureInd 0.0231 0.0240 0.0182 0.0179 0.0179 0.0192 0.0045 0.0064

(2.46) (3.70) (2.48) (2.60) (1.54) (2.66) (0.67) (1.48)
CCExposureRes 0.0164 0.0167 0.0180 0.0189 0.0108 0.0108 -0.0025 -0.0029

(2.73) (3.25) (5.14) (5.69) (1.52) (1.87) (-0.51) (-0.78)

Obs. 117093 117093 117093 117093 117093 117093 117093 117093
R2 0.0125 0.0119 0.0117 0.0097 0.0093 0.0099 0.0006 0.0011

Table 6: Climate Change Exposure and Risk Premiums for Higher-Order Risks. This table reports
results of panel regressions at the firm-month level. We report in Panel A regressions relating the risk premi-
ums for the variance, downside and upside variances, and skewness with firm-specific climate change exposure
(CCExposure). Panel B splits the exposure measure into its two components, the industry average climate
change exposure (CCExposureInd) and the residual (CCExposureRes). The regressions control for the 4- and
5-factor model betas. We include fixed effects at the time (month-year) and industry (SIC2 code) level. Variables
(except for factor betas) are standardized at each point in time to have zero means and standard deviations of
one. t-statistics based on standard errors clustered by time and industry are reported in parentheses. The sample
covers the years 2003 to 2019 and includes stocks in the S&P 500.
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for upside exposure (V RPU) (t-stat of 6.01 vs. 2.01).29 In Columns 7 and 8, the skewness

risk premium (SRP ) does not reveal a prevailing effect on downside vs. upside protection costs

across different levels of CCExposure. Finally, in Panel B, both components of CCExposure

contribute equally to the higher-order risk premiums. Hence, selling (total, upside, and down-

side) volatility for stocks with high CCExposure promises compensation, and we can conclude

that climate change exposure is priced in options markets. It should be noted that the average

effects are modest, and, taking transaction costs into consideration, hardly tradeable. How-

ever, through the link to the return risk premium, the premiums paid for downside and upside

semi-variances contribute to the expected returns, with the former premium likely dominating.

Considering all evidence, climate change exposure affects both general risk and the tail

regions of the return distribution. The compensation paid for stocks with high exposure reflects

climate-related effects on general uncertainty and on both tails, with the left-tail hedge price

being larger than the price for right-tail opportunities. A time-varying attribution of different

left- and right-tail risks to firm-specific exposure can potentially explain the gap in the exposure

pricing by different investor types. The importance of the tail regions in the pricing of climate

change exposure is consistent with Ilhan, Sautner, and Vilkov (2021).

5 Taxonomy of Climate Change Risk Premiums

5.1 Risk Premium for Climate Change Topics: Cross-Sectional Analysis

We next explore how investors consider exposure to climate-related opportunity, regulatory,

and physical shocks in forming return expectations. Toward this end, Table 7 repeats the risk

premium analysis from above, but uses exposure to opportunity, regulatory and physical shocks.

Columns 1 and 2 report results for realized excess returns, Columns 3 and 4 for MW -based

expected excess returns, and Columns 5 and 6 for the GLB proxy.30

29Because our variables are standardized in the cross-section at each point in time, we can directly infer the
magnitude of the effects from the coefficients. A one-sigma change in CCExposure relates to 2.79% of a one-sigma
change in V RPD, but to only 1.67% of a one-sigma change in the V RPU .

30As in Table 2, we control for the 4- and 5-factor models and standardize the climate change metrics to have
zero means and 0.01 standard deviations (such that the risk premium estimates are specified in percentages per
annum). We do not split the metrics further into industry and residual components, because, as we discovered
earlier, both components contribute about equally to the CCExposure risk premium.
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Expected Return RET MW GLB
(1) (2) (3) (4) (5) (6)

Constant 0.1392 0.1291 0.0103 0.0104 0.0394 0.0395
(4.37) (5.15) (2.31) (3.42) (5.06) (5.83)

Market -0.0052 0.0072 0.0387 0.0387 0.0363 0.0364
(-0.13) (0.21) (4.08) (4.52) (5.29) (4.73)

Size (SMB) 0.0378 0.0478 0.0499 0.0522 0.0153 0.0149
(2.31) (2.78) (12.32) (12.09) (5.16) (5.05)

V alue (HML) -0.0192 -0.0188 0.0036 0.0078 0.0052 0.0050
(-1.23) (-1.10) (0.76) (1.61) (2.46) (1.91)

Mom. (WML) 0.0114 – -0.0248 – -0.0076 –
(0.40) – (-2.38) – (-1.12) –

Prof. (RMW ) – 0.0081 – -0.0202 – -0.0067
– (0.61) – (-7.76) – (-4.88)

Inv. (CMA) – -0.0168 – 0.0018 – -0.0002
– (-1.49) – (0.64) – (-0.18)

CCExposureOpp -0.0594 0.0414 0.1635 0.1629 0.1281 0.1159
(-0.14) (0.09) (3.02) (2.91) (2.22) (1.94)

CCExposurReg -0.0841 -0.0379 0.0883 0.0919 0.0443 0.0345
(-0.25) (-0.12) (1.64) (1.96) (1.13) (0.86)

CCExposurePhy -0.1183 -0.1465 -0.0689 -0.0760 -0.0081 -0.0126
(-0.45) (-0.56) (-2.29) (-2.54) (-0.55) (-0.79)

Obs. 117632 117632 117972 117972 117362 117362
R2 0.0005 0.0012 0.2002 0.2177 0.0439 0.0540

Table 7: Risk Premium for Climate Change Topics: Cross-Sectional Analysis. This table reports the
results of the Fama-MacBeth regressions at the firm-month level. We report the risk premiums for topic-based
climate exposure (CCExposureOpp, CCExposureReg, CCExposurePhy). All risk premiums are reported in %
p.a., after controlling for 4- and 5-factor models. As proxies for expected excess returns, we use in Columns 1
and 2 the realized excess returns (RET ), in Columns 3 and 4 the forward-looking proxy by Martin and Wagner
(2019) (MW ), and in Columns 5 and 6 the forward-looking proxy by Chabi-Yo, Dim, and Vilkov (2020) (GLB).
t-statistics based on Newey and West (1987) standard errors are reported in parentheses. The sample covers the
years 2003 to 2019 and includes stocks in the S&P 500.

Columns 1 and 2 continue to show insignificant realized risk premiums for all three exposure

topics. Columns 3 and 4 show that the MW premium for CCExposure is largely driven by

exposure to climate-related opportunities. Results are similar in Columns 5 and 6 when we use

the GLB proxy (but with lower significance levels). For the MW proxy, we also observe in

Columns 3 and 4 that exposure to regulatory shocks is associated with a risk premium on top of

the premium for opportunity shocks (albeit two times smaller). The effect for the GLB-based

premium is also positive but insignificant. Exposure to physical shocks is negatively priced for

the MW premium, but the effect is insignificant for the GLB proxy.

What explains these results? Given the properties of the MW and GLB premiums, and

their sensitivities to the tail and high-order risks, climate-related opportunities seem to be
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associated with higher risks in the form of higher expected volatility. Regulatory shocks are also

related to higher volatility, but to a lesser extent. The negative price of risk for physical shocks

is surprising, but can potentially be explained by two points: First, climate-related physical

damage is not abstract and can be quantified in many cases, at least over the short horizon.31

Second, the insignificant GLB premiums indicate that investors who take left-tail risks and

right-tail potential into account do not price physical shocks. The discrepancy with the MW

premiums should then stem from variance-reliant investors.

5.2 Risk Premium for Climate Change Topics: Time-Series Analysis

Figure 2 presents the time series of the risk premiums for the three topic measures; we again

plot the additive trend extracted from the time-series estimates using the STL decomposition.

The MW premiums are reported in Panel A, and the GLB premiums in Panel B.

Across both panels, the picture for CCExposureOpp is similar to the one for CCExposure in

Figure 1, although the topic-based trends are more noisy. For the MW proxy, the risk premium

is positive between 2010 and 2019. Until 2015, the pattern is similar for the GLB proxy, but

the risk premium then declines to zero. The discrepancy between the two premiums in the last

five years stems from the different treatment of the tails, as discussed earlier. Evidently, in more

recent years, when investors pay a great deal of attention to climate-related opportunity topics,

they then assign higher right and less extreme left tail to such firms. Such a reallocation of

probabilities in the expected distribution leads to the elimination of the risk premium in the

eyes of investors taking higher-order risks into account. The CCExposureReg risk premium is

mostly negative for the MW approach and is close to zero for the GLB approach; as discussed

earlier, the difference originates from the differential treatment of the tails in the two proxies.

31It is easier for firms to secure protection against physical climate shocks in the form of insurance; the necessary
insurance costs reduce the profitability and the expected returns, while at the same time keeping risks under
control. The report on climate-related physical impact in Economist (2020) cites studies quantifying physical
climate impact on firm value and concludes that “As its impact becomes clearer, companies have to take climate
change more seriously.” The same report, using Swiss Re data, shows that worldwide weather-related losses have
been increasing over the last 30 years, but a higher proportion of these losses was insured in the last 10-15 years
compared to the earlier periods. Hence, firms have to spend more on safer infrastructure and business resilience,
inevitably reducing the margins and future returns.
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Figure 2: Risk Premium for Climate Change Topics: Time-Series Dynamics. This figure shows the
trend component (from an STL decomposition of Cleveland, Cleveland, McRae, and Terpenning (1990)) of the
time series of the risk premiums for topic-based climate change exposure (opportunity, regulatory, and physical
exposure), obtained jointly with 5-factor model premiums in the first stage of the Fama-MacBeth regressions
using the MW - and the GLB-based proxies for expected excess returns. The sample covers the years 2003 to
2019 and includes stocks in the S&P 500.

6 Conclusion

We demonstrate that firm-level climate change exposure is related to stock returns and risk

quantities. Instead of relying on carbon emissions or ESG scores, we employ a measure recently

introduced by SvLVZ, which captures climate-related upside and downside aspects. Uncondi-

tionally, the realized risk premium for climate change exposure is indistinguishable from zero.

To the contrary, investors who buy stocks with higher climate change exposure expect to earn a
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risk premium; we document this result using the expected return models of Martin and Wagner

(2019) and Chabi-Yo, Dim, and Vilkov (2020).

These unconditional effects mask high time-series heterogeneity. Realized compensation for

climate change exposure rises steadily, from zero in 2003 to 2% just before the financial crisis. It

then declines sharply between 2007 and 2009, only to resume its upward trend until 2019. The

time-series patterns for the expected premiums look different, relative to the realized premium,

and also relative to each other. For investors using variance as the sufficient risk statistic (Martin

and Wagner (2019)), the expected risk premium increases from zero to 0.5% in 2012, and it then

plateaus around this level for the next decade. Until 2015, this pattern is similar if we construct

the risk premium for investors also considering extreme risks and opportunities (Chabi-Yo, Dim,

and Vilkov (2020)). However, we observe a divergence after 2015: When we infer risk premiums

under such investor preferences, there is a secular decline in the premium to zero in 2019.

The heterogeneity in the results depending on investor risk preferences prompts us to explore

how climate change exposure affects higher-order moments and tail risks. The dynamics of the

two expected risk premiums originate from how investors map climate exposure into variance

and higher-order risks. Since 2015, investors began to associate relatively smaller crash risks and

higher opportunities with climate exposure. This reduced the required compensation in the eyes

of investors with preferences that take higher-order risks into account. We capture these subtle

effects as our measure of exposure reflects upside and downside aspects. Large components

of the expected premiums, and of the risks associated with climate change exposure, originate

from climate-related opportunities. While a higher risk in the form of a higher expected variance

implies a higher risk premium for firms with better opportunities, the expected premiums can

be reduced to zero if one takes into account that higher exposure also means better growth

potential and smaller crash risk.

Our results confirm that the exposure measure by SvLVZ reveals investors’ attitudes toward

the risks and opportunities related to climate change, as well as their expectations of equity

returns and risks. The dynamics of the risk premium link to the nascent theoretical literature

on climate finance, and they may well inspire further theoretical work, taking into account

potential changes in investors’ attitudes toward climate topics and ESG awareness.
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Bigram Frequency Bigram Frequency Bigram Frequency

renewable energy 12406 coastal area 738 snow ice 481
electric vehicle 6732 energy star 737 electrical energy 480
clean energy 4815 scale solar 708 electric hybrid 476
new energy 3751 major design 696 solar installation 474
wind power 3673 transmission grid 692 connect grid 474
wind energy 3611 energy plant 678 driver assistance 473
energy efficient 3588 global warm 671 reach gigawatt 471
climate change 2709 motor control 661 provide clean 466
greenhouse gas 2341 battery electric 659 reinvestment act 460
solar energy 2153 clean water 648 invest energy 454
clean air 2019 combine heat 645 green build 453
air quality 1959 need energy 602 sector energy 452
reduce emission 1567 future energy 581 california department 449
water resource 1336 use water 564 plant use 447
energy need 1291 environmental concern 560 friendly product 447
carbon emission 1273 include megawatt 557 energy initiative 444
carbon dioxide 1247 build owner 557 issue rfp 443
carbon footprint 1180 electric grid 551 transmission capacity 442
gas emission 1166 energy team 544 close megawatt 441
energy environment 1145 world energy 544 market solar 437
wind resource 1065 energy application 544 business air 437
air pollution 1063 wind capacity 541 construction megawatt 435
reduce carbon 1004 transmission infrastructure 540 rooftop solar 434
president obama 980 population center 532 application power 431
battery power 969 energy reform 523 forest land 426
clean power 955 charge station 523 grid power 421
energy regulatory 921 wind park 522 advance driver 419
plug hybrid 890 produce power 521 northern pass 418
obama administration 886 environmental footprint 519 nox emission 418
build power 849 source power 512 wind facility 418
world population 838 pass house 512 energy component 417
heat power 835 gas vehicle 511 vehicle application 415
light bulb 808 plant power 500 emission trade 412
carbon capture 804

OA Table 1: Top-100 Bigrams Captured by Climate Change Exposure (CCExposure). This table
reports the top-100 bigrams associated with CCExposure, which measures the relative frequency with which
bigrams related to climate change occur in the transcripts of earnings conference calls.
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Bigrams Exposure Bigrams Exposure Bigrams Exposure

renewable energy 12406 gas clean 289 energy target 223
electric vehicle 6732 vehicle lot 287 term electric 221
clean energy 4815 vehicle place 286 power world 220
new energy 3751 meet energy 286 vehicle small 216
wind power 3673 vehicle type 281 renewable electricity 216
wind energy 3611 vehicle future 276 wave power 214
solar energy 2153 energy commitment 276 carbon neutral 213
plug hybrid 890 electronic consumer 275 auction new 211
heat power 835 expand energy 269 cost renewable 210
renewable resource 800 gigawatt install 266 vehicle talk 210
solar farm 753 bus truck 264 vehicle offer 210
battery electric 659 ton waste 263 customer clean 210
electric hybrid 476 energy research 258 power solar 209
reinvestment act 460 focus renewable 257 vehicle opportunity 208
issue rfp 443 pure electric 256 community solar 208
construction megawatt 435 ev charge 255 energy goal 207
rooftop solar 434 grid technology 249 vehicle hybrid 207
grid power 421 geothermal power 249 invest renewable 207
recovery reinvestment 395 type energy 246 incorporate advance 206
solar generation 394 solar program 245 talk solar 203
energy standard 384 vehicle development 243 ton carbon 202
sustainable energy 376 energy important 243 small hydro 202
vehicle charge 374 install solar 242 base solar 202
guangdong province 360 vehicle battery 242 target gigawatt 201
hybrid car 341 energy vehicle 242 charge network 201
charge infrastructure 323 energy bring 240 capacity generation 201
micro grid 322 vehicle space 233 vehicle add 200
grid connect 319 opportunity clean 231 vehicle infrastructure 200
clean efficient 308 demand wind 227 solar array 198
carbon free 306 vehicle good 226 energy auction 198
hybrid technology 306 medical electronic 226 product hybrid 192
generation renewable 303 incremental content 224 product solar 192
energy wind 295 supply industrial 223 exist wind 192
battery charge 290

OA Table 2: Top-100 Bigrams Captured by Opportunity Climate Change Exposure
(CCExposureOpp). This table reports the top-100 bigrams associated with CCExposureOpp, which measures
the relative frequency with which bigrams that capture opportunity shocks related to climate change occur in the
transcripts of earnings conference calls.
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Bigrams Exposure Bigrams Exposure Bigrams Exposure

greenhouse gas 2341 issue air 157 comply environmental 114
reduce emission 1567 promote energy 153 glacier hill 111
carbon emission 1273 emission free 152 hill wind 110
carbon dioxide 1247 implement energy 151 nox sox 110
gas emission 1166 recovery pollution 149 tax australia 106
air pollution 1063 control regulation 146 way comply 105
reduce carbon 1004 florida department 144 emission intensity 103
energy regulatory 921 commission license 141 oxide emission 101
carbon tax 792 gas regulation 140 emission improve 101
carbon price 760 appeal district 139 emission increase 100
environmental standard 496 source electricity 139 install low 99
nox emission 418 effective energy 138 commission public 97
emission trade 412 nitrous oxide 138 castle peak 97
dioxide emission 396 impact clean 134 capture carbon 97
epa regulation 370 think carbon 134 wait commission 96
energy independence 350 global climate 132 emission compare 92
carbon reduction 338 produce carbon 128 clean electricity 92
know clean 276 clean job 126 high hydrocarbon 92
standard requirement 268 efficient natural 124 emission come 88
development renewable 267 emission monitor 124 weight fuel 87
carbon market 259 emission issue 123 stability reserve 87
trade scheme 232 quality permit 122 quality regulation 86
deliver clean 228 product carbon 122 request public 86
mercury emission 220 china air 122 additive process 86
reduce air 218 reduce sulfur 121 gas carbon 84
save technology 193 available control 121 epa requirement 83
talk clean 190 emission rate 119 liter diesel 83
energy alternative 188 regulation low 118 meet reduction 81
place energy 176 capture sequestration 118 talk climate 81
reduce nox 175 nation energy 117 expect carbon 80
air resource 169 emission year 115 emission ton 80
target energy 166 efficient combine 115 ambient air 80
change climate 163 carbon economy 114 know carbon 79
impact climate 163

OA Table 3: Top-100 Bigrams Captured by Regulatory Climate Change Exposure (CCExposureReg).
This table reports the top-100 bigrams associated with CCExposureReg, which measures the relative frequency
with which bigrams that capture regulatory shocks related to climate change occur in the transcripts of earnings
conference calls.
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Bigrams Exposure Bigrams Exposure Bigrams Exposure

coastal area 738 ice product 198 especially coastal 58
global warm 671 security energy 194 sewer overflow 52
snow ice 481 water act 182 combine sewer 52
friendly product 447 management district 174 area coastal 52
forest land 426 weather snow 154 large desalination 50
area florida 367 service reliable 148 plant algeria 50
sea level 365 management water 138 warm product 47
provide water 364 ability party 134 solution act 47
nickel metal 362 ice control 128 fluorine product 47
supply water 297 inland area 127 area inland 43
storm water 262 non coastal 115 fight global 41
heavy snow 252 storm january 105 sell forest 39
air water 251 sale forest 93 exposure coastal 34
natural hazard 227 value forest 80 city coastal 34
sea water 218 land forest 79 marina east 28
warm climate 213 particularly coastal 66 day desalination 23
water discharge 211 golf ground 58

OA Table 4: Top-100 Bigrams Captured by Physical Climate Change Exposure (CCExposurePhy).
This table reports the top-100 bigrams associated with CCExposurePhy, which measures the relative frequency
with which bigrams that capture physcial shocks related to climate change occur in the transcripts of earnings
conference calls.
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Expected Return RET RET RET MW MW MW GLB GLB GLB
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Constant 0.4104 0.4134 0.4130 0.0113 0.0141 0.0101 0.0296 0.0283 0.0283
(31.22) (37.41) (33.57) (2.87) (2.78) (2.51) (4.61) (3.84) (3.98)

Market 0.0132 0.0104 0.0108 0.0227 0.0196 0.0238 0.0236 0.0248 0.0249
(1.21) (1.06) (1.05) (7.52) (4.48) (6.92) (12.01) (12.18) (12.13)

Size (SMB) -0.0045 -0.0028 -0.0021 0.0629 0.0601 0.0618 0.0096 0.0080 0.0081
(-0.77) (-0.41) (-0.30) (32.95) (23.67) (31.52) (3.52) (3.00) (2.88)

V alue (HML) -0.0091 -0.0080 -0.0085 -0.0074 -0.0068 -0.0075 0.0011 0.0010 0.0009
(-0.47) (-0.41) (-0.44) (-9.30) (-6.06) (-9.30) (0.83) (0.58) (0.51)

Prof. (RMW ) -0.0011 -0.0019 -0.0020 -0.0151 -0.0145 -0.0146 -0.0055 -0.0048 -0.0049
(-0.20) (-0.32) (-0.34) (-8.63) (-8.03) (-8.94) (-4.48) (-3.10) (-3.06)

Inv. (CMA) -0.0130 -0.0132 -0.0140 0.0026 0.0040 0.0029 -0.0023 -0.0020 -0.0021
(-0.83) (-0.85) (-0.90) (1.35) (2.27) (1.62) (-1.20) (-0.93) (-1.02)

CCExposure 0.1208 – 0.1208 0.5212 – 0.5261 0.0130 – 0.0226
(0.90) – (0.93) (10.22) – (9.91) (0.29) – (0.49)

ISS CRR – 0.4508 0.4515 – -0.1714 -0.1947 – -0.2392 -0.2402
– (1.64) (1.67) – (-1.96) (-2.64) – (-7.65) (-7.29)

Obs. 1914 1914 1914 1914 1914 1914 1914 1914 1914
R2 0.0136 0.0168 0.0174 0.4519 0.4365 0.4543 0.1354 0.1389 0.1391

OA Table 5: Risk Premium for Carbon Risk Rating (ISS CRR): Cross-Sectional Analysis for 2015-
2018. This table reports results of Fama-MacBeth regressions at the firm-year level for the years from 2015 to
2018. We report the risk premium estimates for the ISS ESG Carbon Risk Rating (ISS CRR) and for firm-specific
climate change exposure (CCExposure), controlling for the 5-factor exposures (risk premiums in decimals p.a.).
CCExposure and ISS CRR are standardized each period to have zero mean and standard deviation of 0.01
(hence, the risk premium estimates are in percentage terms). As proxies for expected excess returns we use in
Columns 1 and 2 the realized excess returns (RET ), in Columns 3 and 4 the forward-looking proxy by Martin
and Wagner (2019) (MW ), and in Columns 5 and 6 the forward-looking proxy by Chabi-Yo, Dim, and Vilkov
(2020) (GLB). t-statistics based on Newey and West (1987) standard errors are reported in parentheses. The
sample covers the years 2003 to 2019 and includes stocks in the S&P 500.
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