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Abstract

We develop a model of the feedback between mutual fund outflows and asset illiquidity.

Following a market shock, alert investors anticipate the impact on a fund’s net asset value (NAV)

of other investors’ redemptions and exit first at favorable prices. This first-mover advantage may

lead to fund failure through a cycle of falling prices and increasing redemptions. Our analysis

shows that (i) the first-mover advantage introduces a nonlinear dependence between a market

shock and the aggregate impact of redemptions on the fund’s NAV; (ii) as a consequence, there is

a critical magnitude of the shock beyond which redemptions brings down the fund; (iii) properly

designed swing pricing transfers liquidation costs from the fund to redeeming investors and, by

removing the nonlinearity stemming from the first-mover advantage, it reduces these costs and
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prevents fund failure. Achieving these objectives requires a larger swing factor at larger levels

of outflows. The swing factor for one fund may also depend on policies followed by other funds.

Key words: mutual funds, first-mover advantage, swing price, fire sales, financial stability

JEL Classification: G01, G23, G28

1 Introduction

The size of the open-end mutual fund industry has increased substantially in recent years. In the

United States, the total assets managed by open-end mutual funds grew by $6.8 trillion over the

last decade.1 In particular, fixed income mutual funds posted significant net inflows: 16.3% of

outstanding corporate bonds held in the U.S. are owned by mutual funds as of 2017, up from 3.5%

in 1990.2

Liquidity management by funds has attracted regulators’ attention, because of the structural

liquidity mismatch in open-end mutual funds: funds price their shares daily, but the assets they

hold may not be as easy to sell on short notice, such as in the case of corporate and emerging

market bond funds. To meet investor redemptions, a fund may be forced to sell assets at reduced

prices, but investors’ redeemed shares are paid at the end-of-day net asset value (NAV), which may

not account for the total liquidation costs incurred in subsequent days.3 This liquidity mismatch

creates an incentive for investors to redeem their shares early, as they anticipate that the cost of

other investors’ redemptions will be reflected in the future NAV of the fund.

In extreme stress scenarios, this first-mover advantage can trigger a spiral of redemptions that

brings down the fund. A prominent example is the junk-bond fund Third Avenue Focused Credit.

Impacted by heavy redemptions, from July to December 2015, the fund lost more than half of its

market value, falling below $1 billion from an initial value of $2.1 billion. Third Avenue suspended

redemptions and began liquidating the fund because it could not meet withdrawal requests by

1See the Flow of Funds Accounts, Z.1 Financial Accounts of the United States, published by the Federal Reserve
Board. Compare the table L.122 for March 2006, reporting that the total value of financial assets held by mutual
funds in 2005 is $6.05 trillion, with the table for March 2016, which indicates that the total value of assets held by
mutual funds in 2015 is $12.9 trillion.

2See Table L.213, respectively Table L.212, in the Flow of Funds Accounts, Z.1 Financial Accounts of the United
States, published by the Federal Reserve Board in September 2017, respectively in September 1996.

3The share price at which an investor will be repaid is set at the end of the day. The payment itself typically
occurs within 1–3 days, and up to a maximum of 7 days under U.S. regulations.
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selling shares of its assets at “rational” prices. In its application to the SEC for the approval of the

redemption block, Third Avenue wrote:

If the relief is not granted, and the Fund is unable to suspend redemptions, the insti-

tutional investors would likely be best positioned to take advantage of any redemption

opportunity, to the detriment of those investors – most likely, retail investors – who

remain in the Fund. These remaining investors would suffer a rapidly declining net

asset value and an even further diminished liquidity of the Fund’s securities portfolio.

The relief would help avoid such an outcome.

In October 2016, the Securities and Exchange Commission announced the adoption of amend-

ments to Rule 22c-1 to promote liquidity risk management in the open-end investment company

industry. The rule, effective on November 19, 2018, allows open-end funds to use “swing pricing”

under certain circumstances. Swing pricing allows a fund to adjust (“swing”) its net asset value per

share to effectively pass on the costs stemming from shareholder purchase or redemption activity

to the shareholders associated with that activity; see Securities and Exchange Commission (2016).

We develop a theoretical framework for the analysis of this rule and its implications for finan-

cial stability. Our analysis shows the following. (i) The first-mover advantage magnifies fire sale

effects and introduces a crucial nonlinear dependence between the aggregate price impact due to

redemptions and an initial market shock. (ii) There is a critical threshold for the market shock

beyond which the fire-sale driven amplification leads to the failure of the fund, in the sense that

the fund is unable to repay shares of redeeming investors at the promised NAV. (iii) Swing pricing,

under an ideal implementation, transfers the cost of liquidation from the fund to the redeeming

investors, and – importantly – reduces this cost by removing the nonlinear amplification stemming

from the first-mover advantage. (iv) Swing pricing as currently applied in practice may not achieve

these objectives, because funds apply a fixed adjustment instead of an adjustment that increases

with the number of investors’ redemptions. (v) In an economy with multiple funds which all adopt

swing pricing, the NAV adjustment required to remove all cross-fund externalities would be lower

than in the case that some funds do not apply swing pricing while others impose a swing price that

removes only their own fund’s externalities.

Our analysis builds on empirical work exploring the connection between market liquidity, mu-
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tual fund performance, and investor flows. Several studies, including Chordia (1996), Ferson and

Schadt (1996), Sirri and Tufano (1998), and Warther (1995) have documented relationships between

investor flows and fund performance; Edelen (1999) in particular finds that negative abnormal re-

turns in open-end mutual funds can be explained by the liquidation costs induced by investor flows.

Other important contributions include Chen et al. (2010) and Goldstein et al. (2017), which study

the sensitivity of outflows to underperformance in the context of equity and fixed income funds,

respectively. Goldstein et al. (2017) compare the flow-to-performance relation of funds holding

liquid assets with that of funds holding illiquid assets.4 They find that funds holding illiquid assets

are more sensitive to bad performance and exhibit a greater first-mover advantage.

Few other works have explored the theoretical underpinnings of the interactions between asset

illiquidity, market stress, and redemption flows. In Chen et al. (2010), the authors present a model

that explains why only some investors redeem in response to a fund’s bad performance. They

attribute this behavior to informational asymmetries: investors receive different signals about the

fund’s future performance; some investors believe that improved future performance can compensate

for the costs of liquidation in the face of an immediate redemption, while others believe the opposite.

Chordia (1996) studies the use of load fees to discourage redemptions in a model with redemptions

driven by investor liquidity shocks, rather than by fund performance; load fees are fixed and, unlike

swing pricing, do not respond to the level of redemptions. Lewrick and Schanz (2017b) develop

an equilibrium model which yields the welfare-optimal swing price, and discuss its dependence on

trading costs and investors’ liquidity needs.

In contrast to these models, which build on the foundational work on bank runs by Diamond and

Dybvig (1983), our study considers an ex-post scenario in which the shock has already occurred and

investors withdraw in response to it. This allows us to quantify the total amount of redemptions

and the critical level of the initial shock that brings down the fund. In Diamond and Dybvig (1983)

withdrawing decisions are made ex-ante — depositors strategically decide whether to withdraw

their deposits without being prompted by an exogenous shock.

Zeng (2017) develops a dynamic model of an open-end mutual fund that holds illiquid assets

and manages its cash buffer over time. He argues that even if redeeming investors were internalizing

4We use the term “illiquid” to refer to what might more precisely be referred to as “less liquid” assets. U.S.
mutual funds are barred from holding more than 15 percent of their assets in illiquid securities, but they may hold a
greater portion in corporate bonds and other less liquid securities.
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the liquidation costs they create, there would still be a negative externality imposed on the fund

because the fund would need to rebuild its cash position at a later date by selling illiquid assets,

a costly operation. While the focus of Zeng (2017) is on the cash management policy and its

dynamic relation with shareholder redemptions, our focus is on how the feedback between market

and liquidity shocks is reinforced through the first-mover advantage and stopped by an appropriate

swing pricing rule. Unlike in Zeng (2017), the redemption mechanism in our study is triggered

by an exogenous market shock which not only reduces the value of a fund share, but also exerts

downward pressure on the price of the asset, and in extreme scenarios brings the fund down. Morris

et al. (2017) study, both theoretically and empirically, how asset managers manage liquidity when

they interact with redeeming investors. They analyze the trade-off between cash hoarding and

pecking-order liquidity management. They find that if the costs of future fire sales are high relative

to the liquidity discount that applies to instantaneous liquidation, funds hoard cash and liquidate

more assets than necessary to meet current redemptions.

Our study is complementary to Bernardo and Welch (2004). In their paper, investors decide on a

liquidation strategy in anticipation of a potential idiosyncratic liquidity shock, and the proportion of

otherwise identical investors who sell their shares early is endogenously determined in equilibrium.

Our investors sell in response to a market price shock, and we assume two types of investors,

including a fixed proportion of sophisticated investors who sell early. For example, these could

be the institutional investors cited in the Third Avenue application quoted previously. These

first-mover investors react to an initial market price shock, accounting for the shock size and the

liquidation costs imposed by other investors in the fund. Since our focus is on financial fragility in

the mutual fund industry, we assess the consequences of an optimally designed swing pricing rule

as a remedy to this fragility. In contrast to the solutions proposed in Bernardo and Welch (2004),

no government intervention is required in our setting because swing pricing can be implemented

autonomously by the fund. The design of such a swing pricing formula and its implications on the

reduction of fire-sale externalities are the main focus of our paper. Bernardo and Welch (2013)

study the feedback between asset sales and asset price declines in a model, in which financial

firms decide both on their leverage and the timing of assets sales. Firms may decide to sell assets

preemptively to avoid the price knocked-down effects caused by other deleveraging firms. Lagos

et al. (2011) study the relation between asset sales and price declines in over-the-counter markets
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using a dealership model, in which search frictions prohibit outside investors to trade continuously

with dealers.

Our paper is also related to the literature studying the asset pricing implications of forced sales

by leveraged financial institutions (e.g., banks), which need to comply with prescribed balance

sheet requirements (e.g., Adrian and Shin (2010)). The typical mechanism works as follows. After

an initial market shock, leverage ratios may deviate from their targets, prompting the institutions

to sell illiquid assets to return to their targets. The aggregate impact of asset liquidation on prices

is linear in the size of the exogenous market shock (see Capponi and Larsson (2015), Duarte and

Eisenbach (2018), Greenwood et al. (2015), and Braouezec and Wagalath (2018)).

The mechanism of fire sales triggered by redemptions of mutual funds, however, is different due

to their distinct institutional structure: because of the first-mover advantage, the value of a fund

share and the price of an asset share depend nonlinearly on the initial market shock. A larger shock

creates a stronger incentive to redeem early, forcing the fund to liquidate superlinearly with respect

to the size of the shock. Our model shows that only in an idealized setting without first movers

(or, equivalently, with an appropriate swing price) is the impact of redemptions on prices linear.

These findings imply that treating the mutual fund structure like that of a bank, and ignoring

institutional features of the first-mover advantage, would underestimate the effects.5 The asset

pricing implications of investor redemptions may be significant, especially in periods of market

stress or if the fund is managing illiquid assets, such as high-yield or emerging market corporate

debt.

We build an analytically tractable model that mimics the redemption mechanism identified

by the empirical literature on mutual fund flows and use it to explain the effects of the liquidity

mismatch in open-end mutual funds. Our model features a continuum of investors who are sensitive

to the fund’s performance: a decrease in the fund’s NAV leads to an increasing fraction of investors

exiting the fund, consistent with the empirical studies of Chen et al. (2010) and Goldstein et al.

(2017). The first movers anticipate this drop in the NAV and sell before it materializes, thus

imposing an even larger externality on the fund.

We show that if the initial market shock exceeds a certain critical threshold, the incentive to

5Cetorelli et al. (2016a), Cetorelli et al. (2016b) and Fricke and Fricke (2017) quantify the impact of mutual fund
fire sales on asset prices, and conclude that the funds’ aggregate vulnerability of U.S. open-end mutual funds is small
(compared to banks). Their analysis, however, does not account for the first-mover advantage.
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sell early and the number of early redemptions become so large that the fund is unable to repay

investors at the nominal NAV, because of the significant price drop of its asset shares. For brevity,

we refer to this outcome as a fund failure.6 Our model can thus be adopted as a reverse stress testing

tool: after calibrating it to fund flow data, via econometric specifications proposed in the empirical

literature (e.g., Goldstein et al. (2017) and Ellul et al. (2011)), we can find the critical shock size

that triggers the fund failure for each given level of asset illiquidity. Notably, our model can be used

to design stress testing scenarios that explicitly incorporate the risk of spiralling redemptions. This

in turn enables the positive analysis of regulatory measures targeting fund stability and liquidity

management such as minimum cash requirements and adoption of swing pricing.

We propose a formal definition of swing pricing that captures the adjustment to the end-of-

day NAV required to remove the first-mover advantage. While stylized, our definition embodies

the salient features of the amended SEC 22c-1 Rule. We show that, to eliminate the first-mover

advantage, the swing price should be linear in the size of redemptions, with a slope determined

by the illiquidity of the asset. This linear specification makes swing pricing effective even under

scenarios of extreme market stress. In fact, swing pricing turns the one-sided first-mover advantage

into a trade-off: by redeeming early, investors avoid the costs imposed by their redemptions on the

fund’s future NAV; on the other hand, a crowding of redemptions results in a larger swing price

for redeemers. The major benefit of swing pricing stems from the reduction in the magnitude of

early redemptions: with the first-mover advantage removed, a smaller number of investors exit the

fund, and the fund is required to sell less of its assets at a discount. Swing pricing results not only

in a transfer of the liquidation cost, but also – and more importantly – in a reduction of this cost.

It removes the incentive to exit early that can lead to fund failure.

Many European mutual funds adopt a flat swing price when redemptions hit a certain threshold

(Lewrick and Schanz (2017a)). The empirical results in Lewrick and Schanz (2017a) show that such

a swing price is effective in normal times. However, in periods of heavy outflows, like during the

2013 U.S. “taper tantrum,” funds appear not to have benefited from the adoption of the swing

price rule. These empirical observations are consistent with our theoretical predictions: to be

effective in periods of intense market stress, the swing price should be strictly increasing in the

6In explaining its liquidity rules, the SEC frequently refers to “reducing the risk that funds would be unable to
meet redemption and other legal obligations.” See, for example, Federal Register, November 18, 2016, vol. 81, no.
223, p.82158 and p.82235.)
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amount of redemptions. The empirical studies by Chernenko and Sunderam (2016) and Jiang et al.

(2017) discuss more traditional liquidity management policies followed by mutual funds such as

cash buffering and cost-effective liquidation strategies.

Our study sheds some light on how open-end mutual funds may pose a threat to financial

stability. As argued by Feroli et al. (2014), the absence of leverage is not enough to dismiss potential

financial risks: in a downturn scenario, intermediaries that exhibit a procyclical behavior exert an

additional adverse pressure on the market. Empirical evidence (Chen et al. (2010)) indicates that

when returns are negative, mutual funds tend to liquidate assets, thus magnifying market shocks as

opposed to absorbing them. Portfolio commonality exposes funds to similar market risks, and hence

large capital outflows often occur simultaneously at several funds. This exacerbates the impact of

redemptions on the fund and asset performance (Coval and Stafford (2007), Koch et al. (2016)). In

some less liquid markets where the presence of the mutual fund industry is prominent (for instance,

U.S. corporate bonds), financial distress can escalate and lead to market turbulence, with negative

consequences for the real economy. Feroli et al. (2014) discuss a model where funds’ fire sales are

triggered by relative performance concerns. Our study instead analyzes the fire-sales amplifications

driven by the first-mover advantage. In an extension of our baseline model to multiple funds, we

show how portfolio commonality and simultaneous redemptions generate cross-fund externalities

and exacerbate the price pressure from mutual funds’ asset sales. A fund’s swing pricing rule should

therefore not only account for the externalities imposed on the fund by its own redeeming investors,

but also for those imposed by redeeming investors of other funds. Interestingly, we show that if a

fund sets a swing price that accounts for the externalities imposed by all funds’ first movers and all

other funds do the same, then the required NAV adjustment would be smaller than it would be if

other funds did not adopt swing pricing, even if the swing price set by the fund were to account only

for the externalities imposed by its own first movers. The intuition underlying this phenomenon is

that no amplification due to first movers’ redemptions occurs when all funds apply swing pricing.

If some of these funds were not to apply swing pricing, then their first movers’ redemptions would

amplify the pressure on prices imposed by first movers of other funds which did apply swing pricing,

hence requiring a larger adjustment to the end-of-day NAV.

The rest of the paper is organized as follows. We present the model in Section 2 and solve it in

Section 3. Section 4 introduces swing pricing and analyzes its preventive role against fund failure.
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We study how first-mover advantage gets amplified in the presence of multiple funds in Section 5.

Section 6 discusses operational challenges related to the implementation of a swing pricing rule.

Section 7 concludes the paper. Additional discussions and proofs of technical results are deferred

to the Appendix.

2 The Model

An open-end mutual fund holds Q0 units of an asset; each unit of the asset can be thought of as

a unit of the portfolio managed by the fund. The market price at time 0 of an asset share is P0.

Investors hold N0 mutual fund shares, which they may redeem (sell back to the fund) at any time.

If the fund holds C0 in cash, then dividing the fund’s total assets by the number of fund shares

yields the fund’s share price (the fund’s net asset value or NAV) of S0 = Q0·P0+C0

N0
. For simplicity,

we focus on the case C0 = 0 of a mutual fund with a zero cash buffer. The inclusion of a cash buffer

does not alter our main findings and is studied in the Online Appendix. We also assume that,

initially, the number of shares issued by the fund equals the number of asset shares, so N0 = Q0.

This assumption does not qualitatively impact our conclusions but leads to simpler expressions.

The asset is illiquid in the sense that selling shares of the asset impacts its price by an amount

∆P = ϕ(∆Q),

where ∆Q < 0 records the number of shares sold, ∆P is the resulting price change, and ϕ(·) is the

price impact function, which is assumed to be increasing and continuous with ϕ(0) = 0. In most

examples we will assume linear price impact, ϕ(∆Q) = γ∆Q, where γ is a measure of the asset’s

illiquidity; when γ = 0, the asset is perfectly liquid.7

Investors redeem fund shares in response to bad short-term performance of the fund: the number

R of redeemed fund shares is assumed to be proportional to the drop ∆S < 0 in value of a fund

7Any model of fire sales relies on some friction that constrains or deters arbitrageurs from stepping in to buy
when an asset price falls below fundamental value. In our setting, the potential buyers include fund investors who
choose not to sell. Our model abstracts from the underlying source of market illiquidity and captures these effects in
reduced form through the parameter γ and the actions of the first movers. In other words, γ measures price impact
net of any buying by bargain shoppers, and the liquidation by first movers anticipates the extent to which second
movers will sell as the share price falls.
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share,

R = −β∆S, (2.1)

where β represents the sensitivity of investors to bad performance.8 We focus on negative market

shocks and take β > 0.9

At the end of each business day the fund calculates the value of a fund share (its NAV), based

on the current market prices of the fund’s assets. Investors who redeem shares of the fund receive

a payoff per share equal to the first NAV calculated after their redemption order is submitted.10 If

the fund is unable to sell shares of its asset to repay redeeming investors before the NAV is set, the

cost of asset liquidation is borne by the fund and not by the redeeming investors. This creates a

liquidity mismatch between the liquidity of the asset held by the fund and the liquidity provided by

the fund to its investors. Moreover, an investor who promptly redeems a share of the fund receives

a payoff that is higher than the payoff obtained by an identical investor who directly holds shares

of the asset and sells them, because the direct investor bears the cost of the price impact. We refer

to this feature of the mutual fund structure as the first-mover advantage.

Our model has two types of redeeming investors: first movers and second movers. Both types

redeem in response to declines in the fund’s NAV, as in (2.1), but first movers anticipate and react

to the final change in the fund’s NAV, while second movers react only to the observed change in

NAV. In this sense, first movers are forward-looking: they observe a negative shock to the market,

anticipate the response of other investors and the impact of their redemptions on the fund’s NAV,

and immediately react by redeeming shares — selling a greater quantity than they would sell if they

held the asset directly.11 First movers are fast and redeem fund shares before the fund starts to sell

8Throughout the paper, we work in an environment where P0 ≥ 0, −∆Q ≤ Q0, ∆R ≤ N0 and −∆S ≤ S0.
Violation of these conditions imply the failure of the fund, as defined in Section 4.1. We provide sufficient conditions
for the existence of such an environment in footnote 14.

9The linear relation between investors’ redemptions and fund performance is driven by the empirical literature
(e.g., Goldstein et al. (2017)). Our model can also be used to study the effect of positive market shocks and capital
inflow. In this case, the parameter β may depend on the sign of ∆S. In fact, sensitivity of redemptions to past
performance is not symmetric: it tends to be convex (see, for instance, Ippolito (1992)) for funds specialized in more
liquid assets, and concave (see, for instance, Goldstein et al. (2017)) for funds specializing in more illiquid assets. If
investors are rationally inattentive they may respond more strongly to large changes than small changes; alternative
behavioral assumptions could lead to interesting extensions of our model.

10We refer to the SEC rule 22c-1 for more regulatory details and ICI (2018) for industry practices.
11The forward-looking behavior of some investors provides a possible explanation for the redemption patterns

observed empirically in Chen et al. (2010): first movers anticipate that asset liquidation worsens the fund performance
especially if the fund manages illiquid assets, therefore the amount of shares they redeem grows with the illiquidity
of the underlying asset (see Section 4.1 and the left panel in Figure 3).
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Figure 1: Timeline of the model. The initial market shock is ∆S0 = ∆Z. The total drop in NAV
following first-mover redemptions is ∆Sfmtot ; this drop triggers an initial round of second-mover
redemptions, and each such round leads to further redemptions with further NAV drops ∆Ssmn .

asset shares and thus before this selling affects the NAV. Second movers redeem more gradually

as the NAV falls, so the fund can anticipate their actions and liquidate assets simultaneously with

their redemptions. The behavior of first movers is more typical of institutional investors, while the

behavior of second movers is closer to that of retail investors. But our categorization of first and

second movers pertains only to the behavior of the investors, and not to their identity. We assume

a continuum of investors, and use π ∈ [0, 1] to denote the proportion of first movers and 1− π for

the proportion of second movers.12

We illustrate the timeline of the model in Figure 1. Initially, a negative market shock ∆Z

decreases the price of the fund’s asset, and this translates into a shock ∆S0 = Q0

N0
∆Z = ∆Z to the

value of a fund share. First movers redeem immediately after13 the shock at an NAV of S0 + ∆S0.

The fund liquidates shares of the asset to repay first movers, driving down the fund’s NAV. Second

movers respond to the observed change in the fund’s NAV, setting off a cycle of further redemptions

and price drops.

12In revising rules for money market funds, the SEC wrote that “the first investors to redeem from a stable value
money market fund that is experiencing a decline in its NAV benefit from a ‘first-mover advantage’,” and also
comments that “We further believe history shows that, to date, institutional investors have been significantly more
likely than retail investors to act on this incentive.” See Federal Register, August 14, 2014, vol. 79, no. 157, p.47774.

13Here and throughout, we make the simplifying assumption that the fund does not sell assets on the day of the
shock in response to first-mover redemptions. This assumption holds, in particular, if the redemptions are submitted
late in the day. As long as the amount sold by the fund on the first day is less than the amount required to meet
redemptions on the first day, the first movers impose liquidation costs on other investors.
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2.1 Investor Behavior and Model Primitives

To formulate the model precisely, we need to specify the actions of first movers, second movers, the

fund, and the market. We begin with second movers.

Second movers: When second movers observe a realized decline ∆S < 0 in the fund’s NAV, they

redeem fund shares according to the performance sensitivity rule in (2.1). They make up a

fraction 1− π of investors, so the total number of fund shares they redeem is given by

∆Rsm = −(1− π)β∆S. (2.2)

The mutual fund: To pay redeeming investors, the fund sells asset shares. If the fund needs to

pay S∆R to redeeming investors and if it can sell asset shares at a price P , then it needs to

trade ∆Q < 0 shares, with −P∆Q = S∆R, so

∆Q = −∆R
S

P
. (2.3)

The market: The asset price P in (2.3) will reflect the impact of the ∆Q shares traded by fund.

If P0 + ∆Z denotes the asset price before the fund sells, then

P = P0 + ∆Z + ϕ(∆Q). (2.4)

First movers: The behavior of first movers is the most distinctive feature of the model. Like

second movers, they exhibit the performance sensitivity in (2.1), but they respond to the

anticipated rather than the realized change in NAV and redeem

Rfm = −πβ∆Stot. (2.5)

Here, ∆Stot = ∆Sfmtot + ∆Ssmtot is the decline in the fund’s NAV, combining the decline ∆Sfmtot

following first movers’ redemptions and the further decline ∆Ssmtot following the second movers’

redemptions. The initial shock ∆S0 is included in ∆Sfmtot .

Solution concept: A solution to our model is defined by a set of asset prices, fund share prices,
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quantities sold by the mutual fund, and quantities redeemed by first and second movers consistent

with (2.2)–(2.5). In these dynamics, second movers, the mutual fund, and the market all follow

fixed rules; only the first movers act strategically, i.e., their redemption strategy is a fixed point of

a feedback system. The asset price is subject to an exogenous initial market shock ∆Z. The key

endogenous quantity is ∆Stot, the decline in the fund’s NAV due to the exogenous shock ∆Z and

the impact of investors’ redemptions, which immediately determines the quantity of first movers’

redemption by (2.5); all other quantities follow directly once ∆Stot is known. We will need to show

that ∆Stot and the rule (2.5) we have posited for first movers are well-defined. We will do this

by describing the consequences of (2.2)–(2.4) for second movers’ redemptions and then working

backwards to derive the first movers’ redemptions. The validity of (2.5) will then depend on a

fixed-point argument.

2.2 Second Movers’ Redemptions

The second movers’ redemptions in Figure 1 are triggered by an observed change in the fund’s

NAV, which we denote by ∆Ssm0 . Later, we will specify that ∆Ssm0 = ∆Sfmtot , the combined effect

of the initial market shock and first movers’ redemptions, but for now ∆Ssm0 < 0 is arbitrary. Let

Rsm0 , Ssm0 , P sm0 , and Qsm0 denote, respectively, the number of fund shares redeemed, the fund NAV,

the asset price, and the number of asset shares held by the fund before any second movers have

redeemed but after the first movers have redeemed.

Second movers redeem fund shares according to (2.2), leading the fund to sell assets according

to (2.3), driving down the asset price according to (2.4). The decline in the asset price lowers the

fund’s NAV, leading to a further round of second movers’ redemptions, as illustrated in Figure 1.

In the nth round, second movers observe a change ∆Ssmn in the value of a fund share and redeem

an additional amount

∆Rsmn+1 = −(1− π)β∆Ssmn (2.6)

of fund shares. When they redeem fund shares, they are paid at a price of Ssmn+1 = Ssmn + ∆Ssmn+1,

where ∆Ssmn+1 is the drop in the NAV created by their redemptions. In other words, second movers

incur the liquidation costs of their redemptions; this is the key property of second movers. In
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response to the redemptions (2.6), the fund therefore raises cash by trading a quantity

∆Qsmn+1 = −∆Rsmn+1

Ssmn+1

P smn+1

(2.7)

of the asset, where the price P smn+1 will depend on the quantity the fund sells. To get the fund’s

NAV, we divide the value of the fund’s assets by the number of fund shares and get

Ssmn+1 =
Qsmn+1P

sm
n+1

N0 −Rsmn+1

, (2.8)

where Rsmn+1 = Rsmn + ∆Rsmn+1 is the cumulative number of fund shares redeemed, and Qsmn+1 =

Qsmn + ∆Qsmn+1 is the quantity of the asset held by the fund. The asset price is given by

P smn+1 = P0 + ∆Z + ϕ(Qsmn+1 −Q0). (2.9)

Equations (2.6)–(2.9) define the actions of second movers, the fund, and the market. We can

combine these equations into a mapping

(Rsmn+1, Q
sm
n+1, S

sm
n+1, P

sm
n+1) = Φ(Rsmn , Qsmn , Ssmn , P smn ; ∆Ssmn ). (2.10)

The mapping Φ is well-defined: by substituting (2.8) in (2.7) one can evaluate Qsmn+1, then P smn+1,

and then Ssmn+1.14

Suppose that starting from (Rsm0 , Qsm0 , Ssm0 , P sm0 ; ∆Ssm0 ) and proceeding through iterative ap-

plication of Φ, the fund’s NAV Ssmn converges to a limit (as we confirm later)

Ssmn → Stot ≡ Stot(Rsm0 , Qsm0 , Ssm0 , P sm0 ; ∆Ssm0 ); (2.11)

the limit Stot, if it exists, depends on the initial values of the variables in the recursion. Let

∆Ssmtot = Stot − Ssm0 denote the total NAV impact of second movers’ redemptions.

14Notice that additional conditions are required to guarantee that Qsmn ≥ 0 and P smn ≥ 0 for all n. If price impact
is linear, i.e., ϕ(x) = γx, and π = 0, these conditions are P0 ≥ − ∆Z

1−γβ and Q0 ≥ − β∆Z
1−γβ , which should be viewed as

sensible bounds on the initial shock ∆Z.
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2.3 First Movers’ Redemptions

First movers’ redemptions are characterized by the equations

Rfmtot = −πβ∆Stot (2.12)

Sfmtot =
Qfmtot P

fm
tot

N0 −Rfmtot
(2.13)

Qfmtot = Q0 −Rfmtot
S0 + ∆S0

P fmtot
(2.14)

P fmtot = P0 + ∆Z + ϕ(Qfmtot −Q0), (2.15)

with (as in Figure 1)

∆Stot = ∆Sfmtot + ∆Ssmtot = (Sfmtot − S0) + ∆Ssmtot . (2.16)

The variables on the left side of (2.12)–(2.15) measure quantities after first movers redeem and

before second movers redeem. These equations differ from the second-mover equations in two

important ways. Redemptions in (2.12) are driven by the anticipated NAV decline ∆Stot and not

by an observed decline, as in (2.6). Moreover, first movers redeem at the first day’s NAV of S0+∆S0

regardless of how many shares they redeem — they do not bear the cost of their liquidation, which

the fund incurs in subsequent days. Therefore, in (2.14) the fund uses S0 +∆S0 in determining how

much cash it needs to raise, whereas the NAV used in (2.7) reflects the fact that second movers do

bear their liquidation costs. To link first and second movers, we set

Rsm0 = Rfmtot , Qsm0 = Qfmtot , Ssm0 = Sfmtot , P sm0 = P fmtot , (2.17)

so the second movers begin their redemptions by observing the consequences of the first movers’

redemptions. The cumulative NAV impact ∆Ssmtot of the second movers depends on these initial

conditions, as emphasized in (2.11). By combining (2.11) and (2.17), we can write

∆Ssmtot = ∆Ssmtot (Rfmtot , Q
fm
tot , S

fm
tot , P

fm
tot ; ∆Sfmtot ), (2.18)

so the total NAV impact of second movers depends on all quantifies affected by the first movers’

redemptions. But the redemptions of first movers depend on what they anticipate the impact of
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the second movers to be through (2.12) and (2.16). The existence of a solution to (2.12)–(2.16)

is thus a fixed-point problem. Solving the model means finding a solution or showing that none

exists.

To provide further insight into the existence of a solution, we can write (2.14) as

(Qfmtot −Q0)P fmtot = −Rfmtot (S0 + ∆S0). (2.19)

The expression on the right is the cash the fund needs to meet first movers’ redemptions, and the

expression on the left is the cash the fund raises by selling assets. For a small shock ∆S0 = ∆Z ≈ 0,

the equations always have a solution and the fund can pay redeeming investors. But the cash the

fund can raise is bounded, so for a sufficiently large shock the equations have no solution and the

fund cannot meet its obligations. In other words, we will show that the existence of a solution to

(2.12)–(2.16) depends on the magnitude of the initial shock, and the failure of the equations to

have a solution should be interpreted as the failure of the fund to meet redemptions.

Solving the equations implicitly requires that the total second-mover impact in (2.11) is well-

defined when the initial conditions for second movers are determined by the actions of the first

movers through (2.17), because ∆Stot in (2.12) and (2.16) simplifies to Stot − S0; we will address

this point as well. Given a solution, we are particularly interested in ∆Ptot = limn→∞(P smn − P0),

the cumulative impact on the market price of the asset resulting from the combined effects of the

market shock and all redemptions.

2.4 Direct Ownership Benchmark

To isolate the effect of the mutual fund structure in amplifying a fire sale, we compare the results

of our model against a benchmark in which investors hold the asset directly, rather than through

a mutual fund. To make the comparison consistent, we assume the same price impact function ϕ

for investors selling the asset as we assumed for the fund. We translate the assumed redemption

mechanism R = −β∆S for a fund investor to the relation ∆Q = β∆P for a direct investor. In

either case, the sale may be triggered by an investor’s financial constraints. For example, if an

investor has purchased fund shares on margin, then a substantial drop in the fund’s share price

could force the investor to sell; if the investor bought shares of the asset itself on margin, a drop in
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the asset price would again force its sale.

In the case of direct ownership, an initial asset price shock ∆P0 = ∆Z triggers a cycle of forced

sales described by the following equations:

Qn = Qn−1 + β∆Pn−1, Pn = P0 + ∆Z + ϕ(Qn −Q0), (2.20)

with ∆Pn−1 = Pn−1−Pn−2. The cumulative change in the asset price is ∆P dirtot := limn→∞(Pn−P0).

The institutional structure of the fund amplifies the fire sale if the total price change |∆Ptot| when

the asset is held through the fund exceeds the price change |∆P dirtot | when the asset is held directly.

3 Model Solution

3.1 Convergence of Second Movers’ Redemptions

The following lemma provides a sufficient condition for the convergence of the second movers’

redemption procedure. Recall that Qsm0 and Rsm0 refer to initial conditions observed by second

movers before any second-mover redemption.

Lemma 3.1. Assume that (1 − π)β
(

Qsm0
N0−Rsm0

)2
limx→−∞ ϕ

′(x) < 1. Then the sequence defined in

(2.10) converges.

The condition required in this lemma is automatically satisfied for a price impact function of the

form ϕ(x) = −γ(−x)α on (−∞, 0] for α < 1. Several empirical studies have concluded that price

impact is well described by a power function of the traded volume with an exponent smaller than 1

(e.g. Lillo et al. (2003)). If ϕ(x) = γx, the condition becomes (1−π)β
(

Qsm0
N0−Rsm0

)2
γ < 1. According

to Lemma B.2, this is equivalent to assuming that second movers’ redemptions, as described in

Section 2.2, decrease in each round. If this condition does not hold, even a minimal drop in the

value of a fund share would trigger a spiral of redemptions, and impose a downward price pressure

that cause the failure of the fund. Hence, parameters violating this condition are not economically

plausible.
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3.2 Without First Movers

Next we show that in the absence of first movers, the cumulative price impact is the same whether

investors hold the asset through a mutual fund or directly. In other words, without first movers,

there is no further fire sale amplification.

To see this, notice that, if π = 0 then ∆Ssm0 = ∆S0 = ∆Z. It follows from Lemma B.1 that

Ssmn+1 − S0 = P smn+1 − P0 = ∆Z + ϕ(β(P smn − P0)), n = 1, 2, . . . .

Similarly, the price evolution under direct ownership resulting from (2.20) can be summarized as

Pn+1 − P0 = ∆Z + ϕ(β(Pn − P0)), with ∆P0 = ∆Z. In other words, the price impact under direct

ownership and ownership through the mutual fund are identical in the absence of first movers.

Using the convergence of the sequence guaranteed by Lemma 3.1 and the above price evolution

equation, we obtain a more explicit characterization of the cumulative price decline.

Proposition 3.2. Suppose π = 0 and β limx→−∞ ϕ
′(x) < 1. For any initial market shock ∆Z < 0,

the cumulative price declines ∆P smtot = limn→∞ P
sm
n − P0 and ∆Ssmtot = limn→∞ S

sm
n − S0 are well-

defined, with ∆P smtot = ∆Ssmtot satisfying

∆P smtot = ∆Z + ϕ(β∆P smtot ).

The cumulative price decline under direct ownership ∆P dirtot = limn→∞∆Pn is also well-defined and

equals ∆P smtot . In particular, if ϕ(x) = γx, then ∆P dirtot = ∆Z
1−γβ . If ϕ(x) = −γ(−x)1/2, for x < 0,

then ∆P dirtot = ∆Z − 1
2(γ2β + γ

√
γ2β2 − 4β∆Z).

Because of the price impact generated by selling shares of the asset, second movers who redeem

in round n impose an externality on second movers who redeem later. However, Proposition 3.2

shows that this effect is not a consequence of the mutual fund structure, but purely a result of the

asset’s illiquidity; the fire sale impact is just as large under direct ownership.

Proposition 3.2 also shows that in the case ϕ(x) = γx of linear price impact, the cumulative

price change grows linearly with the exogenous market shock ∆Z, and increases both with the

illiquidity of the asset γ and with the sensitivity to the fund’s performance β. For small values of

γ > 0, the change in value of a fund share ∆Ssmtot caused by all second movers’ redemptions admits
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the representation

∆Ssmtot ≈ ∆Z + γβ∆Z + γ2β2∆Z + · · · . (3.1)

Each term of the sum reflects a new round of redemptions. Each round has an impact on the

value of a fund share, and the final value is the cumulative effect of the redemption and liquidation

process.

3.3 With First Movers

Once we reintroduce first movers, the cumulative price effect is no longer linear in ∆Z. We charac-

terize the changes in asset price and value of a fund share in the presence of first movers for small

γ in Proposition 3.3.

Proposition 3.3. Assume π > 0 and ϕ(x) = γx. For small γ, the changes in asset price and

value of a fund share after redemptions by first and second movers are

∆Ptot = ∆Z + γβ∆Z + γ2

(
β2∆Z − β π2β2∆Z2

N0 + πβ∆Z
− π2β2∆Z2

P0 + ∆Z

N0 + β∆Z

N0 + πβ∆Z

)
+ o(γ2), (3.2)

∆Stot = ∆Z + γ

(
β∆Z − π2β2∆Z2

N0 + πβ∆Z

)
+ o(γ). (3.3)

To quantify the externality imposed by the first movers on the fund, compare the expression (3.3)

to the expansion (3.1). As expected, the impact of the liquidation process on the value of a fund

share is higher when some investors are first movers (recall that ∆Z is negative), because first

movers do not internalize the costs imposed by their redemptions. 15 As a consequence, a share of

the fund will be worth less than a share of the asset after first movers’ redemptions.

The term γ π2β2∆Z2

N0+πβ∆Z is, to first order in γ, the fraction of the liquidation cost due to first movers’

redemptions that needs to be absorbed by each remaining investor in the fund. This term may

be understood as follows. The numerator π2β2∆Z2 captures the cost incurred by the fund when

it liquidates shares to repay first movers. To first order, first movers redeem Rfmtot ≈ πβ∆Z fund

15Chen et al. (2010) estimate a smaller interaction between performance sensitivity and asset illiquidity in
institutionally-oriented funds compared with retail-oriented funds, but the difference is not statistically significant.
They note that if a single investor owns a large fraction of the fund’s shares, this investor would bear most of the
cost of asset liquidation and therefore has less of an incentive to sell early. We have in mind a setting with a large
number of investors, each of which owns a small fraction of the fund’s shares, so each investor is primarily affected
by the redemptions of other investors.
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shares and the fund trades ∆Qfm ≈ πβ∆Z shares of the underlying asset to repay first movers.

The price per share of the asset is P fm = P0 + ∆Z + γ∆Qfm, hence the liquidation cost due to

first movers is γ∆Qfm × ∆Qfm ≈ γπ2β2∆Z2. The cost is quadratic in quantities, because price

impact per share is linear in quantities. The denominator N0 + πβ∆Z represents the amount of

outstanding shares after redemptions by first movers.

Interestingly, the first-mover advantage not only reduces the value of a fund share, but also neg-

atively affects the market price of the asset. However, the asset price in the presence of first movers

differs from that in the absence of first movers only at the second order in γ (see equation (3.2)).

This is because the first-mover advantage affects the asset price only indirectly, while it directly

impacts the value of a fund share: as more investors exit the fund in response to the NAV drop,

the fund needs to further liquidate asset shares, exacerbating price impact.

In more detail, two forces contribute to the cumulative price impact. The first is the higher flow

of investors’ redemptions: because the NAV drop ∆Stot is greater with first movers, the resulting

number of shares redeemed by investors is greater, triggering more assets sales by the fund, and

leading to a lower market price for the asset, as captured by the term β π2β2∆Z2

N0+πβ∆Z . The second

force is the increased amount of asset sales required to meet investors’ redemptions: to repay first

movers, the fund needs to liquidate an additional number γ π
2β2∆Z2

P0+∆Z of asset shares, on top of the

number of redeemed shares Rfmtot , to cover the liquidation costs (∆Qfm ≈ Rfmtot + γ π
2β2∆Z2

P0+∆Z ). This

yields a second order effect on market prices. A proportion of this cost is borne by second movers,

so it is normalized by N0+β∆Z
N0+πβ∆Z , which is the number of shares held by the remaining investors in

the fund over the number of shares held by remaining investors and second-mover redeemers.

3.4 Redemption Outflows Versus Bank Deleveraging

Prior work has analyzed price linkages arising when financial institutions manage their balance

sheets to comply with prescribed leverage requirements. Greenwood et al. (2015) show that the

amplification effects on prices arising when banks liquidate assets to target their leverage are linear

in the exogenous shock, if one takes into account only the first round of deleveraging. Capponi and

Larsson (2015) confirm this linear dependence even if one accounts for higher order effects caused by

repeated rounds of deleveraging needed to restore banks’ leverage levels to their targets. The bank

deleveraging mechanism in these models is essentially equivalent to the redemption mechanism in a
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mutual fund without first movers: each round of deleveraging has an impact on the price and leads

to a successive round of asset liquidation because it depresses prices. In the absence of first movers

(π = 0), if price impact is linear, the cumulative impact of redemptions on prices is still linear (see

Proposition 3.2). The iterative redemption procedure executed by second movers converges to a

fixed point if γβ < 1.16

The presence of first movers introduces an important structural difference between the fire sale

mechanism imposed by leverage targeting and that triggered by mutual fund redemptions. After

accounting for the first-mover advantage, Proposition 3.3 shows that the cumulative impact of

liquidation on asset prices is no longer linear in the exogenous shock. This point is illustrated in

Figure 2, which compares the total price drop −∆Ptot resulting from a shock ∆Z with (solid) and

without (dashed) first movers, for two different liquidity regimes. 17 Additionally, in the presence

of first movers, the condition for the existence of a solution ∆Stot to the model, i.e., a fixed point

for (2.18), takes a more complex form and depends crucially on the size of the initial shock (see

Proposition 4.1).

Recent work on leverage constrained banks includes cases in which the dependence of the

cumulative price impact on the initial shock is nonlinear (Cont and Schaanning (2017) and Duarte

and Eisenbach (2018)). But the nonlinearity in these models stems from nonlinear assumptions on

the delevering strategy of the banks. In our model, nonlinearity is a consequence of the institutional

structure of mutual funds.

4 Fund Failure, Swing Pricing, and Stress Testing

The incentive to redeem early increases with the illiquidity of the asset held by the fund. We will

show that the first-mover advantage may induce enough early redemptions and asset fire sales to

bring down the fund, if the fund’s asset is sufficiently illiquid. Swing pricing is intended to stop the

transfer of liquidation costs from first movers to investors remaining in the fund. In this section,

we provide a formal definition of the swing price that achieves this objective, and we show that the

16Such a condition is equivalent to assuming that the matrix in equation (4) in Greenwood et al. (2015) (or the
systemicness matrix defined in Equation (2.2) of Capponi and Larsson (2015)) has spectral radius smaller than 1. In
economic terms, this means that a round of deleveraging causes another round of deleveraging that is smaller than
the previous one. In particular, the condition for the convergence of this liquidation procedure is independent of the
initial market shock ∆Z.

17A value of γ = 10−8 should be interpreted to mean that selling $1 million of the asset has a price impact of 1%.
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Figure 2: The graphs show the aggregate impact on market prices of an initial market shock,
for π = 75% (solid line) and π = 0 (dashed line). The asset illiquidity parameter γ is 0.5 × 10−8

(left panel) and 2× 10−8 (right panel). These values of γ correspond to typical liquidity levels for
corporate bonds, as reported in the empirical study by Ellul et al. (2011). The flow-performance
relation β

N0
is chosen to be 0.859, consistently with the estimates in Goldstein et al. (2017). In the

presence of first movers, the impact on prices grows superlinearly with the size of the shock, if the
asset is illiquid.

same adjustment eliminates the fire-sale amplification created by the mutual fund structure. We

use these results to construct a stress testing scenario to address the potential failure of a fund.

4.1 Redemption Flow and Fund Failure

Consider the case of linear price impact, i.e., ϕ(x) = γx. In the absence of first movers, the

redemption procedure converges if γβ < 1, because this condition ensures that the NAV impacts of

subsequent rounds of redemptions decrease geometrically; see (3.1). If first movers are present, the

model may not have a solution even if γβ < 1, and the existence of a solution strongly depends on

the size ∆Z of the initial shock. The cumulative price impact fails to converge if a shock of large

size forces the failure of the fund.18

Proposition 4.1. Assume π > 0 and ϕ(x) = γx. There exists a critical value ∆Z∗ < 0 such that

the fixed point equation (2.18) has a solution ∆Stot following a price shock ∆Z < 0 if and only if

|∆Z| ≤ |∆Z∗|. Furthermore, |∆Z∗| decreases with the illiquidity parameter γ of the asset.

If π > 0 and the exogenous shock ∆Z is sufficiently large, the number of investors that redeem

early is so high that the fund becomes unable to repay them. This can be understood as follows.

With each additional fund share redeemed by first movers, the marginal cost of liquidation increases

18The fund may decide to suspend redemptions if it foresees that they would be insufficient to repay exiting
investors, as happened in the case of the Third Avenue Focused Credit fund discussed in the introduction.
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Figure 3: The graph in the left panel shows the outflow due to first movers in response to an
exogenous shock on the fund’s NAV. The flow-to-performance relation depends on the liquidity of
the asset held by the fund: the asset illiquidity parameter γ is 0.5× 10−8 (dotted line), 1.5× 10−8

(dashed line), and 2.5× 10−8 (solid line). The graph in the right panel shows the critical level ∆Z∗

as a function of the illiquidity parameter γ. The horizontal axis reports the price impact per $1
million. The proportion π of first movers is 75%.

while the NAV that needs to be paid to first movers stays constant. The fund may eventually run

short of asset shares or obtain negligible marginal revenue from asset sales.

The graph in the right panel in Figure 3 plots the relation between the critical value ∆Z∗ and

the asset illiquidity parameter γ. We set β
N0

= 0.859 in all numerical examples, for consistency

with the empirical estimates in Goldstein et al. (2017). If the asset is perfectly liquid (γ = 0), there

is no first-mover advantage. As γ increases, the critical threshold for the shock size that leads to

spiraling redemptions, and consequently to the fund’s failure, is smaller (in absolute value). Figure

4 illustrates how the fund may become unable to raise enough cash to repay its first movers if the

asset is not sufficiently liquid. For any candidate fixed point ∆S, we can compute the cash raised

by the fund and the cash owed to its redeeming investors. If γ is large, the cash raised by the

fund, as a function of ∆S, does not grow fast enough to ever meet the level of cash owed to first

movers.19

Despite the temporary nature of price impact, the fund may still be unable to meet investors’

redemptions before prices revert to fundamentals. Even if the fund survives the wave of redemp-

tions, its NAV never recovers completely. We refer to the Online Appendix for a detailed discussion

of temporary and permanent NAV losses.

19We have assumed a fixed γ for tractability. If a fund were to sell its more liquid assets first, γ would increase as
the fund sold more assets, further amplifying the effects in the figures.
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Figure 4: For each value of ∆S, we compute Rfmtot from equation (2.12) and Qfmtot from equation
(2.13). The graph shows the cash owed to first movers, i.e., the right-hand side of equation (2.19),
(solid line) and the cash raised by selling asset shares, i.e., the left-hand side of equation (2.19), for
γ = 1 × 10−8 (dashed line), and for γ = 2.5 × 10−8 (dotted line). For γ = 2.5 × 10−8, the fund is
unable to repay its redeeming investors for any value of ∆S.

4.2 Swing Pricing

To formalize the notion of swing pricing, let ∆Ssw be an adjustment applied to the value of a fund

share following a market shock of ∆Z, meaning that investors who redeem shares the day of the

shock will be paid at an adjusted price of S0 + ∆Z + ∆Ssw rather than S0 + ∆Z.

Definition 4.2. Let ∆Sπ=0
tot be the cumulative change in value of a fund share in the absence of

first movers (that is, with π = 0). For π > 0, suppose that following a market shock of ∆Z < 0,

the fund adjusts its share price to S0 + ∆Z + ∆Ssw. The adjustment ∆Ssw is a swing price if the

resulting cumulative change in value of a fund share ∆Stot is equal to ∆Sπ=0
tot .

Swing pricing is thus the adjustment to the value of a fund share that makes the first movers

internalize all externalities imposed on the fund.

Proposition 4.3. Assume β limx→−∞ ϕ
′(x) < 1. The swing price, as specified in Definition 4.2,

is uniquely given by

∆Ssw = −ϕ(Rfmtot ). (4.1)

In the special case of a linear price impact function, ϕ(x) = γx, it is given by

∆Ssw = −γRfmtot = γ
πβ∆Z

1− βγ
. (4.2)

Let ∆P π=0
tot be the cumulative change in price of an asset share in the absence of first movers. In
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the presence of swing pricing, ∆Ptot = ∆P π=0
tot

By Definition 4.2, swing pricing eliminates the first-mover advantage and results in the same

impact on the fund’s NAV following the price shock ∆Z as would result if π = 0. As a consequence,

it eliminates the transfer of liquidation costs from first movers to second movers. But swing pricing

has a further systemic benefit. By reducing the NAV impact to what it would be if π = 0, swing

pricing reduces the cumulative price impact ∆Ptot to what it would be without first movers. In

addition to benefitting second movers, swing pricing eliminates the fire sale amplification in the

market price of the asset caused by the mutual fund structure.20

From (4.2) we see that the swing price adjustment is greater when βγ is closer to 1, which

corresponds to greater amplification of the initial shock ∆Z. The numerator γπβ∆Z represents

the direct price impact that results from the first movers’ response to the initial shock; dividing by

1− γβ yields the amplification created through the response of second movers. The swing price in

(4.2) is thus just enough to offset the initial reaction of first movers and stem their flight. If γ is

large, the initial amount πβ∆Z of shares redeemed may account for only a small fraction of the

total first-movers redemptions. In other words, the liquidation cost eliminated by swing pricing

may be much larger than the cost that is merely transferred from one set of investors to another.

Equation (4.1) characterizes the swing price through the first-mover redemptions Rfmtot , which

depend on ∆Z through (2.12)–(2.16). Once a fund adopts ideal swing pricing, it eliminates first-

mover redemptions, makingRfmtot unobservable. Before implementing swing pricing, a fund could use

past data to estimate the relationship between Rfmtot and ∆Z and thus to estimate a nonparametric

swing adjustment. In practice, it may be difficult to distinguish first movers’ redemptions from

other transactions, but the fund could compare an account’s transactions following a market shock

with past activity on the account to gauge how much additional investor flow is driven by a price

shock. 21 In the linear case (4.2), the fund can set the swing price based on the market shock ∆Z

using estimates of π, β, and γ.

20Stale prices for assets held by a mutual fund distort the fund’s NAV to the benefit of certain investors, as in
Zitzewitz (2006). Swing pricing can be seen as correcting soon-to-be-stale prices.

21S.E.C. rules require a mutual fund to implement a customer identification program, so at a minimum a fund
would be able to distinguish retail and institutional accounts.
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Figure 5: The graph shows the change in value of a fund share with the swing price specified in
Proposition 4.3 (dotted line), without swing price (dashed line), and with a fixed NAV adjustment
applied when more than 5% of investors exit the fund (solid line). The proportion π of first movers
is 75%.

4.3 Swing Pricing Practices

Starting in November 2018, the amendments to Rule 22c-1 by the Securities and Exchange Commis-

sion allow U.S.-based mutual funds to adopt swing pricing. Swing pricing is already used in other

jurisdictions, particularly Luxembourg. The vast majority of funds that use swing pricing adopt a

rule defined by a redemption threshold and a pre-determined swing factor: when net redemptions

exceed the threshold, the fund applies a fixed percentage adjustment to its NAV. Such an adjust-

ment differs from the swing pricing formula in Proposition 4.3. Therefore, it does not remove the

first-mover advantage and cannot guarantee prevention of fund failure; see Figure 5. According to

the survey by Association of the Luxembourg Fund Industry (2015), some asset managers already

apply or are considering applying multiple swing factors, depending on the level of redemptions.

Our study supports such an implementation. Our analysis also identifies two important features

that yield an effective swing price:

1) The adjustment should take into account the dependence of the asset price on traded quanti-

ties. As the liquidation cost per traded share increases with the number of liquidated shares,

the swing price should also increase with the flow of redemptions. A fixed swing price may

have limited efficacy during periods of heavy outflows.

2) Investors should be informed about a fund’s swing pricing mechanism. Liquidation costs

are reduced, and not just transferred, only when investors understand that the first-mover

advantage has been eliminated. In practice, it is unlikely that an investor in a fund with a
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broad investor base would be able to game a well-designed swing pricing mechanism. But

funds rarely disclose their swing thresholds, and they do not report the specific days on which

the NAV was swung.

Some asset managers have expressed concerns that swing pricing may increase the volatility of

a fund’s NAV; see Securities and Exchange Commission (2016), Section III-C. Our analysis shows

that an effective swing price alleviates fire sales and prevents NAV dilution, hence mitigating large

fluctuations in the fund’s NAV, particularly in periods of market stress. For additional information

on swing pricing practices, we refer to Investment Company Institute (2016) and Association of

the Luxembourg Fund Industry (2015).

4.4 A Stress Testing Example

We illustrate how a calibrated version of our model can be used for stress testing. We quantify the

first-mover advantage for both high and low liquidity regimes, and we compute the threshold on

the shock size beyond which redemptions would lead to fund failure.

We calibrate the model parameters using empirical estimates from the literature on fund flows

and abnormal returns due to fire sales for corporate bond funds. We normalize the initial price

of the asset and the value of a fund share to $1, so that P0 = S0 = $1. Goldstein et al. (2017)

estimate the flow-performance relation for corporate bond mutual funds: in the case of negative

fund performance, the value of β
N0

is approximately 0.859. This relation is asymmetric in the fund’s

performance: if the fund performance is positive, the corresponding value is 0.238.

To estimate the illiquidity parameter γ we follow Ellul et al. (2011), who analyze the impact

of fire sales in the corporate bond market. To estimate deviations of prices from (unobservable)

fundamentals, the authors analyze the temporary drop of bond prices after a downgrade and their

rebound to fundamental value. The price impact per $1 million is on the order of 1% (ranging

from 0.4% to 1.9% in different years and with different sets of controls). We consider two illiquidity

regimes for the asset: a regime of typical liquidity with price impact of 1% per $1 million, and a

regime of high illiquidity with price impact of 2.5% per $1 million. We assume that the fund holds

$30 million in the asset and apply a market shock that reduces the current asset price by 5%, so

∆Z
P0

= −5%.
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Price Impact Endogenous Shock First Round Second Round Third Round

1×10−8 -1.74% -1.29% -0.33% -0.09%

2.5×10−8 -9.05% -3.22% -2.08% -1.34%

Table 1: Endogenous shock ∆Stot −∆Z caused by fire sales when there are no first movers, and
contributions of successive rounds of redemptions to this shock.
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Figure 6: The graphs show the impact of first movers’ redemptions on the value of a fund share,
i.e., ∆S0

tot−∆Sπtot. We set the price impact parameter γ = 1×10−8 (left panel), and γ = 2.5×10−8

(right panel). For the larger value of γ, the impact diverges if π ≥ 70%.

Table 1 decomposes the endogenous shock into contributions from the first, second, and third

round of second movers’ redemptions, in the absence of first movers (π = 0). Recall that the second

movers respond to and then contribute to a sequence of price declines. Their cumulative impact

generates endogenous shocks of 1.74% and 9.05%, for price impact parameters of 1 × 10−8 and

2.5× 10−8, respectively. Without first movers, the change in value of a fund share and of the asset

are identical.

4.4.1 Impact of First Movers

Figure 6 highlights the additional impact on the value of a fund share triggered by first-mover

redemptions with higher liquidity (left panel) and lower liquidity (right panel). In both cases, the

endogenous shock grows with the proportion of first movers π. In the right panel, the endogenous

shock grows and eventually leads to fund failure because the critical threshold |∆Z∗| (which depends

on π) becomes smaller than the initial shock |∆Z| for π ≥ 70%. Recall that when price impact

is linear, the cash raised from selling shares of the asset is a quadratic function of the number of

shares sold. When the fund sells a large quantity of the asset and the price impact is high, the

marginal revenue from the sale might become negative. The right panel of Figure 6 illustrates a
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Figure 7: The swing price as a function of π. We set the price impact parameter γ = 1 × 10−8

(left panel), and γ = 2.5× 10−8 (right panel).

situation in which the fund fails to raise sufficient cash to repay its first movers.

4.4.2 Swing pricing prevents spiraling redemptions

The adoption of swing pricing can substantially reduce the number of redemptions and, therefore,

the total liquidation costs. To see this, compare Figures 6 and 7. If π = 60%, we see from Figure 6

that the externalities imposed by first movers on the fund when γ = 2.5× 10−8 are 50 times larger

than when γ = 1 × 10−8. But the swing price in Figure 7 is only five times higher. When the

asset is illiquid, the swing price adjustment is small compared to the enormous costs of spiraling

redemptions triggered by first movers.

5 Systemic Amplification of the First-Mover Advantage

We now extend our analysis to consider spillover effects across mutual funds holding the same asset.

Early redemptions by first movers of one fund increase the incentive for investors in other funds

to redeem early, further depressing the price of the asset. Section 5.1 studies swing pricing in an

economy with multiple funds. Section 5.2 analyzes the benefits resulting from the simultaneous

application of swing pricing by all funds. To highlight the main economic forces driving cross-fund

externalities, we assume price impact to be linear, i.e., ϕ(x) = γx, throughout this section. We

leave supporting details to Appendix A and present only the main results here.
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5.1 First-Mover Advantage with Common Asset Ownership

We consider two funds that hold the same illiquid asset; the asset may be thought of as repre-

sentative of their entire portfolios. Let β1 and β2 denote the sensitivity to bad performance of

investors in fund 1 and 2, respectively. We use π1 and π2 to denote the fractions of first movers

in fund 1 and 2, respectively. Consistent with previous sections, we make the assumption that the

initial number of asset shares equals the initial number of fund shares for each fund: Q0,i = N0,i for

i = 1, 2. The simplified setting of two funds with common asset ownership allows us to highlight

the amplification channel of fire-sale externalities across funds.

For i = 1, 2, let ∆Stot,i be the aggregate change in NAV of fund i caused by all redemptions,

both of fund 1 and 2. The redemptions by first movers of one fund exacerbate liquidation losses of

the other fund, which simultaneously experiences redemptions of its own first movers in response

to the same negative market shock of the asset. The total impact of these redemptions on the value

of a share of fund 1 is (omitting terms of higher order in γ)

∆Stot,1 ≈ ∆Z + γ

(
β1∆Z − (β1π1∆Z)2

N0,1 + β1π1∆Z

)
︸ ︷︷ ︸

Own Impact

+ γ

(
β2∆Z − (β2π2∆Z)(β1π1∆Z)

N0,1 + β1π1∆Z

)
︸ ︷︷ ︸

Other Fund’s Impact

.

In addition to the price impact due to an individual fund, as in equation (3.2), there is a cross-fund

price impact which imposes additional negative pressure on the asset price:

∆Ptot ≈ ∆Z + (Impact from Fund 1) + (Impact from Fund 2) + (Cross-impact),

where the analytical expressions of the above price impact terms are given in Remark A.4.

If investors of multiple funds holding overlapping asset portfolios redeem fund shares simul-

taneously, the feedback between fund performance, outflow and asset liquidation is reinforced.

Additionally, we assume that the first movers of each fund anticipate the other fund’s outflow; as

a consequence, they redeem more shares than they would if each fund operated in isolation. To

eliminate the first-mover advantage, each fund needs to consider the impact of the other fund. If
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both funds implement swing pricing, the adjustment is (see Proposition A.5)

∆Sswboth = −γ(Rfmtot,1 +Rfmtot,2) = γ
(π1β1 + π2β2)∆Z

1− (β1 + β2)γ
. (5.1)

A comparison of (5.1) and (4.2) shows that the swing price required by each of the two funds with

common asset ownership is greater than it would be if the funds operated in isolation.

5.2 The Benefits of Cooperative Swing Pricing

Swing pricing may be adopted unevenly across the mutual fund industry. A fund implementing

swing pricing must therefore choose whether to neutralize only the effect of its own first movers or

whether to anticipate the effect of first movers at other funds as well. If two funds hold the same

asset, then heavy redemptions at one fund can drive down the share price of both funds.

If only one fund were to adopt swing pricing, the NAV adjustment it would need to offset

the impact of first movers at all funds would be larger than the adjustment required if the fund

operated in isolation. If both funds adopt swing pricing, the NAV adjustment required to remove

all first-mover externalities would be smaller than in the case that one fund does not apply swing

pricing while the other does; in fact, it is even smaller than the adjustment required for one fund

to remove its own first movers’ externalities.

These statements are illustrated in Figure 8. To make them precise, suppose only fund 2 adopts

swing pricing. Let ∆Sswloc be the NAV adjustment that makes fund 2’s first movers internalize their

liquidation costs. This is the swing price leading to the same change in NAV as if π1 > 0 and

π2 = 0. Let ∆Sswglob be the swing price for fund 2 that offsets the effect of first movers at both

funds, leading to the same change in NAV as if π1 = 0, π2 = 0. (See Appendix A for mathematical

details.) We now have the following result.

Proposition 5.1. Suppose π1, π2 > 0, and that only fund 2 applies swing pricing. For small γ,

|∆Sswboth| ≤ |∆Sswloc | ≤ |∆Sswglob|.

The intuition underlying this result is as follows. The externalities imposed on a fund by its

first movers are amplified by other funds’ first movers. Hence, if only a single fund applies swing
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Figure 8: Comparison of the swing prices ∆Sswboth (dotted line), ∆Sswloc (dashed line) and ∆Sswglob
(solid line) for different levels of illiquidity γ. The horizontal axis reports the price impact per $1
million. The proportion of first movers in each fund is π1 = π2 = 75%.

pricing, the NAV adjustment required to eliminate these externalities needs to account for the

fire-sale amplification driven by other funds’ first movers. On the other hand, if each fund were to

adopt swing pricing, cross-fund amplification due to first movers’ redemptions would be eliminated.

A mutual fund that does not adopt swing pricing still benefits from the implementation of swing

pricing by other funds, because of the reduced selling pressure imposed on it by the other funds’

first movers. The presence of mutual funds that do not implement swing pricing imposes a cost on

the first movers of funds that do adopt swing pricing, because their exit NAV is smaller than in

the case that all funds cooperate in the adoption of swing pricing.

5.3 Cross-Asset Price Impact

Our analysis has assumed that mutual funds hold a single asset representative of their entire

portfolio. In an extended framework where funds holds multiple assets, the total execution costs

would depend on their liquidation strategy. Such a strategy depends not only on the composition

of the fund’s target portfolio, but also on the cross-asset structure of the price impact function.

For example, Tsoukalas et al. (2017) show that over-trading may actually reduce execution costs

because of asset correlation and cross-asset price impact. Jotikasthira et al. (2012) find that fund

flows triggered by a shock to one asset push the fund to trade other assets, impacting both the

price of the shocked asset and that of other assets in the fund’s portfolio. Our analysis could

potentially be extended to cover cross-asset impacts by replacing the parameter γ with coefficients

γij measuring the price impact on asset j of selling a share of asset i.
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6 Implementation Challenges

An implementation of our proposed swing pricing rule requires a fund to estimate the liquidity

of its underlying portfolio. The relevant price impact function should reflect liquidity following a

market shock, when the fund will need to sell assets to meet redemption requests. The fund might

choose a conservative estimate of γ, but in setting a swing pricing policy, a fund faces competing

objectives. It wants the adjustment to be sufficiently large to protect investors who remain in the

fund from bearing the liquidation costs of those who exit, but not so large that it deters investors

from entering the fund. Funds in the U.S. also face an operational challenge because they have a

relatively short window (compared to many European funds) between the time they stop accepting

orders for the day and the time they calculate their NAV.

An effective swing price should account for redemptions at other funds holding the same assets.

Sharing of detailed information between funds would face many obstacles for practical, competitive,

and possibly legal reasons. But sharing of aggregate data on investor flows might be feasible and

could help funds in making the appropriate NAV adjustment. Where swing pricing has been used,

the industry has been reluctant to share details with investors to avoid strategic redemptions aimed

at gaming the swing pricing mechanism. The Association Française de la Gestion Financière (AFG)

writes

The AFG strongly advises member asset management companies not to disclose param-

eters that are too detailed and recent to avoid reducing the effectiveness of this system.

In particular, the management company should not disclose (in writing or verbally) the

current levels of the trigger thresholds and should ensure that the internal information

channels are limited in order to maintain the confidentiality of this information and

avoid any misuse.

We are not aware of any analysis supporting this recommendation. In our analysis, for swing

pricing to be effective it is crucial that investors understand how the mechanism will be applied.

This point argues in favor of transparency in a fund’s swing pricing policy. It also suggests that it is

more important for the fund and its investors to have consistent views on the liquidity of the fund’s

portfolio than to have a perfect model of price impact. The liquidity disclosure rules included in

the SEC’s Rule 22e-4 may help achieve this alignment.
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7 Concluding Remarks

Our study models and quantifies the externalities stemming from the liquidity mismatch in open-

end mutual funds. By analyzing the interactions between fund performance, net outflows, and

asset liquidity, we provide a unified framework that delivers several predictions. First, the first-

mover advantage amplifies the effects of fire sales and introduces a nonlinear relation between

the aggregate price impact and the magnitude of an exogenous shock. Second, the first-mover

advantage may trigger a cascade of redemptions following bad fund performance, leading to asset

sales that further drive down prices and generate further redemptions, potentially to a point where

the fund may be unable to repay redeeming investors, and thus fails. Third, our definition of swing

pricing neutralizes the first-mover advantage. It does so by transferring the costs of liquidation

to redeeming investors. Importantly, it also reduces these costs by eliminating the incentive for

investors to redeem earlier. At large levels of redemptions, the required swing adjustment is larger

than the fixed adjustment seen in practice.

The major policy implication of our study is the provision of an ideal yet simple swing pricing

rule, which is based on roughly observable quantities. Funds need to account for the net outflows

of first movers and estimate the illiquidity of the asset to decide how much to adjust their NAV.

We have assumed a single level of liquidity for all of a fund’s holdings. Extrapolating to more

general cases, our proposed adjustment suggests a need to partition a fund’s portfolio into liquidity

buckets. The current SEC 22e-4 Rule requires funds to divide their assets into buckets based on

time for liquidation, but our analysis points to the importance of distinguishing by liquidation costs

as well, because a fund may be forced to sell assets quickly to meet redemptions.

The amendments to the SEC 22c-1 Rule on swing pricing impose a 2% cap, relative to the fund’s

NAV, on the swing factor. Such a constraint may limit the efficacy of swing pricing in periods of

severe market illiquidity. To deter any misuse of swing pricing, other forms of regulatory oversight

such as appropriate disclosures on the adopted swing pricing mechanism should be considered.

Our analysis shows that greater benefits are attained if swing pricing is applied by all mutual

funds investing in the same illiquid assets. Under these circumstances, the externalities imposed

on the funds are internalized by their first movers at a lower cost, compared to the case when some

funds apply swing pricing but others do not.
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A Multiple Funds and Swing Pricing

Throughout this section, we assume ϕ(x) = γx. Consider two funds that hold shares of the same

asset. First movers of each fund i = 1, 2 redeem Rfmtot,i fund shares, and fund i liquidates ∆Qfmtot,i

asset shares to meet these redemption requests, where

Rfmtot,i = −βiπi∆Stot,i, −∆Qfmtot,i ×(P0 + ∆Z + γ(∆Qfmtot,1 + ∆Qfmtot,2)) = Rfmtot,i(S0,i + ∆Z)

(A.1)

Second movers redeem ∆Rsmtot,i shares and, fund i liquidates ∆Qsmtot,i asset shares, where

∆Rsmtot,i = −βi(1− πi)∆Stot,i, ∆Qsmtot,i = −∆Rsmtot,i
S0 + ∆Stot,i
P0 + ∆Ptot

. (A.2)

The change in value ∆Stot,i of a fund i’s share, for i = 1, 2, and the change in price of an asset

share ∆Ptot, are given by the solution to the following system of equations:

∆Ptot = ∆Z + γ(∆Qfmtot,1 + ∆Qfmtot,2 + ∆Qsmtot,1 + ∆Qsmtot,2),

∆Stot,1 =
(Q0 + ∆Qfmtot,1 + ∆Qsmtot,1)(P0 + ∆Ptot)

N0 −Rsmtot,1
− S0,1, (A.3)

∆Stot,2 =
(Q0 + ∆Qfmtot,2 + ∆Qsmtot,2)(P0 + ∆Ptot)

N0 −Rsmtot,2
− S0,2.

Proposition A.1. Let Ri := −βi∆Stot,i be the amount of redeemed shares. Assume that π1 =

π2 = 0, and that the number of asset and fund shares are equal for each fund: Qi = Ni for i = 1, 2.

The change in value of fund i’s share ∆Stot,i, i = 1, 2, and the change in asset price ∆Ptot are

∆Stot,i = ∆Z + γ
E1 + E2

1− (β1 + β2)γ
, ∆Ptot = ∆Z + γ

E1 + E2

1− (β1 + β2)γ
, (A.4)

where Ei = βi∆Z.

Remark A.2. Cross-price impact effects are important. The impact on the funds’ share value and

the asset price imposed by the simultaneous liquidation procedure of multiple funds is larger than
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the sum of the impacts of each individual fund without accounting for spillover effects:

∆Ptot ≈ ∆Z + γE1 + γ2β1E1︸ ︷︷ ︸
Fund 1 Impact

+ γE2 + γ2β2E2︸ ︷︷ ︸
Fund 2 Impact

+ γ2(β1E2 + β2E1)︸ ︷︷ ︸
Cross-impact

.

Proposition A.3. Assume that π1, π2 > 0. Define Ei = βi∆Z, Eπi = βiπi∆Z, Remπ
i = Ni +

βiπi∆Z the number of remaining shares after first mover redemptions at order 0 in γ and Remi =

Ni + βi∆Z the number of remaining shares after first and second movers’ redemptions at order 0

in γ. For small γ, the change in value of a fund i’s share is

∆Stot,i = ∆Z + γ

(
(E1 + E2)− Eπi (Eπ1 + Eπ2 )

Remπ
i

)
+ o(γ).

For small γ, the change in the asset price is

∆Ptot = ∆Z + γ(E1 + E2) + γ2

(
(β1 + β2)(E1 + E2)− β1E

π
1

Eπ1 + Eπ2
Remπ

1

− β2E
π
2

Eπ1 + Eπ2
Remπ

2

− Eπ1
Eπ1 + Eπ2
P0 + ∆Z

Rem1

Remπ
1

− Eπ2
Eπ1 + Eπ2
P0 + ∆Z

Rem2

Remπ
2

)
+ o(γ2).

Remark A.4. The expressions in Proposition A.3 can be restated as

∆Stot,1 ≈ ∆Z + γ

(
E1 −

(Eπ1 )2

Remπ
1

)
︸ ︷︷ ︸

Own Impact

+ γ

(
E2 −

Eπ2E
π
1

Remπ
1

)
︸ ︷︷ ︸
Other Fund’s Impact

,

∆Ptot ≈ ∆Z + γE1 + γ2

(
β1E1 − β1

(Eπ1 )2

Remπ
1

− (Eπ1 )2

P∆Z

Rem1

Remπ
1

)
︸ ︷︷ ︸

Impact from Fund 1

+ γE2 + γ2

(
β2E2 − β2

(Eπ2 )2

Remπ
2

− (Eπ2 )2

P∆Z

Rem2

Remπ
2

)
︸ ︷︷ ︸

Impact from Fund 2

+ γ2

(
β1E2 + β2E1 − β1

Eπ1E
π
2

Remπ
1

− β2
Eπ1E

π
2

Remπ
2

− Eπ1E
π
2

P∆Z

Rem1

Remπ
1

− Eπ1E
π
2

P∆Z

Rem2

Remπ
2

)
︸ ︷︷ ︸

Cross-impact

.

Proposition A.5. Assume that π1, π2 > 0, and that the number of asset shares equals the number

of fund shares for each fund: Qi = Ni for i = 1, 2. Assume both fund 1 and fund 2 apply swing
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pricing. The swing price of fund i = 1, 2 is

∆Sswboth = γ
Eπ1 + Eπ2

1− (β1 + β2)γ
.

Viewed as a function of first movers’ redemptions, the swing price takes the form

∆Sswboth = −γ(Rfmtot,1 +Rfmtot,2), (A.5)

where Rfmtot,i is the number of shares redeemed by first movers of fund i = 1, 2.

Proposition A.6. Assume π1, π2 > 0 and that the number of asset and fund shares for each fund

are equal: Qi = Ni, i = 1, 2. For small γ, the change in value of fund 2’s share ∆Stot,2 is

∆Stot,2 = ∆Z + γ(β1 + β2)∆Z + γ2

(
(β1 + β2)2∆Z − (Eπ1 )2 Rem1 + β1(P0 + ∆Z)

(P0 + ∆Z)Remπ
1

)
+ o(γ2).

(A.6)

If only one fund applies swing pricing, the fund may decide to implement an adjustment that

removes either the impact of first movers of both funds or only the impact of its own first movers.

Swing price ∆Sswloc is computed such that the fund attains the change in NAV (A.6), while swing

price ∆Sswglob is computed such that the fund’s NAV change is (A.4).

Proposition A.7. Assume π1, π2 > 0, and that the number of asset and fund shares for each fund:

Qi = Ni for i = 1, 2. Assume that only fund 2 applies swing pricing. For small γ,

∆Sswloc = ∆Sswboth + γ2E
π
1 (β1(P0 + 2∆Z)(Remπ

2 −∆Zπ1(β1π1 + β2π2)) +N1(N2 − β1∆Zπ1))

(P0 + ∆Z)Remπ
1

+ o(γ2),

∆Sswglob = ∆Sswloc + γ2β1π1

β2π2

Remπ
2

Remπ
1

Eπ1 (β1(P0 + ∆Z) + Rem1)

P0 + ∆Z
+ o(γ2).

B Technical Proofs

Define ∆P̄n := P smn −P sm0 and ∆S̄n := Ssmn −Ssm0 to be the cumulative price changes over n rounds

of second-mover redemptions, and define the function

g(x) =
Qsm0

N0 −Rsm0

(
P0 + ∆Z − P sm0 + ϕ

(
Qsm0 −Q0 + (1− π)β

Qsm0
N0 −Rsm0

(∆Ssm0 + x)
))
.
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Lemma B.1. With the notation above, we have ∆S̄n =
Qsm0

N0−Rsm0
∆P̄n = g(∆S̄n−1).

Proof. Plugging (2.6) and (2.8) into (2.7), we obtain ∆Qsmn+1 = (1 − π)β Qsmn
N0−Rsmn

∆Ssmn . It follows

that

Qsmn + ∆Qsmn+1

N0 −Rsmn −∆Rsmn+1

=
Qsmn

N0 −Rsmn
1 + (1− π)β∆Ssmn /(N0 −Rsmn )

1 + (1− π)β∆Ssmn /(N0 −Rsmn )
=

Qsmn
N0 −Rsmn

.

Hence, by induction, Qsmn
N0−Rsmn

=
Qsm0

N0−Rsm0
. Equation (2.8) may be rewritten as

Ssmn
P smn

=
Qsmn

N0 −Rsmn
=

Qsm0
N0 −Rsm0

.

Hence, Ssmn =
Qsm0

N0−Rsm0
P smn , and then ∆S̄n =

Qsm0
N0−Rsm0

∆P̄n, as claimed. By rewriting (2.7) as

Qsmn+1 +Rsmn+1

Ssmn+1

P smn+1

= Qsmn +Rsmn
Ssmn+1

P smn+1

,

it can be seen that Qsmn −Qsm0 = − Qsm0
N0−Rsm0

(Rsmn −Rsm0 ) for all n. Using equation (2.6), we obtain

Qsmn −Qsm0 = − Qsm0
N0 −Rsm0

(Rsmn −Rsm0 ) = (1− π)β
Qsm0

N0 −Rsm0
(∆Ssm0 + ∆S̄n−1).

Together with equation (2.9), this concludes the proof.

Lemma B.2. If ϕ(x) = γx, then ∆Ssmn = (1− π)βγ
(

Qsm0
N0−Rsm0

)2
∆Ssmn−1.

Proof. With linear price impact, P sm0 = P0 + ∆Z + γ(Qsm0 −Q0) and the recursion in Lemma B.1

simplifies to ∆S̄n = (1 − π)βγ
(

Qsm0
N0−Rsm0

)2
(∆Ssm0 + ∆S̄n−1). The result then follows by induction

because ∆S̄n = ∆S̄n−1 + ∆Ssmn .

Proof of Lemma 3.1. The condition in the lemma implies that limx→−∞ g
′(x) < 1. This in turn

implies the existence of a finite xl such that g(x) > x for x < xl. Because (1−π)β
Qsm0

N0−Rsm0
∆Ssm0 < 0

and P sm0 = P0 +∆Z+ϕ(Qsm0 −Q0), we get g(0) < 0. Since ϕ(·) is increasing, g(·) is also increasing.

Now consider the sequence ∆S̄n+1 = g(∆S̄n), with ∆S̄0 = 0. We have ∆S̄1 < ∆S̄0 because g(0) < 0.

Monotonicity of g then implies g(∆S̄1) ≤ g(∆S̄0), so ∆S̄2 ≤ ∆S̄1, and proceeding by induction we

conclude that the ∆S̄n form a decreasing sequence. As g(∆S̄n) ≤ ∆S̄n, we must have ∆S̄n ≥ xl,

for all n. In other words, the ∆S̄n form a decreasing sequence, bounded from below, and thus

converge to a limit. Moreover, the continuity of g implies that the limit is a fixed point of g.
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Proof of Proposition 3.2. If π = 0, then Qsm0 = Q0 and Rsm0 = 0. Hence, the condition in Lemma

3.1 reduces to β limx→−∞ ϕ
′(x) < 1 and convergence is guaranteed. From Lemma B.1, we get

∆S̄n = ∆P̄n = ϕ(β(∆Z + ∆P̄n−1)). It follows that ∆P smtot = ∆Z + ϕ(β(∆P smtot )).

The equations in (2.20) can be rewritten as Qn − Q0 = β(Pn−1 − P0) and Pn = P0 + ∆Z +

ϕ(β(Pn−1−P0)). The argument in Lemma 3.1 guarantees that the sequence (Pn)n≥0 converges. The

limit ∆P dirtot = limn→∞ Pn−P0 then satisfies the fixed point equation ∆P dirtot = ∆Z+ϕ(β∆P dirtot ).

Lemma B.3. Let ϕ(x) = γx. Suppose that after first movers’ redemptions, the fund holds Qsm0 :=

Qfmtot asset shares, the number of outstanding shares of the fund is N0 − Rsm0 where Rsm0 := Rfmtot ,

the asset price is P sm0 := P fmtot = P0 + ∆Z + γ(Qfmtot − Q0), and the value of a fund share is

Ssm0 := Sfmtot =
Qfmtot P

fm
tot

N0−Rfmtot
. Assume that βγ(1−π)

(
Qfmtot

N0−Rfmtot

)2

< 1. The cumulative changes in asset

price and fund share value after second movers’ redemptions are given by

∆P fmtot + ∆P smtot = ∆P fmtot + βγ(1− π)
Qsm0

N0 −Rfmtot

∆Ssm0

1− βγ(1− π)

(
Qsm0

N0−Rfmtot

)2 ,

∆Sfmtot + ∆Ssmtot =
∆Ssm0

1− βγ(1− π)

(
Qsm0

N0−Rfmtot

)2 .

Proof. From Lemmas B.1 and 3.1 we get that ∆Ssmtot satisfies ∆Ssmtot = g(∆Ssmtot ). Specializing to

the case of linear ϕ, solving for ∆Ssmtot , and using P sm0 = P0 + ∆Z + γ(Qsm0 −Q0) yields the result.

The expression for ∆P smtot follows from the first equality in Lemma B.1.

Proof of Proposition 3.3. Using equation (2.15), we can rewrite (2.14) as the quadratic equation

γ(∆Qfmtot )2 + (P0 + ∆Z)∆Qfmtot −R
fm
tot (S0 + ∆S0) = 0,

with ∆S0 = ∆Z because we assume Q0 = N0. If this quadratic equation in ∆Qfmtot admits a

solution, then the smallest number of asset shares the fund has to trade to repay first movers is

∆Qfmtot = −
P0 + ∆Z −

√
(P0 + ∆Z)2 − 4γRfmtot (P0 + ∆Z)(Q0/N0)

2γ
.

The number of redemptions Rfmtot in (2.12) is strictly decreasing in ∆Stot. Hence, the negative
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change in holdings ∆Qfmtot is strictly increasing in ∆Stot. Using the assumptions P0 = S0 and

Q0 = N0, and (2.15), we can rewrite equation (2.14) as

Q0 + ∆Qfmtot

N0 −Rfmtot
= 1− γ

P0 + ∆Z

(∆Qfmtot )2

N0 −Rfmtot
. (B.1)

It follows that the fraction
Q0+∆Qfmtot
N0−Rfmtot

is strictly increasing in ∆Stot. The change in value of a fund

share due to first movers’ redemptions is ∆Sfmtot =
Qfmtot P

fm
tot

N0−Rfmtot
−S0. Using Lemma B.3 we obtain that,

after second mover redemptions, the change in value of a fund share is

∆Stot =
∆Sfmtot

1− βγ(1− π)

(
Q0+∆Qfmtot
N0−Rfmtot

)2 . (B.2)

Since both
Q0+∆Qfmtot
N0−Rfmtot

and P fmtot are strictly increasing in ∆Stot, we obtain that ∆Sfmtot and therefore

also the right-hand side of (B.2) is strictly increasing in ∆Stot. After plugging the expressions for

∆Sfmtot , ∆Qfmtot and ∆Rfmtot into the right-hand side of equation (B.2), we may rewrite (B.2) as

∆Stot = fγ(∆Stot), (B.3)

where

fγ(x) =
2βπ∆Zx+N0(∆Z − P0 +

√
P0 + ∆Z

√
P0 + ∆Z + 4βπγx)

2(N0 + βπx)(1− β(1−π)(P0+∆Z−2γN0−
√
P0+∆Z

√
P0+∆Z+4βπγx)2

4γ(N0+βπx)2 )
. (B.4)

We have shown that the right-hand side in (B.2) is strictly increasing in ∆Stot. Equivalently, the

function fγ(x) is strictly increasing for x < 0. Furthermore, it can be immediately verified that

fγ(∆Z) ≤ fγ(0) = ∆Z
1−βγ(1−π) < ∆Z. Since

√
P0 + ∆Z + 4βπγx =

√
P0 + ∆Z + 2βπx√

P0+∆Z
γ +O(γ2),

we get that f0(x) := limγ→0+ fγ(x) = ∆Z. Hence, the initial shock ∆S0 = ∆Z is a fixed point

of fγ(·) when γ = 0. Because f ′0(x) 6= 1 for every x, and the dependence of both fγ(·) and its

derivative on γ is continuous, there exists γ∗ > 0 such that for 0 < γ < γ∗ there exists a solution

to the fixed point equation x = fγ(x).

We can Taylor expand the fixed point ∆Stot(γ) around γ = 0 to obtain ∆Stot(γ) = ∆Stot(0) +

γ ∂∆Stot(γ)
∂γ |γ=0 + o(γ). Since limγ→0+ fγ(∆Stot(γ)) = ∆Z, we get that ∆Stot(0) = ∆Z. By dif-

ferentiating both sides of the fixed point equation ∆Stot(γ) = fγ(∆Stot(γ)) with respect to γ,
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we obtain ∂∆Stot
∂γ =

∂fγ(∆Stot)
∂γ +

∂fγ(∆Stot)
∂∆Stot

∂∆Stot
∂γ . It can be verified that

∂fγ(∆Stot)
∂∆Stot

|γ=0 = 0 and

∂fγ(∆Stot)
∂γ |γ=0 = β∆Z − π2β2∆Z2

N0+πβ∆Z . Hence, ∆Stot = ∆Z + γ
(
β∆Z − π2β2∆Z2

N0+πβ∆Z

)
+ o(γ).

From Lemma B.3, we get that ∆Ptot = ∆Z + γ(Qfmtot − Q0) + βγ(1 − π)
Qfmtot

N0−Rfmtot
∆Stot, where

both Qfmtot and Rfmtot are functions of ∆Stot. Given the Taylor expansion in γ for ∆Stot, we

can compute the expansion for ∆Ptot: limγ→0+ ∆Ptot = ∆Z, limγ→0+
∆Ptot−∆Z

γ = β∆Z and

limγ→0+
∆Ptot−∆Z−γβ∆Z

γ2 = β2∆Z − β π2β2∆Z2

N0+πβ∆Z −
π2β2∆Z2

P0+∆Z
N0+β∆Z
N0+πβ∆Z .

Proof of Proposition 4.1. In the proof of Proposition 3.3, we have shown that ∆Stot is a fixed point,

if it exists, of the function fγ given in (B.4). It can be verified immediately that if ∆Z = 0, then

∆Stot = 0 is the unique fixed point of fγ(·).

Notice that the maximum amount of cash the fund can retrieve from asset sales is max∆Q ∆Q(P0+

∆Z + γ∆Q) = (P0+∆Z)2

4γ . Hence, the fund becomes unable to repay first movers when Rfm(S0 +

∆S0) > (P0+∆Z)2

4γ , where the left-hand side is the amount of cash the fund owes to first movers. In

other words, if first movers redeem Rfm = −βπ∆Stot in response to an anticipated final change

in value of a fund share ∆Stot, this solvency-type condition reads as ∆Stot < −P0+∆Z
4γπβ (recall that

Q0 = N0). Hence, since ∆Stot < ∆S0, if ∆S0 = ∆Z < − P0
1+4γβπ , the fund becomes unable to meet

its first movers’ redemption requests.

Throughout the proof, we will write fγ(x,∆Z) to highlight the dependence of fγ(x) on ∆Z.

Define the solvency set Sγ := {∆Z : ∃∆Stot < 0 such that ∆Stot = fγ(∆Stot,∆Z)}. This is the set

of initial shocks ∆Z such that the fund is able to raise enough cash to repay its first movers. We

have already shown that if ∆Z < − P0
1+4γβπ , then ∆Z does not belong to Sγ .

With ∆Z∗ := inf Sγ , it follows that − P0
1+4γβπ ≤ ∆Z∗. Combining (B.2) and (B.3), we obtain

fγ

(
−R

fm
tot

βπ
,∆Z

)
=

∆Sfmtot (∆Z)

1− βγ(1− π)

(
Q0+∆Qfmtot (∆Z)

N0−Rfmtot

)2 .

For a given quantity of first-mover redemptions Rfmtot , the amount of asset shares ∆Qfmtot the fund

trades to repay first movers is an increasing function of ∆Z. Hence, ∆Sfmtot :=
Qfmtot P

fm
tot

N0−Rfmtot
−S0 is also an

increasing function of ∆Z. It follows that for any x ∈ [−P0+∆Z
4γπβ , 0], fγ(x,∆Z) is increasing in ∆Z.

Notice that if 0 > ∆Z1 /∈ Sγ , since fγ(0,∆Z1) < 0, we have fγ(x,∆Z1) < x for all x ≤ 0. Hence, the

monotonicity of fγ(x,∆Z) in ∆Z implies that if ∆Z2 < ∆Z1, then fγ(x,∆Z2) < fγ(x,∆Z1) < x
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for all x ≤ 0, and therefore ∆Z2 /∈ Sγ , which is to say that the fund remains solvent for any

∆Z > ∆Z∗. Because the set Sγ is closed, the fund remains solvent also for ∆Z = ∆Z∗.

It can easily be seen that fγ(x,∆Z) is decreasing in γ for any ∆Z ∈ [− P0
1+γβπ , 0] and any

x ∈ [−P0+∆Z
4γπβ , 0]. Let γ1 < γ2. Because fγ(x,∆Z) is decreasing in γ and −P0+∆Z

4βπγ is increasing in

γ, we obtain that Sγ2 ⊂ Sγ1 . This implies that ∆Z∗(γ2) ≥ ∆Z∗(γ1) and concludes the proof.

Proof of Proposition 4.3. Assume the fund adjusts its NAV by ∆Sadj when first movers redeem.

The cumulative change in fund share value is the fixed point ∆Stot in (2.18) after replacing S0+∆S0

with S0 + ∆S0 + ∆Sadj in (2.14).

Set ∆Sadj := ϕ(−Rfmtot ). For a fixed ∆Stot, solving equations (2.12)–(2.15) for Qfmtot , we obtain

Qfmtot = Q0 − Rfmtot = Q0 + πβ∆Stot. Because Q0 = N0, this yields
Qfmtot

N0−Rfmtot
= 1. From Lemma

B.1, we obtain that ∆Ssm0 + ∆S̄n = ∆Ssm0 + g(∆Ssm0 + ∆S̄n−1 − ∆Ssm0 ). Hence, ∆Stot is a

fixed point of the equation ∆Stot = ∆Ssm0 + g(∆Stot − ∆Ssm0 ). The function g(x) reduces to

g(x) = ∆Z −∆Ssm0 + ϕ
(
πβ∆Stot + (1 − π)β(∆Ssm0 + x)

)
. In other terms, ∆Stot is a fixed point

of the equation ∆Stot = ∆Z + ϕ(β∆Stot). Let x̄ < 0 be the solution to x̄ = ∆Z + ϕ(βx̄); the

existence of x̄ follows from the argument used to prove Proposition 3.2. We have shown that if

∆Sadj = ϕ(−Rfmtot ), then ∆Stot = x̄ and ∆Ptot = x̄ solve (2.18).

If ϕ(x) = γx, then x̄ = ∆Z
1−βγ . Since Rfmtot = −πβ∆Stot = −πβ ∆Z

1−βγ , we get that ∆Ssw =

−γRfmtot = γ πβ∆Z
1−βγ . Notice that Qfmtot is a strictly decreasing function of ∆Sadj . Since ∆Stot increases

with Qfmtot , also ∆Stot is a strictly decreasing function of ∆Sadj . Hence, the swing price is unique.

Proof of Proposition 5.1. The second order terms in the expansion formulas given in Proposition

A.7 are strictly negative. The result follows immediately.

Proof of Proposition A.1. The proof proceeds along similar lines as the proof of Lemma B.3. The

change in asset price ∆Ptot and the change in fund i’s NAV ∆Stot,i, for i = 1, 2, are given by the

solution of the system of equations (A.1)–(A.3) with πi = 0, and thereforeRfmtot,i = 0 and ∆Qfmtot,i = 0,

for i = 1, 2. A solution to these equations is given by the triplet (∆Stot,1,∆Stot,2,∆Ptot) defined by

∆Stot,1 = ∆Stot,2 = ∆Ptot = ∆Z + γ E1+E2
1−(β1+β2)γ .

Proof of Proposition A.3. The proof follows the same lines as the proof of Proposition 3.3. The

change in asset price ∆Ptot and the change in fund i’s NAV ∆Stot,i, for i = 1, 2, are given by the
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solution of the system of equations (A.1)–(A.3). We rewrite the equations in the system (A.3)

as ∆Ptot = gP (γ,∆Ptot,∆Stot,1,∆Stot,2), ∆Stot,1 = gS,1(γ,∆Ptot,∆Stot,1,∆Stot,2) and ∆Stot,2 =

gS,2(γ,∆Ptot,∆Stot,1,∆Stot,2) for appropriately defined functions gP , gS,1 and gS,2. Differentiating

both sides of these equations with respect to γ and evaluating them at γ = 0, yields the coefficients

of the expansions ∆Ptot(γ) = ∆Ptot(0) + γ ∂∆Ptot(γ)
∂γ |γ=0 + γ2

2
∂2∆Ptot(γ)

∂γ2 |γ=0 + o(γ2) and ∆Stot,i(γ) =

∆Stot,i(0) + γ
∂∆Stot,i(γ)

∂γ |γ=0 + o(γ), for i = 1, 2.

Proof of Proposition A.5. The proof follows the same lines as the proof of Proposition 4.3. The

NAV that fund i’s first movers receive is adjusted by an amount ∆Sadji , for i = 1, 2. Hence, the

change in asset price ∆Ptot and the change in fund i’s NAV ∆Stot,i, for i = 1, 2, are given by

the solution of the system of equations (A.1)–(A.3), where the second line of the system (A.1)

gets replaced by −∆Qfmtot,i × (P0 + ∆Z + γ(∆Qfmtot,1 + ∆Qfmtot,2)) = Rfmtot,i(S0,i + ∆Z + ∆Sadji ), for

i = 1, 2. It can be verified that ∆Sadji = γ
Eπ1 +Eπ2

1−(β1+β2)γ , ∆Qfmtot,i =
Eπi

1−(β1+β2)γ , for i = 1, 2, and

∆Stot,1 = ∆Stot,2 = ∆Ptot = ∆Z + γ E1+E2
1−(β1+β2)γ solve the system of equations. It follows that

∆Sswboth := γ
Eπ1 +Eπ2

1−(β1+β2)γ is the swing adjustment. It also satisfies ∆Sswboth = −γ(Rfmtot,1 +Rfmtot,2).

Proof of Proposition A.6. The proof follows the same lines as the proofs of Proposition 3.3 and

Proposition A.3. By assumption, only fund 1 has first-mover investors. Hence, the change in asset

price ∆Ptot and the change in fund i’s NAV ∆Stot,i, for i = 1, 2, are given by the solution to

the system of equations (A.1)–(A.3) with π2 = 0. Therefore, Rfmtot,2 = 0 and ∆Qfmtot,2 = 0. The

expansions for ∆Ptot, ∆Stot,1 and ∆Stot,2 can be computed as in Proposition A.3.

Proof of Proposition A.7. The NAV that fund 2’s first movers receive is adjusted by an amount

∆Sadj . Fund 1’s NAV does not get adjusted. Hence, the change in asset price ∆Ptot and the

change in fund i’s NAV ∆Stot,i, for i = 1, 2, are given by the solution of the system of equations

(A.1)–(A.3), where the second line of the system (A.1) gets replaced by the equations

−∆Qfmtot,1 × (P0 + ∆Z + γ(∆Qfmtot,1 + ∆Qfmtot,2)) = Rfmtot,1(S0,1 + ∆Z),

−∆Qfmtot,2 × (P0 + ∆Z + γ(∆Qfmtot,1 + ∆Qfmtot,2)) = Rfmtot,2(S0,2 + ∆Z + ∆Sadj).
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We rewrite the equations in the system (A.3) as

∆Ptot = gP (γ,∆Sadj ,∆Ptot,∆Stot,1,∆Stot,2),

∆Stot,1 = gS,1(γ,∆Sadj ,∆Ptot,∆Stot,1,∆Stot,2), (B.5)

∆Stot,2 = gS,2(γ,∆Sadj ,∆Ptot,∆Stot,1,∆Stot,2).

Next, we compute the expansion of ∆Sswglob = ∆Sswglob(0) +γ
∂∆Sswglob(γ)

∂γ |γ=0 + γ
2

∂2∆Sswglob(γ)

∂γ2 |γ=0 + o(γ2).

Proposition A.1 states that, for π1 = π2 = 0, the change in NAV of fund 2 is

∆Stot,2 = ∆Z + γ(β1 + β2)∆Z + γ2(β1 + β2)2∆Z + · · · . (B.6)

By definition, the adjustment ∆Sswglob is the one that fund 2 needs to apply to guarantee that ∆Stot,2

admits the expansion B.6. Hence, if ∆Sadj = ∆Sswglob, then ∆Stot,2(0) = ∆Z,
∂∆Stot,2(γ)

∂γ |γ=0 =

(β1 + β2)∆Z and
∂2∆Stot,2(γ)

∂γ2 |γ=0 = 2(β1 + β2)2∆Z. By letting γ decrease to 0 on both sides of

each equation in B.5 and using ∆Stot,2(0) = ∆Z, we get that ∆Ptot(0) = ∆Stot,1(0) = ∆Z and

∆Sadj = 0. By differentiating both sides of each equation in B.5 with respect to γ, evaluating the

derivatives at γ = 0 and using the fact that
∂∆Stot,2(γ)

∂γ |γ=0 = (β1 + β2)∆Z, we obtain the values

for ∂∆Ptot(γ)
∂γ |γ=0,

∂∆Stot,1(γ)
∂γ |γ=0 and ∂∆Sadj(γ)

∂γ |γ=0. By differentiating the same equations again, we

can compute ∂2∆Sadj(γ)
∂γ2 |γ=0. The resulting values for ∆Stot,2(0),

∂∆Stot,2(γ)
∂γ |γ=0 and

∂2∆Stot,2(γ)
∂γ2 |γ=0

are the coefficients in the expansion of ∆Sswglob.

If π1 > 0 and π2 = 0, then fund 2’s change in NAV is given by (A.6). Because the adjustment

∆Sswloc is such that ∆Stot,2 satisfies (A.6), in this case ∆Stot,2(0) = ∆Z,
∂∆Stot,2(γ)

∂γ |γ=0 = (β1+β2)∆Z

and
∂2∆Stot,2(γ)

∂γ2 |γ=0 = 2
(

(β1 + β2)2∆Z − (Eπ1 )2 Rem1+β1(P0+∆Z)
(P0+∆Z)Remπ

1

)
. The coefficients in the expansion

of ∆Sswloc can now be found by repeating the procedure used for ∆Sswglob.
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