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Abstract

Using banks’ internal models for regulatory purposes, while aimed at making capital require-

ments more accurate, invites regulatory arbitrage. I develop a framework to study the strategic

selection of risk models, and derive predictions in line with recent empirical evidence. I also

study optimal regulations. Penalizing banks with low risk-weights when they suffer abnormal

losses is a powerful tool, currently used for market risk models, but needs to be amended when

model uncertainty bears on tail risks. Recent regulatory reforms using non-risk based ratios are

counter-productive in this framework, because the issue is not model risk but a “hidden model”

problem.
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1 Introduction

Risk models have increasingly become a strategic variable for financial institutions, as their output

is used to communicate risk measures to investors and regulators. This external use may affect the

way models are chosen and implemented, leading to biased risk estimates. Dowd et al. (2008) study

the example of Goldman Sachs, which according to its internal (Gaussian) models suffered several

“25-sigmas events” in a row in August 2007, although they were supposed to occur once every 10135

years.

A clear rationale for the “strategic” use of internal models is banking regulation. To compute

risk-based capital requirements, the Basel approach heavily relies on the banks’ self-reported risk

measures, which, according to a growing number of empirical studies, suffer from serious anomalies

and inconsistencies (see, e.g., Behn, Haselmann, and Vig (2014) or Plosser and Santos (2014)). The

reliability of internal risk measures has become one of the key issues in a heated debate on capital

regulation, especially with the implementation of Basel III in the United States in 2014, with many

voices calling for simpler rules and the use of non risk-based tools such as leverage ratios.1

Two questions are of particular importance in this debate: (i) How can we test whether the

observed discrepancies between a bank’s self-reported risk measures and its actual losses come from

honest mistakes (model risk), or from strategic misreporting (a “hidden model” problem)? (ii) If

strategic misreporting is the issue, what is the optimal regulatory answer, and how far from the

optimum are current reforms?

This paper offers a framework to answer these questions. First, I derive and compare different

mechanisms ensuring that risk measures are reported truthfully, taking into account several impor-

tant practical constraints, such as the fact that uncertainty on risk measures often bears on tail

risks, and the impossibility to “punish” banks already in default. Second, the model nests as a

particular case the current regulatory framework and recent reforms such as leverage ratios. This

approach gives implications on how banks’ reported measures react to market or regulatory changes

under strategic misreporting, giving guidance on how to empirically separate this hypothesis from

alternative explanations.

I consider a regulator who wants to use a bank’s internal risk estimates, which are private

1See “The dog and the frisbee”, speech given by Andrew Haldane at the 36th economic policy symposium in
Jackson Hole; or the joint press release of the Federal Reserve Board, the FDIC and the OCC on July 9, 2013:
http://www.federalreserve.gov/newsevents/press/bcreg/20130709a.htm. Bundesbank’s former Vice-President
S. Lautenschläger expressed a more skeptical view of such tools: http://www.bundesbank.de/Redaktion/EN/Reden/

2013/2013_10_21_lautenschlaeger.html.
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information, and thus faces a hidden information problem.2 I study solutions to this problem in

increasingly constrained environments. The first-best outcome can be obtained with a mechanism

imposing a penalty on a bank when observed losses are unlikely given its internal model, thus

reducing incentives for using optimistic models. I then introduce the possibility that internal models

differ mainly in their predictions about tail risk. In such a case, a bank reporting a very optimistic

model can be allowed a high leverage. The regulator cannot learn that a model was too optimistic

unless losses in the tail materialize, in which case the highly leveraged bank is in default and can

no longer be punished. The first-best outcome can still be reached if the regulator commits to

bailing out troubled banks that reported conservative risk measures, but not the ones that reported

low risk weighted assets and are likely to have misreported. If such bail-outs are not feasible, the

second-best solution is either to have capital requirements so high that all types of banks can be

punished, or to offer a “reward” to banks reporting conservative risk measures, which then enjoy an

informational rent. The optimal solution depends on the regulator’s prior information about risk

models and on the cost of public funds.

While penalty mechanisms have been used since the 1996 Amendment of the Basel Accord for

the regulation of market risk,3 and could be extended to other types of risk, it is also important to

consider current reforms that attempt to solve the problem without using penalties. I first derive

the optimal regulation without penalties. Capital requirements should be sensitive to reported

risk measures. However, if this sensitivity is too high compared to the costs of misreporting, then

banks have incentives to use optimistic risk models. To avoid this outcome, second-best capital

requirements should react less to a bank’s report. Interestingly, the second-best regulation does not

complement risk-based capital requirements with a leverage ratio, as Basel III does. I study the

impact of using such a tool, and show in particular that it can lead more banks to use optimistic

models because of a market equilibrium effect. Indeed, a leverage ratio restricts the supply of credit

by safer banks, for which it is binding. As a result, the interest rate on loans increases, so that

bypassing regulatory constraints to lend more becomes more profitable. Riskier banks, for which

the ratio is not binding, then report low risk measures and lend more. The total impact on risk

2Although the manipulation of risk models is what seems to worry regulators the most, there may be in addition
a moral hazard problem: banks can invest in riskier assets if they can misrepresent the risk ex post. The framework
of this paper can be adapted to the case of moral hazard, as discussed in footnote 15. Moreover, some mechanisms
derived in the paper implement the first-best without leaving any rents to banks, which suppresses such moral hazard
problems as the regulator can learn the quality of banks’ assets at no cost).

3Under the “traffic light” approach, banks are required to report one-day 99% value-at-risk measures. Additional
capital charges are imposed if these measures are exceeded more than 5% of the time over a given quarter, and the
penalty increases with the number of exceedances.
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may not be the one expected by the regulator. This is a simple yet important caveat for current

reforms such as leverage ratios as complements to capital requirements, the Collins amendment in

the United States, or floors based on Basel II’s standardized approach.

If the problem with banks’ risk estimates comes from model risk, possible solutions include a

leverage ratio (Kiema and Jokivuolle (2014)) or a more robust approach to computing the estimates

(Boucher et al. (2014)). These solutions are ineffective or even counter-productive when strategic

selection of risk models is the real problem, it is thus important to derive predictions so that empirical

studies can tell these two theories apart. Analyzing the equilibrium choice of risk models under

current regulatory arrangements delivers testable implications. For instance, an exogenous increase

in the demand for banks’ loans causes more banks to select optimistic models; tightening regulatory

constraints through leverage ratios, increasing capital requirements from Basel II to Basel III levels,

or increasing the risk-sensitivity of capital requirements has the same impact. Importantly, if poor

measures of risk come from honest modeling mistakes, none of these variables should have an impact

on the choice of a particular risk model.

The analysis can be applied to all types of risks that are regulated using internal models in

Basel II and III, but credit risk is particularly relevant. Credit risk models are extremely difficult

to backtest due to their time horizon (typically one year) and the scarcity of available data. More

generally, the “hidden model” framework developed here can also be used to study other situations

in which an agent may strategically use internal models: For instance stress-testing exercises, the

assessment of a pool of loans by a credit rating agency, the compensation of a trader or trading

desk based on risk estimates.4

Related literature. There is a growing empirical literature on banks’ internal risk measures.

The most recent studies aim at showing that the discrepancies observed between the ratings given

by different banks are compatible with a regulatory arbitrage hypothesis (e.g., Behn, Haselmann,

and Vig (2014) or Plosser and Santos (2014)). My paper is complementary to this literature as

it offers a framework to derive precise implications of this hypothesis. I discuss this literature at

length in 5.1, show that the results of the model are compatible with the stylized facts that emerge

from this literature, and suggest additional testable hypotheses.

On the theoretical side, this paper fits in the literature studying bank regulation as an asym-

metric information problem. Although the seminal papers in this area proposed to use deposit

4The “London Whale” is a good illustration, see for instance “JP Morgan manipulated VAR and CRM models at
London whale unit - Senate report” by D. Wood, Risk Magazine, 15.03.13.
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insurance premia as a tool to reveal the bank’s information (e.g., Chan, Greenbaum, and Thakor

(1992) and Giammarino, Lewis, and Sappington (1993)), international regulatory standards use

different tools, in particular self-reported risk measures with various mechanisms to control the

incentives to misreport. I study optimal regulatory arrangements taking as given the families of

mechanisms available in the Basel toolbox, and show that there are in principle enough tools to

implement the first-best, without using deposit insurance premia.5

The previous stages of the Basel framework generated a few papers on the regulatory use of

internal models, such as Kupiec and O’Brien (1995), Lucas (2001), Prescott (2004), Cuoco and Liu

(2006), and Marshall and Prescott (2006), the latter two being the most related. Cuoco and Liu

(2006) study the optimal reaction of a bank to the penalty mechanism actually used for backtesting

market risk models, and use numerical methods to show that the threat of future increases in

capital requirements has a powerful disciplining effect. The penalties imposed on a misreporting

bank in my model can be seen as the static counterpart of such a mechanism. Marshall and Prescott

(2006) study optimal penalty mechanisms to make banks report risk truthfully and also resort to a

numerical analysis, due to the complexity of the problem (both adverse selection and moral hazard).

Prescott (2004) is the only paper studying how to optimally audit risk models so as to deter strategic

behavior.6

The approach of my paper is quite different from this literature. I study a more stylized and

tractable framework in order to obtain analytical results on the optimal regulation. I derive opti-

mal mechansims under a variety of realistic constraints that were neglected in previous studies, and

compare these mechanisms to different regulatory options that are currently contemplated. More-

over, I analyze the equilibrium reaction of banks to realistic but non-optimal mechanisms, such as

constraints on leverage ratios, in order to derive empirical predictions that can be confronted to the

empirical literature.

An additional novelty of this paper is that uncertainty is not only about a single number (e.g.,

the probability that a bank survives) but about the entire distribution of a bank’s possible losses

(a “risk model”). This approach allows me to introduce asymmetric information about tail risk

5Note that demand for loans is inelastic in Chan, Greenbaum, and Thakor (1992), so that higher capital ratios
do not imply fewer loans, a concern that seems currently important. Giammarino, Lewis, and Sappington (1993)
study a moral hazard problem in which the regulator can check the quality of a bank’s assets ex post at no cost, an
assumption that applies less well to the issue of internal risk models.

6Some papers have also studied the choice between Basel’s standardized (SA) and internal ratings based (IRB)
approaches, such as Repullo and Suarez (2004), Hakenes and Schnabel (2011) or Feess and Hege (2012), but have not
looked at the strategic choice of risk models inside the IRB approach.
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in a model of bank regulation, and let it interact with limited liability.7 Taking into account this

important feature identifies some limits to the penalty-based mechanisms studied in prior literature.

For instance, I show that if banks cannot be bailed-out then tail-risk uncertainty will make penalty-

based mechanisms inefficient. Second-best mechanisms typically distort capital requirements in

addition to defining penalties. These results can be compared to Blum (2008), who concludes that

penalties must be combined with a leverage ratio constraint in a setup with two types of banks and

two levels of losses. In a framework with an entire distribution of losses, penalties are insufficient

when the different models differ only for loss levels so high that the bank is in default (a setup with

two levels of losses mechanically features this implicit assumption). Moreover, the proper remedy

is in general to make capital requirements less sensitive to a bank’s reported risk measure, which is

equivalent to a leverage ratio constraint only with two types of banks. I thus reach very different

conclusions regarding the desirability of such a tool.

This paper finally contributes to the general question of understanding how economic incentives

can affect the decision of agents who develop or rely on statistical models. As markets become

more sophisticated, internal models are increasingly used to communicate information to other

market participants.8 However, the theoretical literature typically neglects this strategic dimension

of model selectio,. One exception, in a very different context, is Ghosh and Masson (1994), who

suggest that governments could in fact pretend to believe in economic models they know to be false,

so as to gain in bargaining power when meeting with other countries’ representatives.

The remainder of the paper is organized as follows: Section 2 develops the general framework;

I study the optimal regulation using ex-post penalties in 3, and then regulatory schemes without

penalties in 4, a particular case being leverage ratios. Section 5 discusses the empirical implications

of the model and compares the different regulatory options derived in the paper.

7A few papers have also looked at the regulation of tail risks specifically, but under moral hazard, in particular
Biais et al. (2010), and Perotti, Ratnovski, and Vlahu (2011).

8See for instance Rajan, Seru, and Vig (2010) and Rajan, Seru, and Vig (2014) on the use of risk estimates when
selling securitized loans.
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2 Framework

Three elements are needed to study the strategic choice of models: Regulated financial intermedia-

tion, model uncertainty, and asymmetric information between the intermediaries and the regulator.

Agents and assets. Borrowers need to finance risky projects that can either succeed or fail. If

a measure L of projects are financed, the gross return on the marginal project, if it is successful, is

ρ(L), ρ(.) being a strictly decreasing function. A random proportion t of projects will fail, following

a distribution defined below. Failed projects yield 0, leading to the borrower’s default.

Depositors can either invest in a safe asset yielding the risk-free rate r0 = 1 with certainty, or

lend to financial intermediaries, but not directly to borrowers. They are fully insured and provide

an elastic supply of deposits at rate r0.

A regulated intermediary (or bank) owns a fixed amount of equity E and can borrow D from

depositors at r0.9 The intermediary is a monopolist and chooses a quantity L to lend to borrowers,

which determines the gross interest rate r = ρ(L). He can also invest in the safe asset at rate r0.

The intermediary is protected by limited liability and has to comply with the regulatory framework

in order to collect deposits. Alternatively, he can opt out of the regulation and receive an exogenous

payoff π̄.

The regulatory framework is designed by a benevolent regulator maximizing a weighted sum of

the payoffs to depositors, borrowers, the deposit insurance fund, and the intermediary. A female

pronoun will refer to the regulator, a male pronoun to the intermediary.

There are many depositors and borrowers, so that the bank is intermediating between two price-

taking groups of agents. Borrowers demand funds until the marginal payoff in case of success ρ is

equal to the repayment r, thus generating a demand for loans equal to q(r) = ρ−1(r). I assume

q(1) = +∞ and lim
+∞

q(r) = 0.

Model uncertainty. A family of cdfs {F (., s̃), s̃ ∈ [s, s]}, with support over [0, 1], represent the

set of plausible risk models to describe the distribution of t, the proportion of defaulting borrowers.

This family of cdfs indexed by s̃ can be interpreted as one model with different parameterizations,

or models from different families. Denote {f(., s̃)} the corresponding pdfs.

The correct risk model, s, is randomly selected by nature in [s, s] according to some cdf Ψ(.),

with associated density ψ(.). The actual proportion t of defaulting borrowers then follows the

distribution F (t, s), continuously differentiable in both arguments. Moreover, for some results it

9The assumption of fixed equity simplifies the exposition. As discussed below, it is enough to assume that some
frictions (e.g., informational) make the issuance of equity costly for a bank.
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is useful to assume, as is customary in the mechanism design literature, that the family {F (., s̃)}

satisfies the monotone likelihood ratio property, which implies in particular that models with a low

s give risk estimates unambiguously more favourable than models with a high s:10

∀t0, t1, s0, s1 with t1 ≥ t0, s1 ≥ s0,
f(t1, s1)

f(t1, s0)
≥ f(t0, s1)

f(t0, s0)
. (MLRP)

Regulation under complete information. As a benchmark, assume that the regulator knows

s and can directly choose the loan volume L. In addition, she can impose a transfer T (s, t) from

the intermediary to the public budget, conditional on t defaults realizing. The regulator’s objective

is to maximize total welfare. The agent (here the bank) has a weight 1 − λ < 1. The welfare of

insured depositors is constant and can thus be neglected. The choice of L determines r = ρ(L).

There is no point in having the intermediary borrowing at r0 and investing at the same rate, so that

D = L− E. The proportion of losses θ above which the intermediary defaults, or default point, is

determined by rL(1 − θ) − r0(L − E) = 0. Finally, denoting Es an expectation according to the

distribution F (., s), we can write the regulator’s objective function for a given s as:

max
L,T
V(L, T, s) = Es(1− t)

(∫ L

0

ρ(u)du− rL

)
︸ ︷︷ ︸

Borrowers

+(1− λ)

∫ θ

0

(rL(1− t)− r0(L− E)− T (s, t))f(t, s)dt︸ ︷︷ ︸
Intermediary

+

∫ 1

θ

(rL(1− t)− r0(L− E))f(t, s)dt︸ ︷︷ ︸
Deposit insurer

+

∫ θ

0

T (s, t)f(t, s)dt︸ ︷︷ ︸
Public budget

. (1)

To implement the optimal L, even with perfect information, the regulator faces two constraints:

(i) limited liability (LL) - she cannot transfer more than what the intermediary has earned; (ii)

individual rationality (IR) - an intermediary must receive more than his outside option π̄. In this

context, the outside option would typically be to opt for Basel’s SA, not use any internal model and

earn a profit that is higher if loans are less risky (low s). The outside option is then type-dependent

(Jullien (2000)) and denoted as π̄(s), with π̄′ ≤ 0.11

If the regulator knows s, she can choose transfers T (s, t) such that the bank of type s receives

exactly π̄ in expectation. Maximizing V(L, T, s) then reduces to maximizing r0(W +E−L)+Es(1−
10Families of exponential and Poisson distributions (restricted to the interval [0, 1]) satisfy this assumption, as well

as normal distributions with different means but the same standard deviation. The assumption will be needed only
for tail levels. For lower levels it is enough to have first-order stochastic dominance.

11I discuss this assumption in more details at the end of this section.
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t)
∫ L

0 ρ(u)du and the optimal L is such that the interest rate is equal to the break-even rate re(s):

ρ(L) = re(s) =
r0

Es(1− t)
. (2)

As the intermediary is a monopolist, he may have an incentive to restrict lending so as to increase

the interest rate. To focus on the interesting case in which the first-best and second-best levels of

lending are below the profit-maximizing value for the intermediary, I make the following assumption:

ρ(E) > re(s)− Eρ′(E). (H1)

∀L ∈ [E, q(re(s))], (Lρ(L))′′ ≥ −ε̄, (H2)

where the value of ε̄ is given in the Appendix A.1. Assumption (H1) means that E is small enough

enough for the interest rate to be very high if the bank only lends E. This implies that the bank

always wants to lend more than E. Moreover, the bank’s own capital is too low to cover the first-

best volume of loans, even when the most conservative model is true, so that the regulator would

like the bank to have some leverage. Assumption (H2) means that the bank’s revenue is not too

concave in L. Limited liability makes the bank’s profit convex in L and gives incentives to lend

more than the first-best, whereas monopoly power gives the opposite incentive. The assumption

implies that the former effect dominates, so that the analysis can focus on the regulation of a bank

engaged in risk-shifting rather than on the different problem of curbing monopoly power.12

These simplifying assumptions are not strictly necessary. If there exists s such that ρ(E) < re(s),

this type of bank would be given 100% capital requirements and would invest the optimal amount

of loans. (H1) allows to neglect this extreme and less interesting case. If (H2) does not hold, some

types of banks may want to lend less than in the first-best, so that capital requirements are not

binding and there are no incentives to report optimistic models, a case also of less interest.

Under (H1) and (H2), choosing the optimal L becomes equivalent to choosing capital require-

ments α, as the bank picks L = E/α. The choice of α then defines the interest rate, an intermediary’s

12Alternatively, it is possible to consider the regulation of a competitive banking sector, in which case this assumption
is not needed. However, the monopoly case permits to remain close to the traditional principal-agent framework.
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default point and the economic surplus when λ = 0, denoted W(α, s), as follows:

r(α) = ρ(E/α), θ(α) = 1− r0

r(α)
(1− α), (3)

W(α, s) = Es(1− t)
∫ E

α

0
ρ(u)du− r0

E

α
. (4)

Rewriting (1), the program determining the first-best can be expressed as:

max
α,T

∫ s

s
W(α(s), s)− λ

∫ θ(α(s))

0

(
E

α(s)
[r(α(s))(1− t)− r0(1− α(s))]− T (s, t)

)
f(t, s)dt (5)

s.t. ∀s,
∫ θ(α(s))

0

(
E

α(s)
[r(α(s))(1− t)− r0(1− α(s))]− T (s, t)

)
f(t, s)dt ≥ π̄(s) (IR)

∀s, t, E

α(s)
[r(α(s))(1− t)− r0(1− α(s))] ≥ T (s, t). (LL)

This program delivers the following result, proven in the Appendix A.1:

Lemma 1. Under (H1) and (H2), the first-best can be implemented through capital requirements

α∗(s) and transfers T ∗(s, t) such that:

-1. For any s, r(α∗(s)) = re(s), so that α∗ is increasing in s.

-2. T ∗(s, t) leaves no rent to the bank:

∫ θ(α∗(s))

0

(
E

α∗(s)
[r(α∗(s))(1− t)− r0(1− α∗(s))]− T ∗(s, t)

)
f(t, s)dt = π̄(s). (6)

Given that the optimal amount of loans depends on the true level of risk, capital requirements

should be risk-sensitive and thus, in this framework, model-sensitive. α is interpreted as a capital

requirement, but equivalently α(s)L times some constant can be seen as risk-weighted assets, with

risk-weights computed according to the bank’s internal model. We thus obtain a first-best regulation

relying on risk-sensitive capital requirements, as in the Basel approach.

Discussion. The role for regulation in the model fits the classical “representation hypothesis”

(Dewatripont and Tirole (1994)): Due to limited liability and the absence of market discipline

exercised by depositors, banks borrow and lend too much, as they do not take into account the

losses to the deposit insurer. The regulator represents the interests of the deposit insurance fund,

itself a substitute for uninformed and scattered depositors who could not efficiently exercise market

discipline.

Although the welfare function V(L, T, s) is natural in this economy, similar results would be
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obtained in the paper for any criterion leading to a function W(α, s) with W12 > 0.13 The as-

sumption that a weight 1 − λ < 1 is given to the payoff of the regulated entity is customary in

the principal-agent literature and ensures that the regulator minimizes the cost of the mechanism

(see for instance Baron and Myerson (1982)). The mechanisms of the next section that implement

the first-best outcome are also optimal if λ = 0, but other optimal mechanisms can be obtained by

simply making arbitrary lump sum transfers to the bank. A small but positive λ is enough to solve

this indeterminacy.

For parsimony, I abstract from a number of elements that also affect strategic model selection

and can be integrated into the framework of this paper without affecting the results qualitatively:

Banks in the model do not pay a risk-based deposit insurance premium. In the relatively

few countries in which premia are risk-based, they depend on risk-weighted assets and thus only

strengthen the incentives to use optimistic models. It is also possible to model banks with uninsured

creditors, e.g., wholesale funding. Even assuming that uninsured creditors can detect overoptimistic

risk estimates, in a competitive equilibrium banks maximize the total payoff to shareholders and

uninsured creditors and neglect the losses to the deposit insurance fund. As a result, there is still

an incentive to take too much risk in this case, and use optimistic models to bypass regulatory

constraints.

Bank capital E is exogenously fixed in the model. This assumption reflects the fact that,

under the current regulatory framework, higher capital requirements have a negative impact on

bank lending (see, e.g., Aiyar, Calomiris, and Wieladek (2014) for recent evidence of this effect).

Studying whether a general overhaul of the Basel framework would reduce this effect and produce

a better outcome is beyond the scope of this paper. Notice that with the mechanism derived in

Proposition 1 the first-best can be implemented for any E, so that a fixed E is not a restrictive

assumption. Otherwise, the Internet Appendix shows how the model can be extended by assuming

that additional capital can be levied, although at a cost, due for instance to asymmetric information.

Banks are assumed to have an outside option that depends on the actual riskiness of their

loans. This constraint reflects the necessity to encourage different types of banks to adopt the IRB

approach and played an important role in the design of Basel II. Another concern is that assets

will move from the regulated to the unregulated sector, an equilibrium effect studied in Harris,

Opp, and Opp (2014). Respecting the type-dependent participation constraint ensures that the

13More weight could be given to the deposit insurance fund, or the goal of the regulator could be to ensure that
any type of bank has a default probability below a certain bound.
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regulation does not have this unwanted effect. Relaxing this assumption does not affect the analysis

of Section 4 in which participation constraints are not binding, and reinforces the point of Section

3 that transfers are a powerful tool.

It is of course possible to take into account traditional countervailing forces to risk-shifting such

as random deposit withdrawals, risk aversion or a dynamic charter-value effect for instance. As long

as these forces are not strong enough to make the regulation non-binding for all banks, the main

economic mechanisms at work in the model would not be affected.

3 Optimal regulation with hidden model

The purpose of using a bank’s internal model for determining capital ratios is to rely on its suppos-

edly better knowledge of risk models. This is by definition a situation of asymmetric information:

The regulator wants to set capital requirements based on better risk measures as in Lemma 1,

but this gives banks incentives to strategically misreport more favourable models so as to increase

leverage. The goal of the regulator is to ensure that the bank truthfully reports its model s or,

more formally, its type.

There is a natural limit to misreporting: Reporting a wrong model requires time to convince

the supervisor that it can be relied upon, may lead to some wrong decisions, and so on. To model

this aspect in a simple way, I assume the presence of a “falsification cost” (as in, e.g., Lacker and

Weinberg (1989)): If the true model is s and the intermediary reports model s′ < s, he incurs a

non-pecuniary cost c(s′, s), increasing in the distance between s and s′.14 I thus assume that for

any (s′, s), with s′ ≤ s, we have c(s, s) = 0, c1(s, s) ≤ 0, c11(s′, s) ≥ 0. There is never an incentive

to report s′ > s. Observe that if the cost is high enough the intermediary always reports truthfully,

even if the first-best regulation is implemented. To avoid discussing this case, I assume from now

on that there is always an incentive to misreport at least a little:

∀s, π̄′(s)− c1(s, s) ≤ 0. (H3)

It is easy to relax this assumption, in which case some models may always be reported truthfully

and the regulator does not need to be concerned about them.

The goal of this section is to derive the optimal second-best regulation when the intermediary

14It is possible to assume a pecuniary cost, but this complexifies the analysis as it impacts the bank’s default
probability.
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must be given incentives to report the correct model. The current regulatory framework makes use

of a number of tools that can all be included in the following representation of the game between

the regulator and the intermediary:

-Period 0. The regulator specifies a formula linking any s to a capital ratio α(s), as well as penalties

T (s′, t) to be paid if model s′ is used and t defaults realize.

-Period 1. The true model s is drawn from Ψ(.) and observed by the intermediary. He can report

a model s′ ∈ [s, s] at a cost c(s′, s), or opt out of the regulation and receive π̄(s).

-Period 2. If he did not opt out, the intermediary supplies L = E/α(s′) loans. r is determined by

q(r) = L.

-Period 3. A proportion t of borrowers default, drawn from F (., s). Payoffs are realized, the

intermediary pays the penalties T (s′, t).

This game incorporates most tools actually available to the regulator. The penalties T are a

generalization of the penalty mechanism that is already in use for market risk models. The cost c

reflects how demanding the regulator is when approving the model. The capital ratio α(.) links a

bank’s model to capital requirements, as for instance in the regulatory formulas used for credit risk

and market risk. α(.) can incorporate additional measures, such as floors, regulatory multipliers or

add-ons. Moreover, a prohibitively high α(s′) for a particular model s′ means that it fails to get

supervisory approval, based on a comparison with “industry standards”, required assumptions of

the model, performance on historical data, and so on. The approval decision is thus embedded in

the definition of α(.).

I now analyze under which conditions the regulator can use ex post penalties, and show specific

difficulties associated with this mechanism in the presence of tail risk. It is useful to denote u(α, r, t)

the profit before transfers of an intermediary facing capital requirements α when the interest rate

is r and t defaults realize. We can then define π(s′, s) the expected profit before transfers of an

intermediary who reports model s′ and gets capital requirements α(s′) when the true model is s:

u(α, r, t) = (E/α) (r(1− t)− r0(1− α)) , (7)

π(s′, s) =

∫ θ(α(s′))

0
u(α(s′), r(α(s′)), t)f(t, s)dt. (8)

As the regulator cannot observe s, the mechanism must be incentive-compatible. An intermediary
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must be better off revealing his type s and paying the transfers T (s, .) than misreporting:

∀s, s′, π(s, s)− Es(T (s, t)) ≥ π(s′, s)− Es(T (s′, t))− c(s′, s). (IC)

The regulator’s program is then to maximize in α(.) and T (., .) the following objective function,

under the constraints (LL), (IR), and (IC):

E

(
W(α(s), s)− λ

[∫ θ(α(s))

0
u(α(s), r(α(s)), t)f(t, s)dt− Es(T (s, t))

])
. (9)

where the first expectation is taken over all values of s. The idea behind such a mechanism is that

the regulator offers a profile of transfers T (s, t) such that an intermediary reporting s is heavily

taxed if the realized level of defaults was relatively unlikely given the model announced.15

3.1 Reaching the first-best when models are easy to distinguish

Consider first an example with only two types s1 and s2 > s1, two possible realizations of defaults

t and t̄ > t, and Pr(t = t|si) = pi, p1 > p2. To satisfy (IC) and bind (IR), the regulator can choose

transfers contingent on how many defaults materialize: A bank reporting the optimistic model s1

receives π̄(s1)/p1 if the low losses t realize, but 0 in the case of high losses; a bank reporting the

more conservative model s2 receives π̄(s2) irrespective of the realization. By definition, (LL) is met.

(IC) for type s2 gives:

c(s1, s2) ≥ π̄(s1)

(
p2

p1
− π̄(s2)

π̄(s1)

)
. (10)

Even if c(s1, s2) = 0, it is possible to reach the first-best if the right-hand side is negative, that

is if the likelihood ratios of the two states under both models are very different, while the outside

options of both types are close. Put differently, when profit decreases quickly in s and the two

models do not give very different predictions, a rent has to be left to the regulated bank if the cost

c is not high enough. The following assumption of “distinguishable models” generalizes the idea of

giving different predictions to a continuum of types:

∀t ∈ [0, 1], ∀s ∈ [s, s],
F (t, s)

π̄(s)
is log-concave in s, and decreasing in s when t→ 0. (DM)

15Assuming moral hazard instead of hidden information would yield a similar role for contingent penalties. Imagine
that s reflects the riskiness of the bank’s portfolio and this riskiness is achieved at a cost e(s). The regulator wants to
implement some level s∗ and has to respect an incentive compatibility constraint of the form π(s∗, s∗)−Es∗(T (s∗, t))−
e(s∗) ≥ π(s∗, s′)−Es′(T (s∗, t))− e(s′), for any s′. Penalizing the bank in states t that are likely given s′ but unlikely
given s∗ will be a typical outcome of such a constraint.
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(DM) means that F (., s) is more log-concave in s than π̄, i.e., it decreases more quickly in s.

Moreover, the probability to have less than t defaults must be more sensitive to the model chosen

than the outside option, for small enough values of t. When this assumption holds, we have:

Proposition 1. With distinguishable models (DM), for any function c and menu of capital require-

ments α(.), the transfers T (., .) below satisfy (IC) and (LL), and bind (IR) for every s:

T (s, t) =

 max(0, u(α(s), r(α(s)), t)) if t > a(s)

u(α(s), r(α(s)), t)− π̄(s)
F (a(s),s) if t ≤ a(s)

. (11)

with a(s) increasing and such that:

F2(a(s), s)

F (a(s), s)
=
π̄′(s)

π̄(s)
. (12)

With the proposed menu, an intermediary reporting model s receives a constant payoff π̄(s)
F (a(s),s)

as long as the realized level of defaults is less than a(s), and zero otherwise. By definition, such a

mechanism satisfies (LL). Moreover, if he reports truthfully the intermediary receives exactly π̄(s)

in expectation, thus (IR) is binding. The Appendix A.2 shows that under (DM) it is possible to

find a function a(.) satisfying (12), which ensures (IC) even in the worst case in which the cost

c(s′, s) is always null. It is thus possible to implement the first-best α∗(.) without leaving rents

to intermediaries. Moreover, due to (MLRP), a(.) is increasing: Intermediaries announcing a low

s receive a high payoff if the level of defaults is low, intermediaries announcing a higher s receive

a lower payoff more often. Notice that other menus may also implement the first-best in this

environment. It is possible for instance to give the bank a positive payoff only in the states of

the world that are the most likely given the model he reported. The general point made by the

proposition is that conditional transfers that reward the bank when its forecasts were accurate are

a powerful tool to encourage the adoption of the best possible models.

Fig. 1 gives an example.16 The top panel shows the expected payoff an intermediary receives if

the true parameter is s and he reports s′. The mechanism is designed so that the maximum payoff

is obtained for s′ = s. The bottom panel shows how this is achieved with a plot of the payoff an

intermediary obtains when he reports different models and t defaults realize.

16The parameters for all figures are given in A.7. They are meant for illustrative purposes.
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Figure 1: Incentive-compatible transfers. The top panel plots U(s′, s) = π(s′, s) − Es(T (s′, t)) as a
function of s′, for different values of s. U(s′, s) is the average payoff obtained by a bank of type s that reports
model s′, by construction it is maximized in s′ = s. The bottom panel plots u(α(s′), r, t) − T (s′, t) as a
function of t, for different values of s′. These are the payoffs that any type of bank will obtain if it reports
s′, conditionally on t defaults realizing.
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3.2 Uncertainty on tail risk, bail-outs, and second-best regulation

Bail-outs and incentives. The optimal menu just derived may include transfers for levels of

losses above those at which the bank itself defaults. Due to limited liability, the regulator cannot

impose penalties then. It may thus be necessary to subsidize defaulting banks that had announced

high risk measures.

This case arises with the mechanism of Proposition 1 when a(s) > θ(α(s)), but can happen

more generally with any revealing mechanism, in particular when model uncertainty is focused on

tail risk. For low levels of risk there is a lot of historical data to calibrate different models, such

that they tend to deliver similar predictions, while for extreme levels data is much more sparse.

This fact is at the same time a reason why the regulator would like to use the bank’s expertise.

We can model this situation in a stylized way by assuming that the different models are perfectly

equivalent up to a given level of defaults:

∃τ ∈ [0, 1] s.t. ∀(s, s′) ∈ [s, s]2, ∀t < τ, f(t, s) = f(t, s′). (UM)

Assumption (UM) is a violation of assumption (DM): Instead of being easy to distinguish, the

different models are undistinguishable below a threshold level of losses τ . They thus differ only in

the tail. The Appendix A.3 proves the following:

Proposition 2. Under (UM), if θ(α∗(s)) < τ , then any revealing mechanism implementing the

first-best, respecting limited liability, and leaving no rents to intermediaries involves bail-outs: For

some (s, t) we have u(α∗(s), r(α∗(s)), t) < 0 and T (s, t) < 0.

Indeed, imagine that the correct model is s, the most optimistic one. If the regulator implements

the first-best capital requirements, a bank will default for t > θ(α∗(s)). α∗ is increasing and r

decreasing in s, so that θ(α∗(s)) is the lowest θ implemented in the first-best. If it is below τ , a

bank reporting s is already in default when the realized t gives the regulator information about

which models are more likely. It is then impossible to “punish” the use of such an optimistic model

ex post. Instead, one needs to “reward” banks suffering high losses when they reported high risk

measures, which automatically involves bailing out truthful but unlucky banks.

Second-best with a no bail-out constraint. The use of bank bail-outs to ensure the truthful

revelation of risk models may conflict with other unmodeled regulatory objectives. Proposition 2

implies that a constraint not to bail-out defaulting banks, while potentially necessary to foster

market discipline for instance, comes at a cost: Either rents will have to be left to intermediaries,
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or capital requirements will be different from their first-best values. The proof of the proposition

actually shows the following:

Corollary 1. When models are undistinguishable below τ (UM), if the regulator implements capital

requirements α(.) with α′ ≥ 0 and θ(α(s)) < τ but cannot bail out defaulting banks, then a mech-

anism satisfying (IC), (IR), and (LL) leaves to any type s an informational rent at least equal to

max
s′,θ(s′)≤τ

π̄(s′)− c(s′, s)− π̄(s).

Indeed, in the particular case in which c(s′, s) is almost always zero for instance, all intermediaries

necessarily receive a payoff close to the highest outside option among all types π̄(s), because this

payoff can always be obtained by reporting the most optimistic risk model. As it is impossible to

achieve first-best capital requirements without leaving rents to intermediaries, the regulator needs

to find a second-best solution trading off rents and efficiency.

The trade-offs underlying the second-best solution can be best understood by considering the

special case of two types {s, s} realizing with prior probabilities ψ and 1− ψ. For brevity, denote

θ∗(s) = θ(α∗(s)) and θ∗∗(s) = θ(α∗∗(s)) the first-best and second-best values of θ for a bank of

type s. Assume that τ ∈ (θ∗(s), θ∗(s)), and that c(s, s) < π̄(s) − π̄(s), as otherwise there are no

incentives to misreport in the first place. It is straightforward to adapt the objective function (9)

to this special case. The second-best solution maximizes (9) under (IC), (IR), (LL) and the no

bail-out constraint:

∀s ∈ {s, s}, u(α(s), r(α(s)), t) < 0⇒ T (s, t) = 0. (NBO)

Proposition 3. The second-best regulation when models are undistinguishable below τ (UM) and

no bail-outs are allowed (NBO) can be of two types:

1. High capital requirements and no rents. α∗∗(s) is such that θ∗∗(s) ≥ τ . No intermediary defaults

for t < τ . An upper bound on welfare in this case is achieved if θ∗∗(s) = τ , α∗∗(s) = α∗(s), and

transfers can be found such that both types have no rent.

2. Compensating the high-risk type. α∗∗(s) = α∗(s) and α∗∗(s) = α∗(s), type s has no rent, type s

has a positive rent of π̄(s)− π̄(s)− c(s, s).

A sufficient condition for Solution 2 to be preferred is:

ψ[W(α∗(s), s)−W(ατ , s)] ≥ λ(1− ψ)[π̄(s)− π̄(s)− c(s, s)]. (13)

The proof is in the Appendix A.4. The first option is to increase α(s) so much that no intermedi-
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ary defaults for t < τ . It may then be possible to find a mechanism similar to the one of Proposition

1 and leave no rents to the agent, at the cost of capital requirements higher than necessary for the

low-risk type. If some models are relatively unlikely but not very costly to misreport, then it is

optimal to associate high capital requirements with them so that misreporting can be detected and

punished ex post. The second option is to incentivize the high-risk type to reveal his information

by transferring much less money from him than from the low-risk type, thus leaving a rent.

Which solution is optimal is affected by several parameters. There is first a distortion effect:

Models that can be distinguished only further in the tails (τ is higher) make it more costly in terms

of welfare to use the first approach. This distortion is traded off against the cost in terms of rents:

A lower heterogeneity in the outside options π̄(s)− π̄(s) and a higher misreporting cost c(s, s) make

it less costly to use the second approach. A higher ψ makes it more likely to face a low-risk type

rather than a high-risk type, thus reinforcing the distortion associated with the first approach and

reducing the cost of the second one.

Notice that, with more than two models, solution 1 would not be equivalent to a floor α on

risk-weights such that θ(α) = τ . This can be seen by extending the problem to three models

s0 < s1 < s2, with θ∗(s1) < τ . Assume that the costs for both types s1 and s2 to report model

s0 are higher than π̄(s0), which is the best payoff they could receive from reporting this model.

Then no type has an incentive to misreport s0. There is thus no cost for the regulator to choose

α∗∗(s0) = α∗(s0) and transfers such that type s0 receives no rent. The problem then reduces to the

two-models problem of Proposition 3. It is possible in particular if ψ(s1) is small that the regulator

chooses θ∗∗(s1) = τ while θ∗∗(s0) < τ .17

4 Optimal regulation without penalties

While a penalty mechanism has been used since the 1996 Amendment to the Basel capital accord

for the estimation of market risks, and could be extended, the current reforms go in a different

direction and use restrictions on attainable risk-weights, i.e., they modify the function α. This

section first derives the optimal capital requirements when penalties cannot be used at all, that

is how α should optimally be modified. I then adopt a positive approach, study the impact of

introducing leverage ratios and derive empirical implications about which models banks choose

17A leverage ratio is thus not optimal in this framework, contrary to the findings in Blum (2008) with a two-types
model. What matters is actually not to set a floor on capital requirements per se, but to reduce the sensitiveness of
capital requirements to the reported model.
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under the current regulatory regime.

4.1 Second-best regulation

In this section, denote π(α(s′), s) the profit of an intermediary reporting s′ when the true model

is s. Due to the absence of transfers, it is convenient to make two additional assumptions. First,

given the absence of transfers there is no possibility anymore to ensure the participation of a bank

for which π(α∗∗(s), s) ≤ π̄(s) with a negative transfer. I assume that a bank opting out of the

regulation is not allowed to use leverage at all: π̄(s) = π(1, s). This assumption ensures that any

capital requirements satisfy (IR).18 Second, since there is no other tool to make transfers between

the bank and the public budget, the first-best α∗ is no longer independent of λ. I assume that

λ = 0, so that α∗ is then the same with and without the possibility of transfers, which facilitates

the comparison with Section 3. All the results of this section are still valid without this assumption,

only the definition of the objective function changes.

The regulator cannot use ex post penalties and can only choose the function α(.). The revelation

principle still applies; in order for each type of intermediary to report truthfully, the second-best α∗∗

must be such that π(α∗∗(s′), s) is maximized at s′ = s, for each s. The regulator wants to maximize

the expected value of welfare under this incentive compatibility constraint. (LL) is automatically

satisfied. A necessary condition for incentive compatibility is that each type of intermediary has no

incentive to deviate from s′ = s, at least locally, which writes as:

∀s ∈ [s, s], α′(s)π1(α(s), s)− c1(s, s) ≥ 0. (14)

As c1 and π1 are negative, this constraint means that α(.) must be sufficiently flat. An extreme

case is α′ = 0, in which case capital requirements do not depend at all on the model reported, so

that no bank has an incentive to misreport. More generally, the second-best capital requirements

satisfy the following proposition:

Proposition 4. In the absence of penalties, second-best capital requirements α∗∗(.) satisfy:

-1. For any s, either α∗∗(s) = α∗(s) or 0 ≤ α∗∗′(s) ≤ α∗′(s): Capital requirements increase in the

reported risk measure, but less than in the first-best.

-2. α∗∗(s) ≥ α∗(s) and α∗∗(s) ≤ α∗(s).
18The IRB approach of Basel II was explicitly designed to give lower capital requirements than the standardized

approach. This new assumption fits such a situation in which IRB risk-weights are lower than the standardized ones.
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The first point is proved in the Appendix A.5. The second point is more direct. There are

two reasons why capital requirements may be distorted compared to the first-best: Lower capital

requirements for type s give him a higher profit if he reports his type truthfully, reducing incentives

to misreport. But it also gives other types of banks more incentives to pretend their type is s. Higher

capital requirements on the contrary ensure that a model is not reported for strategic reasons. Since

s already faces the lowest capital requirements, he has no incentives to misreport and only the second

distortion plays a role. Conversely, there is nothing to gain by misreporting model s and facing the

highest capital requirements, so that only the first distortion applies.

Points 1 and 2 rely on the same intuition: The intermediaries’ incentives to misreport stem from

a more optimistic model allowing to increase leverage. The strength of this effect is measured by

the derivative of π(α(s′), s) with respect to s′. If this derivative taken in s is more negative than

the derivative of the cost to misreport, then the intermediary has an incentive to report a wrong

model. As the regulator cannot use penalties, the only possibility left is to decrease the gains from

misreporting by making capital requirements less sensitive to the reported model s′. Second-best

capital requirements are thus less reactive to the internal measure of risk than in the first-best.

This property is true both locally, point 1 of the proposition, and globally, point 2. Fig. 2 shows a

numerical example comparing the first-best and the second-best capital requirements. It also shows

that higher misreporting costs reduce the discrepancy between first-best and second-best capital

requirements.

4.2 The use of leverage ratios

The regulatory answer to suspicions that internal models can be used for regulatory arbitrage has

been to complement internal risk measures with leverage ratios or floors on capital requirements.

In this setup, a leverage ratio constraint is a particular way to make capital requirements less risk-

sensitive, in line with the intuition of Proposition 4. However, a critical difference is that a leverage

ratio constraint is in general not incentive-compatible. Moving from the normative perspective

of second-best regulations to a positive analysis of current reforms, I show in this section some

dangers associated with leverage ratios. From a policy perspective, it is important to prove that

simple floors cannot substitute for a deeper solution of the information problems associated with

internal risk models. Moreover, the modeling of the current regulatory framework allows to derive

testable implications, discussed in 5.1.

To model leverage ratios, imagine that instead of implementing α∗∗ as in Proposition 4, the
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Figure 2: Second-best capital requirements, without penalties. The blue line corresponds to the
first-best capital requirements α∗(s). The orange dotted line represents the second-best capital requirements
α∗∗(s) studied in Proposition 4, when the misreporting costs c(s′, s) are low. The red line shows how α∗∗(s)
is modified when misreporting costs are increased.

regulator tries to implement α∗ and adds a leverage ratio constraint imposing that E/L ≥ α (a

special case is the absence of leverage ratio, α = 0). The intermediary then faces capital requirements

equal to α̂(s) = max(α, α∗(s)).19 Consider the most general case in which α∗(s) < α < α∗(s), so

that the leverage ratio constraint is binding for the lowest types but not for the highest types, and

there exists sα such that α∗(sα) = α.

An intermediary then optimally selects s′ so as to maximize π(α̂(s′), s)− c(s′, s). As regulation

may not be incentive-compatible, an intermediary of type s may not obtain the capital requirements

foreseen by the regulator but manipulated capital requirements α̂(s′).

A single intermediary. This case is easier to understand by looking at Fig. 3. On the top

panel I plot the model s′ reported by each type s of intermediary. The 45◦ line corresponds to

truthful reporting, the dashed line assumes that α = 0 (no leverage ratio), the red line corresponds

to a leverage ratio with α = 0.05. On the bottom panel I plot the manipulated capital requirements

obtained by each type. Without a leverage ratio (dashed line), all types of intermediaries use a

19The results would be the same with any increasing α instead of α∗.
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model more optimistic than the one they believe in, and those with the lowest s all report the most

optimistic model (flat part of the curve).

How is this modified when we introduce α > 0? Intermediaries become partitioned into three

groups. Since α̂ is increasing, all the types in [s, sα] have no incentive to misreport: By reporting

truthfully they face the lowest capital requirements α, which are higher than in the first-best. Riskier

intermediaries, in particular those with s close but above sα, strategically report overoptimistic risk

measures but are constrained by the leverage ratio. Since they receive the same capital requirements

α for reporting any model s′ ≤ sα, they choose to report sα, the model giving capital requirements

α with the lowest misreporting cost. Third, there are intermediaries with s > sα who choose to

report s′ > sα, so that they are unaffected by the leverage ratio.

The outcome is that some intermediaries with intermediate risk measures do not misreport too

much, and face capital requirements that are below the first-best, but above those they would face

in the absence of a leverage ratio. This comes at the cost of too high capital requirements for

intermediaries with low risk. Depending on how plausible are the different models, the result may

be worse than choosing α = 0, i.e., not using a leverage ratio at all. The logic is the same as in

Proposition 3: If the s below sα are very likely, while the types s above this threshold and for

whom the constraint is binding are on the contrary unlikely, then the costs of using a leverage ratio

outweigh the benefits.

Extension - several intermediaries. Although imposing a leverage ratio constraint can

decrease welfare, in the case just studied it always reduces misreporting. I show in the following

extension that this property does not hold anymore with several intermediaries instead of only one.

Assume that instead of a single intermediary we have a continuum [0, 1] of intermediaries, who

each draw an independent model s so that there is a measure ψ(s)ds of intermediaries for whom

the correct model is s. To keep the model close to the single intermediary case, assume that all the

intermediaries lend to the same pool of borrowers, and the differences in riskiness come from the

way they monitor the borrowers afterwards, hedge their risk etc., so that all intermediaries choose

how much to lend, taking the same interest rate r as given.20

The only difference with Section 3 is that α(s) does not determine the interest rate r through

the market-clearing condition q(r) = E/α(s). There is no aggregate uncertainty and a single r

20This assumption fits the case of syndicated loans studied by Firestone and Rezende (2013). They note that
different banks participating in a loan to the same firm may genuinely report different risk measures, because they
may not be equally good at recovering losses in case of a default. It is also possible to assume that the heterogeneity in
s comes from different pools of borrowers, in which case one needs a more complex model of differentiated competition.
The equilibrium effect highlighted in this section would still obtain in this more complex setup.
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Figure 3: Manipulated models and capital requirements. The top panel plots the model s′ chosen
by each type of bank s, and the bottom panel reports the associated capital requirements. The blue lines
correspond to truthful reporting without a leverage ratio, so that capital requirements are equal to the first-
best α∗(s). The dotted orange lines represent the case in which α = 0 and banks choose their risk model
strategically. The red line introduces a leverage ratio constraint α = 0.05.
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equates aggregate supply and demand. Instead of maximizing the expected welfare with respect to

each α(s), the regulator will maximize with respect to r and α(.) the following:

∫ s

s
W(α(s), r, s)ψ(s)ds s.t.

∫ s

s

E

α(s)
ψ(s)ds = q(r). (15)

All the second-best solutions studied above can be adapted by first solving for the second-best for

any possible r with the new market clearing constraint, and then pick the r achieving the highest

welfare. While this case introduces some new trade-offs, it does not fundamentally change the

nature of the different second-best options. However, for a regulation relying on leverage ratios,

unwanted effects of the regulation appear.

Assume again that the regulator uses capital requirements α̂(s) including a leverage ratio. De-

note π(α, r, s) the profit of an intermediary of type s facing capital requirements α and interest rate

r. Each intermediary s reports its profit-maximizing model, denoted σ(α, r, s):

σ(α, r, s) = arg max
s′≥sα

π(α̂(s′), r, s)− c(s′, s). (16)

While the convexity of profit still implies that an intermediary choosing to lend L > 0 uses as much

leverage as he can, in this new setup with several banks he may be better off choosing L = 0 and

investing E in the safe asset. For given α and r, denote s0(α, r) the highest type s that lends a

positive amount (s0 can be equal to s). In equilibrium each type s ≤ s0(α, r) reports s′ = σ(α, r, s),

and the market clearing condition gives us:

∫ s0(α,r)

s

E

α̂(σ(α, r, s))
ψ(s)ds = q(r). (17)

Imagine now that the regulator increases the leverage ratio α (possibly from 0 to some positive

number). For a given r, this does not affect the incentives of intermediaries with types above sα

to misreport. Intermediaries with α̂(σ(α, r, s)) = α are more constrained than before and lend less,

while some intermediaries now face a binding constraint whereas before they did not. Thus for any

given r the supply of loans, or the left-hand side of (17), decreases. As a result of the increased

leverage ratio, the supply curve moves to the left, so that the equilibrium interest rate necessarily

increases. This higher interest rate increases s0(α, r), and also has an impact on σ(α, r, s) for each

s. The Appendix A.6 shows the following:
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Proposition 5. If the regulator uses capital requirements with a leverage ratio α̂(s) = max(α, α∗(s)),

an increase in the leverage ratio constraint α increases the interest rate. An intermediary of type

s not constrained by the leverage ratio surely chooses a more optimistic model if his default point θ

satisfies f(θ, s)/F (θ, s) ≤ 1.

The quantity (f(x, s)/F (x, s))dx is the probability to observe between x − dx and x defaults

in the bank’s portfolio, knowing that there are less than x defaults. The default point θ should in

general be a tail loss, with F (θ, s) close to 1 and f(θ, s) close to zero. This condition is sufficient

for a higher leverage ratio to translate into the choice of a more optimistic model.

Fig. 4 and 5 illustrate this proposition. On the bottom panel of Fig. 4 we have for two different

interest rates the manipulated capital requirements chosen by each type of bank. For the lower

interest rate, the riskiest banks actually choose not to lend at all (vertical line). These choices

for each interest rate determine the supply curve on the top panel. The interaction with demand

then determines the equilibrium interest rate, and thus the models reported. In particular, a higher

demand leads to a higher interest rate, more misreporting by banks and lower capital requirements.

On the top panel of Fig. 5, I plot for the same interest rate r = 1.085 the manipulated capital

requirements chosen by banks with and without a leverage ratio. The higher capital requirements

in the latter case translate into a shift of the supply curve to the left, as observed in the bottom

panel. The equilibrium interest rate increases from 1.085 to 1.103. This feeds back into a choice

of more optimistic models and lower capital requirements, so that the red line on the top panel is

below the blue line.

A leverage ratio makes the banks for which it is binding by definition safer. But this is equivalent

to reducing the supply of credit by these banks, thus increasing the interest rate r. Intermediaries

with a high risk and for whom the leverage ratio is not binding then have incentives to lend more,

which can be done by choosing more optimistic risk models. Because of this simple equilibrium

effect, a higher leverage ratio thus makes safe banks use less leverage and risky banks use more

leverage, which may not be the intended effect.
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Figure 4: Market equilibrium and loan demand. The top panel plots the loan supply function derived
from the banks’ strategic behavior, two different demand functions, and the associated equilibrium interest
rates, defined by (17). The bottom panel shows the manipulated capital requirements α̂(σ(ᾱ, r, s)) obtained
by a type s who strategically reports model σ(ᾱ, r, s), for the two different equilibrium values of r. The
difference between the two curves illustrates the impact of loan demand on strategic model selection.
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Figure 5: Market equilibrium and leverage ratio. The top panel reports the manipulated capital
requirements α̂(σ(ᾱ, r, s)) obtained by a type s who strategically reports model σ(ᾱ, r, s). The bottom panel
plots the loan demand function and the supply functions obtained with and without a leverage ratio, in
dashed orange and solid red, respectively. The green line on the top panel represents capital requirements in
the absence of a leverage ratio at the equilibrium interest rate of 1.085. Introducing a leverage ratio generates
the blue line if the interest rate is constant. However, the leverage ratio increases the equilibrium interest
rate to 1.088, which gives the dotted red line.
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5 Discussion

5.1 Empirical implications

While it is difficult to derive predictions from an analysis of the optimal regulation, the regulatory

framework of 4.2 is a stylized but realistic representation of the incentives banks currently face

when choosing their risk models. This approach gives new predictions about the use of internal risk

models by regulated financial institutions and their risk weights:

Implications. A bank has more incentives to report overoptimistic risk measures when:

-1. The capital ratio of the bank α is lower.

-2. The demand for loans q(.) is higher.

-3. The bank’s loans are less risky, i.e., s is lower.

-4. The cost of misreporting c(s′, s) is lower.

-5. Capital requirements react more strongly to internal risk measures, i.e., α′(.) is higher.

-6. A floor on capital requirements is imposed, or increased, but is not binding for the bank.

There is a growing empirical literature on banks’ internal risk estimates. Studies by the Basel

Committee and the European Banking Authority (BCBS (2013a), BCBS (2013b), EBA (2013))

show the dispersion of risk weights across banks, which is of critical importance in the wider debate

on model-based regulation. Firestone and Rezende (2013) exploit data on syndicated loans to show

that banks report different risk parameters (in particular LGDs) for loans to a same firm, leading to

different capital requirements, but they also note that the variation they observe could be entirely

legitimate. Going beyond dispersion, studies on market risk models show that VaRs reported for

market risk were biased before the crisis, and actually too conservative, see Berkowitz and O’Brien

(2002) and Pérignon and Smith (2010); the latter paper hypothesizes that this behavior may come

from the penalty mechanism used for market risk.

However, even systematic biases in risk estimates may come from mistakes: It is in the nature

of tail events that their probability is underestimated when only small samples are available. This

paper offers a new avenue to test the hypothesis that the selection of risk models reacts to regulatory

incentives. Under the null assumption that these incentives play no role, internal risk measures

should be uncorrelated with market conditions or with regulatory changes. Conversely, observing

correlations with the signs suggested in Implications 1-6 is difficult to explain if models are not

strategically chosen. Recent empirical papers have explored the determinants of risk estimates

heterogeneity, with results broadly consistent with the implications of the model.
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Implication 1 derives from the convexity of profit in α, which itself derives from the bank’s

limited liability (see the Appendix A.6): obtaining a marginal decrease in capital requirements is

more profitable when the bank is highly leveraged and likely to default. Several papers find evidence

for this effect, such as Mariathasan and Merrouche (2014), Begley et al. (2014), Behn, Haselmann,

and Vig (2014), and Plosser and Santos (2014).

Implication 2 suggests to look at shocks on the demand for loans. Industries or housing markets

experiencing a boom would be typical scenarios in which banks can be expected to face more

incentives to misreport risk so as to extend more loans. Implication 3 states that misreporting

incentives also depend on the true quality of the loans, as the incentives to issue more loans remain

stronger when their quality (as perceived by the bank) is higher. Implication 4 can be tested by

considering proxies for the strength of supervisory oversight, as more effort will be needed to get

a stronger supervisor to approve an optimistic model. Mariathasan and Merrouche (2014) provide

evidence of this effect: They show that banks switching to the IRB approach are more likely

to improve their capital ratios when they are less tightly supervised, as measured by indices of

supervisory independence.

Supporting Implication 5 (and also in line with Implication 3), Behn, Haselmann, and Vig (2014)

find evidence of strategic behavior for portfolios of loans with low PDs, precisely those for which

capital requirements react a lot to PD estimates. Interestingly, Plosser and Santos (2014) find the

opposite result using syndicated loan data from the U.S. market. They note that larger biases in

reported PDs are necessary to achieve the same reduction in risk-weights when loans are riskier.

The evidence in Behn, Haselmann, and Vig (2014) suggests that the costs of misreporting depend

on the PDs, while the evidence in Plosser and Santos (2014) suggests that they depend on the

achieved risk-weights. Different banking supervisors may well have different auditing practices in

this regard, explaining these different results.

Finally, Implications 5 and 6 suggest to look at changes in the regulatory environment itself:

Changes in the formula linking risk estimates to capital requirements, imposition of higher capital

requirements through the implementation of Basel III or other changes have an impact on internal

risk measures if models are chosen strategically. In line with this logic, Hendricks et al. (2013)

show that U.S. mortgage-servicing banks reacted to the announcement of Basel III by manipulating

regulatory inputs.
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5.2 Policy implications: Regulatory options

The regulatory community has only recently reacted to the possibility that internal models are used

by undercapitalized banks to bypass regulatory constraints (see, e.g., BCBS (2013c), p. 15). Many

of the policy options currently discussed to improve the credibility of Basel’s pillar I amount to

an increase in α in Section 4.2: Higher capital requirements under Basel III, “Basel I floors”, the

Collins amendment in the United States, provisions for model risk, higher regulatory multipliers

and leverage ratios, for instance.21 This paper allows to model the impact of such measures and

compare them to several “second-best” benchmarks, which constitute other regulatory options.

1. Leverage ratios and non-risk based constraints. According to Section 4.2, a leverage

ratio is a binding constraint only for the banks whose risk is already at the lower end of the spectrum.

Banks with intermediate risk measures indeed misreport less, because the benefits to misreporting

are limited by the constraint on the leverage ratio. The cost is that banks with the lowest risk lend

less than would be optimal, so that the trade-off depends on how likely it is ex ante that the bank’s

risk is low or intermediate. Proposition 5 shows an additional weakness of leverage ratios: When

more banks adopt optimistic models and use a high leverage, the interest rate on loans decreases and

bypassing the regulation is less profitable. On the contrary, imposing a leverage ratio restricts the

loan supply, which invites riskier banks to extend more loans by reporting more optimistic models.

More generally, such measures are not a natural response to an asymmetric information problem.

2. Penalty mechanisms with bail-outs. A powerful tool to punish the use of overoptimistic

models is to apply penalties to banks reporting low risk measures when high losses realize. A low-

risk bank is ready to pay high penalties if high default levels realize, because this event is unlikely. A

high-risk bank prefers paying transfers even when few defaults realize, but without further penalties

for high default levels, which is a likely event. Similar transfers are already used for market risk

models. They could be applied more generally at the level of a banking entity with penalties, levies

or restrictions on dividends when banks with low risk-weighted assets suffer high losses. Proposition

1 shows a simple implementation of such a mechanism, as well as a limitation due to the possibility

for banks to opt out of the mechanism.

Proposition 2 raises a second problem: In the presence of tail risk, one may learn that a bank

was too optimistic only when it is in default and cannot be punished anymore. A good example

would be Dexia, which had good risk-weighted Tier 1 capital ratios before suffering the losses that

led to its nationalization. How to impose penalties on a dead bank? A possibility is to keep the

21Lesle and Avramova (2012) give a useful overview of the policy options and associated trade-offs.
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bank alive with a bail-out, and adjust the shareholders’ payoffs to the risk estimates previously

reported. The rationale for a bail-out is to give incentives to truthfully report high risk measures:

Shareholders of a defaulting bank receive some residual payment if the regulator was warned about

risks in advance, but nothing otherwise (see Harris and Raviv (2014) for a similar argument). More

generally, this solution consists in adjusting the resolution of a bank to the conservativeness of its

self-reported risk measures.

3. Penalty mechanisms without bail-outs. Bail-outs may have other undesirable conse-

quences. Proposition 3 studies second-best options if the bank cannot be kept alive. The first

possibility is to impose capital requirements high enough for all types of banks to face the threat

of being punished while alive. This avoids leaving informational rents to the regulated banks, at

the cost of inefficiently reducing the credit supply of low risk banks. The second possibility is to

compensate banks reporting high risk measures instead of punishing misreporting banks, but this

can be very costly. Which solution is optimal depends on a trade-off between the inefficiency of the

first solution, and the costs of the second solution. A key parameter is how well capitalized a bank

must be in order to survive even tail events, which determines how distortive it is to ensure that a

misreporting bank can be punished.

4. Capital requirements without penalties. If penalties contingent on the realized level

of default cannot be used at all, the only solution left is to adjust capital requirements so that the

misreporting costs are enough to discipline the bank. The cost of misreporting is fixed, whereas

the benefit depends on how much capital requirements can be decreased by reporting an optimistic

estimate. If capital requirements are more “flat”, the incentives to misreport are lower. In practice,

this means amending the regulatory formula linking internal risk estimates to capital requirements so

that the latter are less sensitive to the estimates. As a consequence, second-best capital requirements

are higher than in the first-best for low-risk banks, and lower for high-risk banks.

The different regulatory options studied in this paper are easy to rank in terms of welfare: Option

2 implements the first-best, option 3 gives a second-best solution under an additional constraint

but surely does better than option 4, since it can use more tools. Option 1 is surely worse than 4

and is dominated by all the others. While it is sometimes argued that internal models are simply

not sufficiently reliable, this section suggests different solutions to the strategic selection of risk

models, depending on the constraints imposed on the regulator. Proposals to move away from the

regulatory use of internal models should thus be traded off against more ambitious reforms trying

to restore their credibility by addressing the asymmetric information problem.
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Other options can be studied, and are more fully developed in the Internet Appendix:

Market observations. The regulator could use the observation of market prices to detect

misreporting banks. The model can be extended to feature junior creditors whose claims are priced

on the market, and a regulator trying to use their market price to infer a bank’s type. I show in the

Internet Appendix that no equilibrium exists when model uncertainty is too high because market

participants anticipate the regulator’s intervention, as in Bond, Goldstein, and Prescott (2010).

Benchmarking. Another solution for the regulator is to use reports from different banks as part

of the Pillar 2 processes. This tool is not useful here because there is either a single bank or banks

with uncorrelated models, but can be used under the opposite assumption that several banks share a

common model. In practice, such a mechanism risks to discourage banks from developing unbiased

but innovative models that may by definition give different risk measures than their competitors’.

6 Conclusion

A model-based regulation exploits banks’ better information about their own risks to compute

capital ratios. However, this information is private, and financial intermediaries cannot be expected

to develop unbiased models if they face incentives to do otherwise. The process of adoption of new

models may then be biased towards more “profitable” models.

This paper gives new predictions on how model selection reacts to market and regulatory

changes. In particular, current reforms using risk-weight floors or leverage ratios tend to restrict the

loan supply by banks for which these constraints are binding. As a result, other banks have more

incentives to also adopt similar models and reach the new regulatory constraints, a substitution

which can offset the intended effect.

Moreover, such instruments make capital requirements less risk-sensitive, thus penalizing banks

whose risk is genuinely low. A more ambitious avenue would be to keep using internal models while

giving the regulators tools to solve the associated asymmetric information problem. The framework

of this paper allows to study several policy options under a variety of realistic constraints, such as

restrictions on bail-outs and uncertainty on tail risks.

Finally, the strategic use of models can take place in other instances. Internal models are also

used to measure the performance of employees, convey information inside firms, or to rating agencies

and shareholders. In many cases “hidden model” problems can be as challenging as model risk and

call for different solutions.
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A Appendix - Proofs

A.1 Proof of Lemma 1

Conditions for capital requirements to be binding. For a given L, the bank’s profit is:

π(L, s) =

∫ θ(L)

0
[ρ(L)L(1− t)− r0(L− E)]f(t, s)dt, with θ(L) = 1− r0

ρ(L)

(
1− E

L

)
. (A.1)

Taking the first two derivatives with respect to L, we have:

π1(L, s) =

∫ θ(L)

0
[ρ(L)(1− t)− r0]f(t, s)dt+ ρ′(L)L

∫ θ(L)

0
(1− t)f(t, s)dt, (A.2)

π11(L, s) = θ′(L)f(θ(L), s)r0
Lρ′(L)(L− E)− ρ(L)E

Lρ(L)
+

∫ θ(L)

0
(1− t)f(t, s)dt× (Lρ′′(L) + 2ρ′(L))

= f(θ(L), s)
r0(Eρ(L)− Lρ′(L)(L− E))2

(Lρ(L))2
+

∫ θ(L)

0
(1− t)f(t, s)dt× (Lρ(L))′′. (A.3)

Notice that if (Lρ(L))′′ ≥ 0 we have π11(L, s) ≥ 0. With a price-taking bank for example we would

directly have (Lρ(L))′′ = 0 and a convex profit. Otherwise, we need (Lρ(L))′′ ≥ −ε̄, with:

ε̄ = min
L∈[E,q(re(s))],s∈[s,s]

f(θ(L), s)∫ θ(L)
0 (1− t)f(t, s)dt

× r0

Lρ(L)
× E2

L2
, (A.4)

where the upper bound for L comes from the fact that the regulator will never implement an interest

rate r higher than re(s). Under (H2), profit is thus convex in L. For L = E we have:

π1(E, s) = Es(1− t)[ρ(E)− re(s) + Eρ′(E)]. (A.5)

Under (H1), π1(E, s) ≥ 0, so that the bank lends up to the constraint imposed by the regulator.

Proof of the Lemma. Since the regulator knows s, she can always find transfers that bind

(IR) while respecting (LL). As a result, α(s) appears only in W(α(s), s) in equation (5) and the

optimal α(s) maximizes W(α(s), s). Differentiating with respect to the first argument gives:

W1(α, s) =
−E
α2

(Es(1− t)r(α)− r0) . (A.6)

Clearly if α is too small the derivative is positive, while we have W1(1, s) ≤ 0 due to ρ(E) > re(s)

(as implied by (H1). The optimum is thus given by the interior solution r(α) = re(s). Assumption

(MLRP) implies that a distribution f with a larger s dominates a distribution with a smaller s, in
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the sense of first-order stochastic dominance. Es(1− t) thus decreases in s, so that re(s) increases.

As r(α) increases in α, α∗ also increases with s.

A.2 Proof of Proposition 1

It is clear that if we show the proposed mechanism to work when c(s′, s) is identically null, then it

works a fortiori for any positive misreporting cost. Let us thus assume c(s′, s) = 0 for any (s′, s).

Denoting U(s′, s) the payoff of an intermediary reporting s′ when the true model is s, and using

log-derivatives, we have:

U(s′, s) = F (a(s′), s)
π̄(s′)

F (a(s′), s′)
,

∂ lnU(s′, s)

∂s′
= a′(s′)

(
f(a(s′), s)

F (a(s′), s)
− f(a(s′), s′)

F (a(s′), s′)

)
+
π̄′(s′)

π̄(s′)
− F2(a(s′), s′)

F (a(s′), s′)
, (A.7)

where F2 denotes the derivative of F with respect to its second argument. Incentive compatibility

requires to find for every s an a(s) such that:

U1(s, s) = 0⇔ F2(a(s), s)

F (a(s), s)
=
π̄′(s)

π̄(s)
. (A.8)

Does such a function a(.) exist? Under (DM) we have, for any s, F2(t, s)/Ft(s) < π̄′(s)/π̄(s) when

t→ 0. Conversely, F (1, s) = 1 for any s, so that when t→ 1 we have the opposite inequality. Under

(MLRP), F2(t, s)/F (t, s) is increasing in t, so that there exists a unique value a(s) satisfying (A.8).

Moreover, (DM) implies that the left-hand side of (A.8) decreases more in s than the right-hand

side, while the left-hand side increases in a, so that a(s) is increasing.

We finally have to show that the second-order condition is met. We can use (A.8) to replace

F2(a(s′), s′) in (A.7). After some rearrangements this gives us:

U1(s′, s) ≥ 0⇔ f(a(s′), s)

f(a(s′), s′)
≥ F (a(s′), s)

F (a(s′), s′)
. (A.9)

This condition is equivalent to s′ ≤ s as a consequence of (MLRP), hence reporting s globally

maximizes U(., s).
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A.3 Proof of Proposition 2

To reduce the notational burden, denote α = α(s), r = r(α), θ = θ(α), and use the same notations

with a prime for the same functions taken in s′. By contradiction, assume that the regulator wants

to implement an increasing α(.) such that θ < τ without resorting to any bail-out. An intermediary

of type s who reports model s′ such that θ′ < τ receives:

∫ θ′

0
max[u(α′, r′, t)− T (s′, t), 0]f(t, s)dt− c(s′, s). (A.10)

As θ′ < τ , f(t, s) can be replaced by f(t, s′) in the integral. The deviation payoff of type s is

thus the payoff of type s′ when this type reports truthfully, minus the misreporting cost c(s′, s).

By assumption (IR) holds for type s′, so that by reporting s′, type s receives π̄(s′) − c(s′, s). An

intermediary with type s thus reports truthfully only if he receives a payoff at least as large as the

maximum of π̄(s′)−c(s′, s) over the s′ such that θ(s′) ≤ τ . Note that the derivative of π̄(s′)−c(s′, s)

with respect to s′ and evaluated in s is strictly negative, by assumption (H3). Misreporting at least

a little is thus profitable, whereas reporting s brings π̄(s). The intermediary thus earns a strictly

positive rent equal to maxs′,θ(s′)≤τ π̄(s′)− c(s′, s)− π̄(s).

A.4 Proof of Proposition 3

For brevity denote α = α(s), r = r(α), θ = θ(s), and use the same notations underlined for s.

Solution 1: If the regulator does not want agents to have rents she has to implement α so that

θ ≥ τ , otherwise Corollary 1 applies. A higher bound on welfare with this solution is obtained for

α = ατ such that θ = τ , α = α∗(s), and no rents are left to any type. This higher bound is:

V̄1 = ψ [W(ατ , s)] + (1− ψ) [W(α∗(s), s)]− λ[ψπ̄(s) + (1− ψ)π̄(s)]. (A.11)

Solution 2: In the first-best we have α∗(s) > α∗(s). As the regulator can always choose α = α and

then leave the minimum possible rents to agents, we must have α ≥ α in the second-best. This

implies that r ≥ r and θ ≥ θ. As the problem here is to prevent type s from misreporting s and

receive lower capital requirements, (IR) is binding for s and (IC) for s, which gives:

∫ θ

0
[u(α, r, t)− T (s, t)]f(t, s)dt = π(s), (A.12)∫ θ

0
[u(α, r, t)− T (s, t)]f(t, s)dt =

∫ θ

0
[u(α, r, t)− T (s, t)]f(t, s)dt− c(s, s). (A.13)
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(A.12) and (A.13) allow us to express the expected transfers as functions of α and α only, so that

the regulator’s objective (9) can be written as:

V̄2 = ψ [W(α, s)] + (1− ψ) [W(α, s)]− λ[ψπ̄(s) + (1− ψ)(π̄(s)− c(s, s))]. (A.14)

As α and α appear only as arguments in the welfare functionW there is no incentive for the regulator

to distort the capital requirements from their first-best values. We thus have α∗∗(s) = α∗(s) and

α∗∗(s) = α∗(s). Comparing V̄1 and V̄2 then immediately gives the condition (13).

A.5 Proof of Proposition 4

Calculus of variations can give us more information on the shape of α∗∗. As the regulator wants to

maximize the expected welfare under constraint (14), her program writes as:

max
α

∫ s

s
[W(α(s), s)ψ(s) + µ(s)

(
α′(s)π1(α(s), s)− c1(s, s)

)
]ds, (A.15)

where µ(s) is the Lagrange multiplier associated with the incentive compatibility constraint (14).

The Euler-Lagrange equation of this program gives us the following necessary condition:

[W1(α(s), s)ψ(s) + µ(s)α′(s)π11(α(s), s) = d
ds [µ(s)π1(α(s), s)]

⇔ W1(α(s), s)ψ(s) = µ′(s)π1(α(s), s) + µ(s)π12(α(s), s). (A.16)

There are two possibilities for the behavior of α∗∗. If on a given interval the constraint (14) is slack

we have µ(s) = 0 on this interval, thus µ′(s) = 0 and (A.16) gives us α∗∗(s) = α∗(s). This is possible

only if α∗′(s)π1(α∗(s), s) ≥ c1(s, s), that is if the first-best capital requirements are sufficiently flat.

If this is not the case, then α∗∗′ is determined by (14), and as π1 ≤ 0 we obtain that α∗∗′ ≤ α∗′. In

both cases α∗∗′ ≥ 0.
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A.6 Proof of Proposition 5

It is convenient to denote θ(α, r) the default point of a price-taking intermediary. We have:

π(α, r, s) =
E

α

∫ θ(α,r)

0
[r(1− t)− r0(1− α)]f(t, s)dt. (A.17)

π1(α, r, s) = − E
α2

∫ θ(α,r)

0
[r(1− t)− r0(1− α)]f(t, s)dt+

r0E

α
F (θ(α, r), s) + θ1(α, r)× 0

= − E
α2

∫ θ(α,r)

0
[r(1− t)− r0]f(t, s)dt. (A.18)

π11(α, r, s) =
E

α3

∫ θ(α,r)

0
[r(1− t)− r0]f(t, s)dt− E

α2
θ1(α, r)(r(1− θ(α, r))− r0)f(θ(α, r), s)

=
E

α3

∫ θ(α,r)

0
[r(1− t)− r0]f(t, s)dt+

r0E

α
θ1(α, r)f(θ(α, r), s). (A.19)

As shown in A.1, profit is always increasing in L in the case of a price-taking intermediary, so that

π1(α, r, s) ≤ 0 and thus the integral in (A.18) is positive. The same integral appears in (A.19).

Since θ1(α, r) ≥ 0, the profit π is convex in α, which is due to the bank’s limited liability. We want

to show that π12(α, r, s) ≤ 0. We have:

π12(α, r, s) = − E
α2

∫ θ(α,r)

0
(1− t)f(t, s)dt+

r2
0E(1− α)

r2α
f(θ(α, r), s). (A.20)

As π1(α, r, s) ≤ 0 we have the following inequality:

r

∫ θ(α,r)

0
(1− t)f(t, s)dt ≥ r0F (θ(α, r), s). (A.21)

Plugging into (A.20), we have that π12(α, r, s) ≤ 0 if rF (θ(α, r), s) ≥ r0α(1−α)f(θ(α, r), s), which

is certainly true if f(θ(α, r), s)/F (θ(α, r), s) ≤ 1.

A.7 Parameters used in the figures

All the figures rely on simulations using the following baseline parameters. {F (t, s)} is a family of

Beta distributions with parameters a = 3.5 and b ↪→ U([35, 70]). s is equal to 1/b. Es(1 − t) thus

ranges from 4.8% to 9.1%. q(r) = γ(r − 1)−η, with γ = 1 and η = 1.1, and E is set to 1. The

interval [s, s] is discretized in a set of 1000 models indexed from i = 1 to i = 1000. The cost to

report model i′ when the true model is i is c(i′, i) = c0|i′ − i| + c1(i′ − i)2, with c0 = 10−4 and

c1 = 5.10−4. π̄(s) is assumed to be proportional to Es(1− t).
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On Fig. 2 the high cost scenario assumes c0 = 2.10−4. On Fig. 3 α̂(s) = α∗(s) without a leverage

ratio, and α̂(s) = max(0.05, α∗(s)) otherwise. On Fig. 4 the high demand scenario assumes γ = 1.5.

Fig. 5 again assumes a leverage ratio at 0.05.
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