
	
  
	
  
	
  
 

 
 

Decomposing life insurance liabilities  
 

into risk factors 
 

Katja Schilling, Daniel Bauer, Marcus C. Christiansen und Alexander Kling 
 

 
 
 

Preprint Series: 2015 - 01 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fakultät für Mathematik und Wirtschaftswissenschaften 

UNIVERSITÄT ULM 



Decomposing life insurance liabilities into risk factors

Katja Schilling∗
Institut für Versicherungswissenschaften, Universität Ulm

Helmholtzstaße 20; 89081 Ulm; Germany
Email: katja.schilling@uni-ulm.de

Daniel Bauer
Department of Risk Management and Insurance, Georgia State University

35 Broad Street, 11th Floor; Atlanta, GA 30303; USA
Email: dbauer@gsu.edu

Marcus C. Christiansen
Department of Actuarial Mathematics and Statistics, Heriot-Watt University

Edinburgh Campus; Edinburgh EH14 4AS; United Kingdom
Email: m.c.christiansen@hw.ac.uk

Alexander Kling
Institut für Finanz- und Aktuarwissenschaften
Lise-Meitner-Straße 14; 89081 Ulm; Germany

Email: a.kling@ifa-ulm.de

February 19, 2015

Abstract

Life insurance liabilities are influenced by various sources of risk such as equity, interest rate, and mortality risk.
Although it is common to measure the total risk of life insurance liabilities via advanced stochastic models, it is
not clear how to allocate the randomness to those different sources of risk – a question of great practical relevance
in view of risk management and product design. In this paper, we first derive properties we posit a meaningful
risk decomposition should satisfy and show that each conventional approach from literature contradicts at least
one of these properties. Then we propose a novel decomposition method primarily motivated by the martingale
representation theorem, and show that this method actually satisfies all the meaningful risk decomposition proper-
ties. With the help of the Clark-Ocone formula from Malliavin calculus and Itô’s lemma for diffusion processes,
we derive explicit formulas for calculating the decomposition of relatively general life insurance liabilities. The
proposed decomposition method is applied to the discounted payoff of a Guaranteed Minimum Death Benefit in
order to determine equity, interest, and mortality risks, demonstrating the method’s applicability and usefulness.

Keywords: Life insurance liabilities, risk decomposition, risk factors, risk management, stochastic modeling of
financial and mortality risk
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1 Introduction
Decomposing insurance liabilities into risk factors associated with different sources of risk is a prob-
lem of great practical significance, particularly in the life sector, in view of risk management, product
design, and capital regulation.1 The primary contributions of this paper are twofold: On the one hand,
we introduce properties for a meaningful risk decomposition and show that all decomposition methods
proposed in literature suffer shortcomings in view of these properties. On the other hand, we propose
a novel decomposition approach based on martingale representation, labeled MRT decomposition, and
show that it satisfies all the meaningful risk decomposition properties. We discuss the calculation of
the MRT decomposition in a relatively general life insurance setting with an arbitrary (finite) insurance
portfolio, where the homogeneous group of insured is modeled by a counting process, and the (system-
atic) sources of risk are driven by a finite-dimensional Brownian motion. We derive explicit formulas in
terms of Malliavin derivatives in the general case and in terms of derivatives of conditional expectations
in the Markov case. Moreover, we provide detailed example calculations in the context of a Variable An-
nuity contract with a Guaranteed Minimum Death Benefit (GMDB). In particular, we illustrate that for
moderate or large insurance portfolios, equity risk is the (by far) dominant risk source for the resulting
liabilities (in the absence of a hedging portfolio).

Insurance liabilities are influenced by various sources of risk such as equity, interest, and insurance-
specific risk. The interaction of these sources can be quite complex, so that the individual risk contribu-
tions are typically neither obvious nor readily available. This is particularly the case in life insurance,
where the final payoffs – that commonly occur years or even decades after the origination of the con-
tracts – depend on the interaction of financial factors and guarantees, aggregate demography trends,
and actual deaths observed in the portfolio of insured. Nonetheless, insurance companies need to asses
the relative importance of each source of risk in order to be able to devise adequate risk management
strategies. This may simply be a matter of identifying the most significant source of risk for focusing
efforts in case resources for risk management are limited (Hoem, 1988; Kling et al., 2014). Alterna-
tively, the decomposition may allow to gage the sufficiency of risk loadings to each source of risk taking
into account its contribution to the aggregate risk (Christiansen, 2013; Niemeyer, 2014). Evaluating the
impact of different sources of risk is also important in view of product design, particularly when there
are different risk penalties for different sources of risk (Kochanski and Karnarski, 2011), and in view
of Solvency II, where individual risk contributions need to be quantified explicitly in partial internal
models. In addition, the decomposition may also help to adequately calibrate the Solvency II standard
formula.

In contrast to the majority of literature, we focus in this paper on decomposing the random variable
“life insurance liabilities” into risk factors, which are again random variables isolated from the total risk
and associated to one of the sources of risk, and not on quantifying the risk contributions themselves
by means of risk measures. Each allocation principle for quantifying risk contributions, as e.g. Euler’s
allocation or the variance decomposition, is eventually based on a specific risk factor decomposition.
As a result, only a comprehensive understanding of the underlying risk factor decomposition enables
a reliable interpretation of the deduced risk contributions. In addition, risk factor decompositions also
allow a detailed analysis of the influence of different sources of risk on a distributional level. For
example, they are able to provide information about the dependency structure of different risk factors.

Given the relevance of risk decompositions, it is not surprising that there are a number of papers
suggesting different methodologies for deriving risk factors, particularly in the life insurance context.
Bühlmann (1995), Fischer (2004), Martin and Tasche (2007), and Christiansen and Helwich (2008) use

1For corresponding contributions, see Bühlmann (1995); Fischer (2004); Martin and Tasche (2007); Christiansen (2007);
Christiansen and Helwich (2008); Artinger (2010); Rosen and Saunders (2010); Gatzert and Wesker (2014); Karabey et al.
(2014), among others.
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a conditional expectation approach, which is the probabilistic foundation of the well-known variance
decomposition. Another approach also based on conditional expectations – the so-called Hoeffding
decomposition – is used, for example, by Rosen and Saunders (2010). The Taylor expansion method
(Christiansen, 2007) uses derivatives for decomposing functionals of different sources of risk. A com-
pletely different method, which is also implied by the Solvency II framework and used in Gatzert and
Wesker (2014) and Artinger (2010), switches off the randomness of all sources of risk which are momen-
tarily not under consideration. Karabey et al. (2014) rely on a number of these approaches (Hoeffding,
Taylor, and conditional variance decomposition), and show how the contributions of different sources
of risk can be derived from the risk decompositions using the Euler allocation principle.

In this paper, we commence by introducing a number of properties that define a meaningful risk
decomposition for insurance liabilities.2 In particular, we posit that the decomposition should consider
the entire distribution of the company’s risk (P1),3 that it should be unique (P3) and independent of
the ordering of the risks (P4), that the different risk factors can be clearly attributed to the different
sources of risk (P2) and that they are comparable to one another (P5), and finally that the decomposition
should aggregate to the (normalized) entire risk (P6). However, it turns out that when benchmarking the
decomposition approaches proposed in literature with this list of desirable properties, for each method
at least one of the properties fails to hold.

This leads us to propose our alternative MRT decomposition. We will show that this approach satisfies
each property P1 to P6, and furthermore that the risk factor associated with unsystematic mortality risk
vanishes as the portfolio size increases – whereas the systematic risk factors approach a non-zero limit.
We provide explicit formulas for the decomposition, assuming a very general definition of the payoff of
the insurance contract entailing discrete as well as continuous survival and death benefits, by relying on
the Clark-Ocone formula (in the general case) and Itô’s Lemma for diffusion processes (in the Markov
case).

Our detailed numerical example relies on an affine specification of the interest and the mortality
rates following Cox et al. (1985) and Dahl and Møller (2006), respectively, and a geometric Brownian
motion for the underlying Variable Annuity account. Thus, we decompose the liabilities associated
with a return-of-premium GMDB – which presents a very common product in insurance practice – into
four sources of risk: equity risk, interest rate risk, systematic mortality risk, and unsystematic mortality
risk. Our calculations show that for an unhedged exposure, equity risk is by far the most dominant
risk, particularly when considering moderately sized insurance portfolios. More advanced examples for
Guaranteed Annuity Options and Guaranteed Minimum Income Benefits within Variable Annuities that
also consider the impact of hedging will be considered in a subsequent paper.

From a technical perspective, the derivation of our MRT decomposition is closely related to quadratic
hedging approaches for life insurance liabilities under a martingale measure (Møller, 2001; Barbarin,
2008; Dahl and Møller, 2006; Dahl et al., 2008; Biagini et al., 2012, 2013; Biagini and Schreiber, 2013;
Norberg, 2013), with the conceptual difference that we operate under the physical measure since we are
interested in risk assessments. As a result of the latter, we do not assume that discounted price processes
are martingales, and the risk which cannot be traded in the market is explicitly split up between the
different (non-tradable) sources of risk. We rely on the analogy to quadratic hedging approaches in
our derivations, but we also present some new results in this direction such as the decomposition of

2Fischer (2004) also provides a list of desirable properties for a reasonable decomposition method. However, he focuses
on a decomposition of life insurance liabilities into financial risk and unsystematic mortality risk, where a number of these
properties are trivial or irrelevant (e.g., because of independence of the sources of risk).

3Most previous papers in the actuarial literature dealing with risk decomposition methods primarily aim at allocating
the total risk, which is quantified by certain risk measures, to different sources of risk. For an overview and a numerical
comparison of some decomposition and subsequent allocation approaches we refer to Karabey (2012). In contrast, the
approaches listed above all propose a decomposition into random variables so that this property (P1) is satisfied for all of
them.
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arbitrary insurance payoffs within our general setting or the integration with the Clark-Ocone formula
from Malliavin calculus.

The remainder of this paper is organized as follows. Section 2 presents the properties that define a
meaningful risk decomposition, and analyzes whether conventional approaches from literature satisfy
these properties. Section 3 lays out the considered life insurance modeling framework and introduces our
MRT decomposition within this framework. Properties and the calculation of the MRT decomposition
are discussed in Section 4. Section 5 describes and analyzes our Variable Annuity example. Finally,
Section 6 concludes.

2 Meaningful risk decompositions

2.1 Definition of meaningful risk decompositions
As outlined in the introduction, the primary concern of this paper are decompositions of a (life) in-
surer’s total risk – which we suppose is given via the (normalized) loss random variable L, E[L] = 0
– into different risk factors i = 1, 2, . . . , k. More precisely, we assume k sources of risk, where
Zi = (Zi(t))0≤t≤T ∗ denotes the i-th source of risk and Z = (Z1, . . . , Zk). We assume that the loss
variable L is σ(Z)-measurable, and consider decomposition methodologies which assign each source
of risk a risk factor. While a number of papers in the actuarial literature have proposed a variety of
decomposition methods, thus far there has been no systematic assessment and comparison among these
different approaches. In what follows, we introduce a number of properties we argue a meaningful risk
decomposition should satisfy. Equalities between random variables are in the almost sure sense.

P1 Randomness

This property posits that the individual risk factors are given by random variables, say
R1, R2, . . . , Rk, where clearly random variable Ri corresponds to risk factor i ∈ {1, 2, . . . , k}.
The primary idea is that rather than decomposing certain risk measures or metrics, we are looking
for decompositions of the randomness of L yielding the complete risk structure of each factor.
We introduce the relation “↔” and write (L,Z1, . . . , Zk)↔ (R1, R2, . . . , Rk) to indicate that the
loss L depending on (Z1, . . . , Zk) corresponds to the decomposition (R1, R2, . . . , Rk).

P2 Attribution

To assure that Ri represents the risk factor related to risk i, we require that whenever the loss
L is σ(Zi)-measurable and Zi is independent of (Z1, . . . , Zi−1, Zi+1, . . . , Zk), then all other risk
factors should be zero, i.e. Rj = 0 for all i 6= j.

P3 Uniqueness

We expect the decomposition methodology to be unique or, in other words, not subject to
problem-specific choices. Formally, we demand that (L,Z1, . . . , Zk) ↔ (R1, R2, . . . , Rk) and
(L,Z1, . . . , Zk)↔ (R̃1, R̃2, . . . , R̃k) implies Ri = R̃i, i ∈ {1, 2, . . . , k}.

P4 Order invariance

This property suggests that the definition of the decomposition should be invariant to the order
of the risks 1, 2, . . . , k. Formally, consider a permutation π : {1, 2, . . . , k} → {1, 2, . . . , k} and
assume (L,Z1, . . . , Zk)↔ (R1, R2, . . . , Rk). Then we posit:

(L,Zπ(1), . . . , Zπ(k))↔ (Rπ(1), Rπ(2), . . . , Rπ(k)).
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P5 Scale invariance

We want the risk factors to be quantitatively comparable, even if they are related to different loss
variables. Thus, the risk factors need to be be invariant against a change of scale in the source
of risk. Formally, let (L,Z1, . . . , Zk) ↔ (R1, R2, . . . , Rk), and define Z̃i(t) := fi(Zi(t)) for
all i = 1, . . . , k, 0 ≤ t ≤ T ∗, where fi : R → R is a Borel measurable, invertible function
which represents the change of scale in risk i. If (L, Z̃1, . . . , Z̃k) ↔ (R̃1, R̃2, . . . , R̃k), then we
require that Ri = R̃i for all i ∈ {1, . . . , k}. (Note that L is also σ(Z̃)-measurable, where Z̃ =
(Z̃1, . . . , Z̃k).)

P6 Aggregation

The risk factor decomposition should aggregate to the total risk faced by the company, i.e. we
posit that for each loss L and risks Z with (L,Z1, . . . , Zk) ↔ (R1, R2, . . . , Rk) there exists a
function A(L,Z) : Rk → R such that

L = A(L,Z)(R1, R2, . . . , Rk).

P6∗ Additive aggregation

A special case of P6 is an additive aggregation function, i.e. the case where L is given as the sum
of the individual risk factors:

L =
k∑
i=1

Ri.

An additive decomposition is desirable for multiple reasons. For instance, it allows for the nat-
ural interpretation that the risk factors sum up to the total risk. Moreover, for a decomposition
into summands, it is straightforward to derive decompositions for homogeneous risk measures as
within the well-known Euler allocation principle (Karabey et al., 2014).

Note that the relation↔ is even a function if P3 is satisfied. Furthermore, if P6 additionally holds and
the function A(L,Z) does not depend on L (as e.g. satisfied under P6∗), then↔ is an injective function in
L for fixed Z since

(R1, . . . , Rk) = (R̃1, . . . , R̃k)⇒ L = AZ(R1, . . . , Rk) = AZ(R̃1, . . . , R̃k) = L̃.

2.2 Are conventional approaches meaningful?
Due to the relevance of the decomposition problem in actuarial practice, it is no surprise that a number of
decomposition methods have been proposed in the risk and insurance literature. For describing and dis-
cussing these approaches with regard to the meaningful risk decomposition properties from Section 2.1,
we consider the time-0 present value L0 of an insurer’s future losses and, for simplicity, assume that this
random variable is only influenced by two risk drivers Z1 = (Z1(t))0≤t≤T ∗ and Z2 = (Z2(t))0≤t≤T ∗ .
The insurer’s risk is identified with L := L0 − EP(L0). Our results with respect to the meaningful risk
decomposition properties are summarized in Table 1. We find that each considered decomposition ap-
proach from literature has at least one undesirable property. If these methods are still applied, one has
to make sure that the respective disadvantages do not falsify the results. This is why in Section 3 we
propose the MRT decomposition, which actually satisfies all meaningful risk decomposition properties
(see Section 4.1). For completeness, we have also added the MRT decomposition to Table 1.
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P1 P2 P3 P4 P5 P6 P6∗

Variance decomposition X X X × X X X

Hoeffding decomposition X X X X X × ×
Taylor expansion X X × X × × ×
Solvency II approach X × × X X × ×
MRT decomposition X X X X X X X

Table 1: Summary of whether conventional decomposition approaches and the proposed MRT decom-
position satisfy (X) the properties P1-P6∗ or not (×).

Variance decomposition

A very common approach in actuarial literature (and the closely related field of credit analysis) for
decomposing the insurer’s risk L0 − EP(L0) into risk factors is a conditional expectation approach,
which is the probabilistic foundation of the well-known variance decomposition. Bühlmann (1995) and
Fischer (2004) use this approach to decompose the profit/loss of a life insurer into a financial and a
biometric part. Martin and Tasche (2007) determine the systematic and unsystematic risk from a credit
portfolio by this method, and Christiansen and Helwich (2008) extend the approach to three sources of
risk of a life insurance portfolio, namely unsystematic and systematic mortality risk as well as financial
risk, which implicitly paves the way for a general definition of the variance decomposition approach.

The basic idea is that the conditional expectation R1 := EP (L|Z1) captures the randomness of L
caused by Z1. Since the remaining risk R2 := L−R1 = L−EP (L|Z1) must represent the randomness
caused by Z2, the decomposition reads for L = L0 − EP(L0) as

L0 − EP(L0) =
[
EP (L0|Z1)− EP(L0)

]
+
[
L0 − EP (L0|Z1)

]
= R1 +R2, (2.1)

where R1 and R2 represent the two risk factors. As a result of the orthogonality property of conditional
expectations it turns out that

Var(L) = Var(R1) + Var(R2),

that is, the correlation of R1 and R2 is zero. Commonly, the latter equation is referred to as variance
decomposition. However, since in the context of risk quantification the variance is often not the risk
measure of choice, we restrict the following considerations to the general decomposition (2.1) and refer
to this as variance decomposition. Note that for an arbitrary loss L the variance decomposition directly
implies that EP(R1) = EP(L) and EP(R2) = 0. Of course, this asymmetry is irrelevant when consid-
ering the variance but potentially relevant when applying different risk measures. This emphasizes the
necessity to first standardize the loss L0 to mean zero, i.e. considering L0 − EP(L0), and then apply the
decomposition approach, resulting in EP(R1) = EP(R2) = 0.

Obviously, the risk factors R1 and R2 are random variables (P1) and they add up to the total risk
(P6∗/P6). Since conditional expectations are almost surely defined, the uniqueness of the variance de-
composition also holds in the almost sure sense (P3). To check the attribution property P2, assume that
Z1 and Z2 are independent. If L is σ(Z1)-measurable, then R2 = L − EP (L|Z1) = L − L = 0.
Conversely, if L is σ(Z2)-measurable, then L is independent of Z1 and thus R1 = EP (L|Z1) = EP(L).
Therefore, P2 is satisfied since L is standardized to mean zero. The variance decomposition is also scale
invariant (P5). To show this, let f1 and f2 be two Borel measurable, invertible functions and define
Z̃i(t) := fi(Zi(t)), i = 1, 2. Since f1 and f2 are invertible, it follows that σ(Z̃i) = σ(Zi). As a result,
R̃1 = EP(L| Z̃1) = EP(L|Z1) = R1 and R̃2 = L− EP(L| Z̃1) = L− EP(L|Z1) = R2. In contrast, the
order invariance property P4 is not satisfied which is illustrated by the following example.
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Example 2.1. Assume that L0 = Z1(T )Z2(T ), where Z1 and Z2 are two independent processes e.g.
representing the number of survivors and the fund value of a portfolio of unit-linked pure endowment
policies. Then it follows by the variance decomposition with respect to Z = (Z1, Z2) that

L0 − EP (L0) =
[
EP (L0|Z1)− EP (L0)

]
+
[
L0 − EP (L0|Z1)

]
= EP (Z2(T )) [Z1(T )− EP (Z1(T ))]︸ ︷︷ ︸

=R1

+Z1(T )[Z2(T )− EP (Z2(T ))]︸ ︷︷ ︸
=R2

.

In contrast, switching the order of Z1 and Z2, i.e. considering Z̃ = (Z̃1, Z̃2) := (Z2, Z1), the variance
decomposition approach yields

L0 − EP (L0) = EP (Z1(T )) [Z2(T )− EP (Z2(T ))]︸ ︷︷ ︸
=R̃1

+Z2(T )[Z1(T )− EP (Z1(T ))]︸ ︷︷ ︸
=R̃2

.

Of course, in general the distributions of R1 and R̃2 from Example 2.1, which both measure the risk
caused by Z1, are different since EP (Z2(T )) is replaced by Z2(T ) (analogously with R2 and R̃1), so
that depending on the order of the sources of risk different risk factors follow. As a result, the variance
decomposition is not order invariant (P4). In particular, if in the above example Z1(T ) and Z2(T ) were
two standard Brownian motions with mean zero, the first decomposition would imply R1 = 0 and
R2 = Z1(T )Z2(T ), whereas the second decomposition would yield R̃1 = 0 and R̃2 = Z1(T )Z2(T ).
This means that either no risk (R1) or the total risk (R̃2) is attributed to Z1. Furthermore, since in this
specific example L0 is symmetric in Z1 and Z2 and both risks have the same distribution, none of the
two decompositions appear to be reasonable.

As already mentioned, although Z1 and Z2 might be correlated, R1 and R2 are uncorrelated. This
means that the correlated risk must be allocated in an independent way, which can result in random
effects as demonstrated in the next example.

Example 2.2. Let L0 = B1(T ) +B2(T ) , where B1 and B2 are two one-dimensional Brownian motions
with dB1(t)dB2(t) = ρdt, ρ ∈ (−1, 1)\{0}. Since there exists a one-dimensional Brownian motion B3

independent of B1 such that B2(t) = ρB1(t) +
√

1− ρ2B3(t) (Exercise 4.16 in Shreve, 2004, p. 200),
the first risk factor of the variance decomposition with respect to (B1, B2) can be calculated as

R1 = EP(L0|B1)− EP(L0) = EP
(

(1 + ρ)B1(T ) +
√

1− ρ2B3(T )
∣∣∣B1

)
= (1 + ρ)B1(T ),

which depends on the correlation parameter. Naturally, we would rather expect R1 = B1(T ).

This illustrates that the variance decomposition approach is not able to appropriately deal with corre-
lations.

Hoeffding decomposition

Next we consider a decomposition approach which is based on the Hoeffding decomposition from statis-
tics and which is, for example, used by Rosen and Saunders (2010) to determine the factor contributions
to a portfolio’s credit risk. For convenience, we again call this approach Hoeffding decomposition.
Similar to the previous approach it relies on conditional expectations. If the insurer’s liability is given
by L0 = F (Z1, Z2), i.e. L0 is a function of the stochastic processes Z1 and Z2, then the Hoeffding
decomposition reads for L = L0 − EP(L0) as

L0 − EP (L0) = EP (L0|Z1)− EP (L0)︸ ︷︷ ︸
=:R1

+ EP (L0|Z2)− EP (L0)︸ ︷︷ ︸
=:R2

+ EP (L0|Z1, Z2)− EP (L0|Z1)− EP (L0|Z2) + EP (L0)︸ ︷︷ ︸
=:R1,2

,
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where R1 and R2 are the risk factors caused by Z1 and Z2 in isolation, and R1,2 denotes the insurer’s
risk which results from joint effects of the two different sources of risk. This already exhibits the
decomposition’s main drawback, namely that the total risk is not completely allocated to the individual
sources of risk. If in Example 2.1 Z1(T ) and Z2(T ) had both mean zero, the Hoeffding approach would
yield R1 = R2 = 0 and R1,2 = L0 − EP(L0), i.e. the total risk results from joint effects, which does
not give any insights on the influence of the different sources of risk. This example shows that the
aggregation property P6 is in general not satisfied since for every function A(L,Z) : R2 → R we have
A(L,Z)(R1, R2) = A(L,Z)(0, 0) ≡ const. 6= Z1(T )Z2(T ). In particular, the sum of the risk factors is
not equal to the total risk (P6∗). Since Example 2.2 is still valid for the Hoeffding decomposition, this
method also fails in dealing with correlations. However, properties P1 to P5 are satisfied. Clearly, the
risk factors R1 and R2 are random variables (P1) and the Hoeffding decomposition is unique in the
almost sure sense as a result of the uniqueness of the conditional expectations (P3). Furthermore, it
can be easily seen that, contrary to the variance decomposition, this approach is order invariant (P4).
The scale invariance follows by the same argument as with the variance decomposition (P5). Let Z1

and Z2 be two independent processes. If L is (w.l.o.g.) σ(Z1)-measurable, then L and thus also L0

are independent of Z2, so that R2 = EP (L0|Z2) − EP (L0) = EP (L0) − EP (L0) = 0. Therefore, the
attribution property P2 is also satisfied.

Taylor expansion

Another approach, which makes use of derivatives instead of conditional expectations, is proposed by
Christiansen (2007, p. 80). He takes up the idea from uncertainty analysis which is to approximate
functionals of random variables by their first order Taylor expansion and to interpret the summands as
risk factors. If the insurer’s loss L0 equals a functional of the form F (Z1(T ), Z2(T )), then this approach
yields for L = L0 − EP(L0) that

L0 − EP(L0) ≈
[
F (Z1, z2)− EP(L0)

]
+
∂F

∂z1

(z1, z2)(Z1(T )− z1)︸ ︷︷ ︸
=:R1

+
∂F

∂z2

(z1, z2)(Z2(T )− z2)︸ ︷︷ ︸
=:R2

,

where (z1, z2) denotes the (deterministic) expansion point. By generalizing the definition of gradients,
Christiansen (2007) even extends this approach to an infinite-dimensional setting such that the loss
L0 may also depend on the entire path of the stochastic processes Z1 and Z2. Clearly, the method’s
applicability is restricted, since the derivatives do not necessarily exist. Besides this, a first-order Taylor
expansion and its summands can only approximate the risk L0 − EP(L0) given the functional is non-
linear. In addition, the approximation error at a certain point highly depends on the choice of the
expansion point, i.e. the Taylor expansion is local. The latter two aspects are demonstrated by the
following example.

Example 2.3. Assume that L0 = Z1(T )Z2(T ) =: F (Z1(T ), Z2(T )), where Z1 and Z2 are two arbitrary
stochastic processes. Then the Taylor expansion with expansion point (z1, z2) yields

L0 − EP(L0) ≈
[
z1z2 − EP(L0)

]
+ z2(Z1(T )− z1)︸ ︷︷ ︸

=R1

+ z1(Z2(T )− z2)︸ ︷︷ ︸
=R2

= L0 − EP(L0)− (Z1(T )− z1)(Z2(T )− z2).

Obviously, the approximation error amounts to −(Z1(T ) − z1)(Z2(T ) − z2), i.e. the more Z1(T ) and
Z2(T ) deviate from z1 and z2, respectively, the higher is the approximation error.

Moreover, in the special case where Z1 and Z2 are two independent standard Brownian motions,
choosing the expansion point (z1, z2) = (EP(Z1(T )),EP(Z2(T ))) = (0, 0) results in R1 = R2 = 0, i.e.
a risk is neither allocated to Z1 nor to Z2, although L = L0 = Z1(T )Z2(T ).
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Obviously, the additive aggregation property P6∗ is generally not satisfied. This extends to the more
general aggregation property P6 as can be seen from Example 2.3 with Z1 and Z2 being two inde-
pendent standard Brownian motions: for every function A(L,Z) : R2 → R we have A(L,Z)(R1, R2) =
A(L,Z)(0, 0) ≡ const. 6= Z1(T )Z2(T ). As a result of the dependence on the expansion point, the Taylor
expansion approach is also not unique (P3). For example, choosing the expansion point (z1, z2) = (1, 0)
in the second part of Example 2.3 would change the second risk factor to R2 = Z2(T ) 6= 0. To show
that scale invariance (P5) is violated, simply assume that L = eZ1(T ). Then the Taylor expansion yields
L ≈ ez1 +ez1(Z1(T )−z1) for some expansion point z1. However, for Z̃1(T ) := eZ1(T ) and z̃1 := ez1 we
would have L ≈ z̃1 +(Z̃1(T )− z̃1), and in generalR1 = ez1(Z1(T )−z1) 6= eZ1(T )−ez1 = Z̃1(T )− z̃1 =
R̃1. Still, the Taylor expansion satisfies properties P1, P2, and P4. The risk factors are obviously ran-
dom variables, and the order invariance can be easily shown. For the attribution property, let Z1 and
Z2 be two independent processes, and assume that L = L0 − EP(L0) is (w.l.o.g.) σ(Z1)-measurable,
where L0 = F (Z1(T ), Z2(T )). Consequently, either L0 = F (Z1(T ), Z2(T )) = F (Z1(T )), or Z2(T )
is σ(Z1)-measurable. In the first case, it follows that ∂F

∂z2
(z1, z2) = ∂F

∂z2
(z1) ≡ 0 and thus R2 = 0. The

second case implies that Z2(T ) must be deterministic, since Z1 and Z2 are independent. Since a natural
choice in this case would be z2 = Z2(T ), this also yields R2 = ∂F

∂z2
(z1, z2)(Z2(T )− z2) ≡ 0. Both cases

confirm the attribution property P2.

Solvency II approach

A different risk decomposition approach is to switch off the randomness of all the sources of risk that
are momentarily not under consideration, see e.g. Gatzert and Wesker (2014), Artinger (2010). Since
this method is in principle also proposed by the Solvency II framework for measuring the influence
of different sources of risk (cf. CEIOPS, 2010), in what follows we call this decomposition method
Solvency II approach.

In more detail, given the functional F (Z1, Z2) represents the insurer’s risk, the method suggests to
model the risk factors implied by Z1 and Z2 by F (Z1, z2) and F (z1, Z2), respectively. In the context of
Solvency II, z1 and z2 are typically chosen as best estimates of Z1 and Z2. However, in general there
is no clear answer how z1 and z2 should be chosen. In fact, the decomposition heavily depends on the
choice of z1 and z2 and is thus not unique (P3). This is illustrated in the following example. In the
interest of clarity, we do not standardize the risk to mean zero here.

Example 2.4. Assume that L = F (Z1(T ), Z2(T )) = Z1(T ) max{K −Z2(T ), 0}, where Z1 and Z2 are
two arbitrary processes and K a constant. For example, imagine the premium maintenance guarantee
of a portfolio of unit-linked pure endowment policies, where Z1 describes the number of survivors,
Z2 the fund value and K the single premium. It is natural to assume that EP (Z2(T )) > K, but that
P (Z2(T ) < K) > 0. Measuring the risk factor related to Z1 by replacing Z2(T ) with its expectation,
the Solvency II approach yields

R1 = F (Z1(T ),EP (Z2(T ))) = Z1(T ) max{K − EP (Z2(T )) , 0} ≡ 0.

Although L0 > 0 with positive probability (when additionally assuming that some policyholders sur-
vive until time T with positive probability), no risk is allocated to Z1. However, choosing any deter-
ministic approximation z2(T ) < K would yield R1 = Z1(T )(K − z2(T )) with a different distri-
bution for each choice of z2(T ). Assuming z1(T ) = EP (Z1(T )) , the second risk factor equals here
R2 = EP (Z1(T )) max{K − Z2(T ), 0}.

Besides uniqueness, the example implies that the Solvency II approach also does not satisfy the aggre-
gation property P6 (and thus also not P6∗). In more detail, let Z1 and Z2 be independent and assume that
there exists a functionA(L,Z) : R2 → R such thatL = A(L,Z)(R1, R2) = A(L,Z)(0,E

P (Z1(T )) max{K−
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Z2(T ), 0}). This would imply that L is σ(Z2)-measurable and thus independent of Z1 which is ob-
viously a contradiction (assuming that Z1 is non-deterministic). The attribution property also does
not hold (P2). To see this, consider two sources of risk Z1 and Z2 and assume that L = Z1(T ) =
F (Z1(T ), Z2(T )). Obviously, L is σ(Z1)-measurable, but for every z1(T ) 6= 0 it holds that R2 =
F (z1, Z2) = z1(T ) 6= 0. The only properties that are satisfied by the Solvency II approach are P1, P4,
and P5. Again, the risk factors are obviously random variables (P1) and the order invariance can be
easily shown (P4). For the scale invariance, let f1 and f2 be two Borel measurable, invertible func-
tions and define Z̃i(t) := fi(Zi(t)) and z̃i(t) := fi(zi(t)), i = 1, 2. It follows that L = F (Z1, Z2) =
F ((f−1

1 (Z̃1(t)))0≤t≤T ∗ , (f−1
2 (Z̃2(t)))0≤t≤T ∗) =: F̃ (Z̃1, Z̃2). As a result, R̃1 = F̃ (Z̃1, z̃2) = F (Z1, z2) =

R1 and analogously R̃2 = R2, which proves the scale invariance (at least if the change of scale is the
same for z̃i as for Z̃i, i = 1, 2) (P5).

Generally, whenever the probability of an option to be in the money is rather low, the deterministic
approximation might be misleading. Furthermore, there is no obvious reason why not the considered
source of risk should be switched off, then measuring the risk factors caused by Z1 and Z2 via L −
F (z1, Z2) and L− F (Z1, z2) instead of via F (Z1, z1) and F (z1, Z2), respectively.

3 MRT decomposition in life insurance

3.1 Life insurance modeling framework
For the remainder of this paper, we fix a finite time horizon T ∗ and a filtered probability space
(Ω,F ,F,P) with F = (Ft)0≤t≤T ∗ satisfying the usual conditions of right-continuity and P-
completeness.4 Throughout, Ft describes the total information available at time t, in particular let
F0 be trivial and set F = FT ∗ . We assume that the entire uncertainty of the life insurer’s future prof-
it/loss arises from the uncertain evolution of a number of financial and demographic factors as well
as the actual occurrence of deaths in the insurance portfolio. We introduce an n-dimensional locally
bounded process X = ((X1(t), . . . , Xn(t))>)0≤t≤T ∗ , the so-called state process, and assume that all
financial and demographic factors are functions of X. Specifically, we assume that the time-t prices
of all risky assets from the financial market, as well as the short rate r(t) = r(t,X(t)) and the mor-
tality intensity µ(t) = µ(t,X(t)) can be expressed in terms of X(t). The state process itself is driven
by a d-dimensional standard Brownian motion W = ((W1(t), . . . ,Wd(t))

>)0≤t≤T ∗ . Let G denote the
augmented filtration generated by W which is assumed to be a sub-filtration of F. Furthermore, we im-
pose the existence of a bank account (B(t))0≤t≤T ∗ defined as B(t) = e

∫ t
0 r(s)ds. The financial market is

assumed to be frictionless and arbitrage-free, the latter in the sense that there exists a risk-neutral prob-
ability measure Q equivalent to P under which payment streams can be evaluated via the expectation of
their discounted values (with respect to the numéraire B).

For simplicity, we assume that the considered m policyholders are all homogeneous and of age x at
time 0. The remaining lifetime τ ix of the i-th policyholder as seen from time 0, i = 1, . . . ,m, is defined
as the first jump time of a doubly stochastic process with G-predictable intensity (µ(t))0≤t≤T ∗ , i.e.

τ ix = inf

{
t ∈ [0, T ∗] :

∫ t

0

µ(s)ds ≥ Ei

}
, i = 1, . . . ,m,

where Ei, i = 1, . . . ,m, are i.i.d. unit exponential random variables independent of GT ∗ . We use the
convention inf ∅ =∞, which covers the case τ ix > T ∗. A motivation for this definition of the remaining

4In principle, P can be any probability measure since all statements in this paper are generally valid. Still, in what follows
we interpret P as the real-word measure, since we focus on risk.
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lifetimes can be found in Biffis et al. (2010, p. 287). Assuming that µ is non-negative and continuous it
follows from the definition that for any t ∈ [0, T ∗] (Lando, 1998, p. 102)

P
(
τ ix > T |GT

)
= e−

∫ T
0 µ(s)ds,

and in particular P (τ ix > 0) = 1. The construction of the τ ix’s also implies that (Bielecki and Rutkowski,
2004, p. 268)

P
(
τ ix > t

∣∣GT ) = P
(
τ ix > t

∣∣Gs) (3.1)

for all 0 ≤ t ≤ s ≤ T ≤ T ∗, i = 1, . . . ,m. According to Jeanblanc and Rutkowski (2000), this is
equivalent to the so-calledH-hypothesis, which says that every G-martingale remains a martingale with
respect to the larger filtration F. The process Γ(t) :=

∫ t
0
µ(s)ds is called cumulative mortality intensity

of the random times τ ix, i = 1, . . . ,m. It follows that P (τ ix > t| Gt) = e−Γ(t). Summing up, henceforth
we assume that (µ(t))0≤t≤T ∗ is continuous, non-negative and G-predictable.

Defining the sub-filtration I =
∨m
i=1 Ii of F, where Ii = (I it)0≤t≤T ∗ is the augmented filtration gener-

ated by the death indicator process (1{τ ix≤t})0≤t≤T ∗ , it is natural to assume that F is given by G∨ I (G as
defined above). This means that we distinguish between the world of financial and demographic factors
on the one hand, and the occurrence of deaths on the other hand.

The above definitions imply that the residual lifetimes τ ix, i = 1, . . . ,m, of the homogeneous pol-
icyholders are conditionally identically distributed and conditionally independent given the σ-algebra
GT ∗ . Since {τ ix > t} is an atom of I it , the construction of F together with the conditional independence
property imply for the conditional survival probability given Ft that (Bielecki and Rutkowski, 2004,
p. 145)

P
(
τ ix > T |Ft

)
= P

(
τ ix > T |Gt ∨ I it

)
= 1{τ ix>t}

P (τ ix > T |Gt)
P (τ ix > t|Gt)

= 1{τ ix>t}E
P
(
e−

∫ T
t µ(s)ds

∣∣∣Gt) .
Each life insurance contract from the considered portfolio is assumed to entail the same cash flows.

The only difference is the respective remaining lifetime. We describe the number of policyholders who
have died until time t by N(t) =

∑m
i=1 1{τ ix≤t}. Then the sum of the (possibly discounted) future cash

flows as from time t, which represents the insurer’s total net liability, is given by

Lt = Ct +
∑
k: tk≥t

(m−N(tk))Ca,k +

∫ T ∗

t

(m−N(s))Ca(s)ds

+
∑
k: tk≥t

(N(tk)−N(tk−1))Cad,k +

∫ T ∗

t

Cad(s)dN(s).

(3.2)

Clearly, cash flows related to a life insurance contract can depend on the policyholder’s survival or his
death, but they can also be independent of the individual lives as e.g. cash flows from hedging or benefit
payments from a fixed term insurance. Accordingly, the first term in equation (3.2) summarizes all cash
flows which are independent of the individual lives, the second and the third term describe cash flows
which are conditional on survival, and the last two terms describe cash flows which are conditional on
death.

While in practice cash flows are usually only generated at discrete points in time (e.g. daily or
monthly), in literature also continuously generated cash flows are considered (e.g., Dahl et al., 2008,
p. 125). This is why we consider in the second and in the fourth term discrete cash flows which are trig-
gered by survival or being death at certain discrete points in time 0 = t0 < t1 < . . . < tl = T ∗, l ∈ N.
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In the third and in the fifth term we describe continuous payments which are instantly triggered by sur-
vival and death. The detailed description of the cash flows used above is as follows:

Ct sum of all (possibly discounted) payments at or after time t which are independent
of τ ix, i = 1, . . . ,m, t ∈ [0, T ∗], e.g. hedging returns, benefits from a fixed term
insurance;

Ca,k sum of all (possibly discounted) payments at or after time tk which are conditional
on survival until time tk, k = 0, . . . , l, e.g. single premiums, discrete premium
payments, discrete annuity payments, benefits from a pure endowment, benefits
within the period certain of a deferred annuity;

Ca(t) time-t intensity of all continuous payments which are conditional on survival until
time t, or in other words, Ca(t)dt is the sum of all payments in the infinitesimal
period [t, t + dt] which are conditional on survival until time t, e.g. continuous
premium payments, continuous annuity payments;

Cad,k sum of all (possibly discounted) payments at or after time tk which are conditional
on death within (tk−1, tk], k = 1, . . . , l, e.g. death benefits paid at the end of a
period;

Cad(t) sum of all (possibly discounted) payments at time t which are conditional on death
at time t, t ∈ [0, T ∗], e.g. death benefits paid immediately after death.

We assume that Ct, Ca,k and Cad,k are GT ∗-measurable, which means that the cash flows may only be
known at time T ∗, whereas Ca(t) and Cad(t) are assumed to be Gt-measurable. The latter assumption is
one of the reasons why we explicitly distinguish between discrete and continuous cash flows. In general,
each cash flow from above may include several payments from and to the insurance company. Positive
payments are interpreted as payments made by the insurer, and negative payments are interpreted as
payments received by the insurance company. Thus, each cash flow corresponds to the insurer’s net
liability which justifies the interpretation of Lt as the insurer’s total net liability.

The insurer’s risk at time t (as seen from time 0) is identified with Lt − EP (Lt| Ft) , i.e. the insurer’s
net liability as from time t less the liability’s expectation given the development until time t. The net
liability Lt is exactly the amount of money the insurance company needs at time t in order to be able
to meet its future contract obligations (under certain investment assumptions introduced by the discount
factor). Of course, this amount of money is random and the insurance company should at least bar-
gain for the expected value of Lt which is often the basis for the insurer’s reserve. Thus, subtracting
EP (Lt| Ft) yields the risk the insurer actually has to face.

Note that similar frameworks as above have already been considered by, among others, Bauer et al.
(2010) and Zhu and Bauer (2011).

3.2 Definition of the MRT decomposition
Within the life insurance modeling framework introduced in the previous section, the objective is to find
an approach which decomposes the insurer’s risk Lt − EP (Lt|Ft) in such a way that the meaningful
risk decomposition properties formulated in Section 2.1 are satisfied. Inspired by the martingale rep-
resentation theorem, we propose to decompose the insurer’s risk into stochastic integrals with respect
to the compensated sources of risk and to interpret each integral as the risk factor of the respective
source of risk. As we will see in Section 4.1, this approach which is further specified below satisfies all
requirements established in Section 2.1.

The sources of risk are identified, on the one hand, with the state processes Xi = (Xi(t))0≤t≤T ∗ , i =
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1, . . . , n, and on the other hand with the number of deaths in the portfolio N = (N(t))0≤t≤T ∗ as intro-
duced in Section 3.1. The respective compensated processes, i.e. the processes less their F-compensators,
are denoted byMW

i = (MW
i (t))0≤t≤T ∗ , i = 1, . . . , n, andMN = (MN(t))0≤t≤T ∗ , respectively. In what

follows, all processes are assumed to be semimartingales, so that, in particular,the stochastic integrals
below are well-defined.

For the sake of clarity, we specify the approach for the case t = 0, but all results can be generalized
to any time t. Accordingly, we look for a decomposition

L0 − EP(L0) =
n∑
i=1

∫ T ∗

0

ψWi (t)dMW
i (t) +

∫ T ∗

0

ψN(t)dMN(t), (3.3)

where ψWi (t), i = 1 . . . , n, and ψN(t) are F-predictable processes. A decomposition of the form
(3.3) is henceforth called MRT decomposition, since the idea and the decomposition’s existence (see
Proposition 3.3) are implied by the martingale representation theorem. Each integral is interpreted
as the portion of the total randomness of L0 − EP(L0) which is caused by the associated source of
risk. In particular,

∫ T ∗

0
ψN(t)dMN(t) describes the randomness introduced by N , i.e. by the random

occurrence of deaths in the portfolio, and thus corresponds to the inherent unsystematic mortality risk.
Note that a decomposition consisting of stochastic integrals with respect to the different sources of risk
Xi, i = 1, . . . , n, and N (instead of the compensated processes) does not necessarily exist, since most
risk processes are not P-martingales. Just imagine that X(t) := t + W (t) and assume that we could
find for every L0 := W (t), 0 ≤ t ≤ T ∗, an accordant decomposition with respect to the source of risk
X = (X(t))0≤t≤T ∗ . SinceW is a martingale, this would yield a contradiction . In contrast, we will show
in Proposition 3.3 that a decomposition of the form (3.3) always exists given certain natural conditions
are satisfied.

For simplicity, we focus on the special case of Itô processes as state processes.

Assumption 3.1. The state process X = ((X1(t), . . . , Xn(t))>)0≤t≤T ∗ is an n-dimensional Itô process
satisfying

dX(t) = θ(t)dt+ σ(t)dW (t), (3.4)

with deterministic initial valueX(0) = x0 ∈ Rn, where the n-dimensional drift vector θ = (θ(t))0≤t≤T ∗

and the n×d-dimensional volatility matrix σ = (σ(t))0≤t≤T ∗ are both G-adapted with continuous paths.
We assume that there exists a unique strong solution to (3.4).

With the previous assumption, we can determine the compensators of the sources of risk. A proof can
be found in Appendix A.

Lemma 3.2. Under Assumption 3.1 we have that:

i) The unique compensator of Xi is given by AWi = (AWi (t))0≤t≤T ∗ , where AWi (t) =
∫ t

0
θi(s)ds, i =

1, . . . , n. Thus,

MW
i (t) =

d∑
j=1

∫ t

0

σij(s)dWj(s), 0 ≤ t ≤ T ∗, i = 1, . . . , n.

ii) The unique compensator of N is given by AN = (AN(t))0≤t≤T ∗ , where AN(t) =
∫ t

0
(m −

N(s−))µ(s)ds. Thus,

MN(t) = N(t)−
∫ t

0

(m−N(s−))µ(s)ds, 0 ≤ t ≤ T ∗.
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Next we show that in the case n = d a decomposition of the form (3.3) exists and is unique.

Proposition 3.3. Let the state process X be defined as in Assumption 3.1. If n = d, detσ(t) 6= 0
for all t ∈ [0, T ∗] P-almost surely, and L0 is integrable, then there exist F-predictable processes
ψW1 , . . . , ψ

W
n , ψ

N : [0, T ∗] × Ω → R such that the MRT decomposition (3.3) holds. The representa-
tion is unique in the sense that the integrands ψW1 , . . . , ψ

W
n , ψ

N are almost surely unique on [0, T ∗]×Ω
with respect to λ ⊗ P, where λ denotes the Lebesgue measure on [0, T ∗]. Moreover, if L0 is square
integrable, then

EP

([∫ T ∗

0

ψN(t)dMN(t)

]2
)
<∞. (3.5)

Proof. Note that L0 is FT ∗-measurable since all cash flows are assumed to be GT ∗-measurable and N(t)
is by construction FT ∗-measurable for all t ∈ [0, T ∗]. By the martingale representation theorem in a
Lévy setting (Jeanblanc et al., 2009, p. 621) applied to the martingale

M(t) := EP (L0 − EP(L0)
∣∣Ft) , 0 ≤ t ≤ T ∗,

together with the FT ∗-measurability of L0, it follows that there exist unique predictable processes
ψ̃W1 , . . . , ψ̃

W
d , ψ

N : [0, T ∗]× Ω→ R such that

L0 − EP(L0) =

∫ T ∗

0

ψ̃W (t)dW (t) +

∫ T ∗

0

ψN(t)dMN(t), (3.6)

where ψ̃W := (ψ̃W1 , . . . , ψ̃
W
d ). Since n = d and detσ(t) 6= 0 by assumption, the inverse of σ exists (and

is unique). Thus, if ψWi (t) :=
∑d

j=1 ψ̃
W
j (t)σ−1

ji (t), i = 1, . . . , n, denotes the i-th entry of the vector
ψ̃W (t)σ−1(t), the first summand of (3.6) can be transformed into∫ T ∗

0

ψ̃W (t)dW (t) =

∫ T ∗

0

ψ̃W (t)σ−1(t)σ(t)dW (t) =
n∑
i=1

∫ T ∗

0

ψWi (t)dMW
i (t),

which together with (3.6) proves the existence of the MRT decomposition (3.3).
The uniqueness of the MRT decomposition is a result of the uniqueness of ψ̃W1 , . . . , ψ̃

W
n , ψ

N , and
the uniqueness of the inverse of σ. Moreover, if L0 is square integrable, it follows that the martingale
M defined above is also square integrable, and Proposition 11.2.8.1 in Jeanblanc et al. (2009, p. 621)
directly yields (3.5).

If n 6= d, existence and uniqueness of the MRT decomposition (3.3) are not necessarily given. In
fact, as follows from the proof, we need to look for ψW (t) such that the equation ψ̃W (t) = ψW (t)σ(t)

holds true, where ψ̃W (t) results from the martingale representation theorem. If n > d, there are less
equations than unknowns so that uniqueness is not guaranteed. On the other hand, if n < d, there are
more equations than unknowns so that the existence might be violated. In what follows, we focus on
the case n = d. If n 6= d, we assume that either redundant state processes (which can be represented via
other state processes) are removed or additional state processes are artificially added, both along with an
adjustment of the interpretation of the risk factors. In contrast to a hedging problem, where the number
of state processes – or rather securities – is exogenously given, this procedure seems to be reasonable
for a risk decomposition problem.
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4 Analysis of the MRT decomposition

4.1 Meaningful risk decomposition properties
We now come back to the properties from Section 2.1 that we posit a meaningful risk decomposition
method should satisfy. Recall that the MRT decomposition defined in Section 3.2 reads as

L0 − EP(L0)︸ ︷︷ ︸
=:L

=
n∑
i=1

∫ T ∗

0

ψWi (t)dMW
i (t)︸ ︷︷ ︸

=:Ri

+

∫ T∗

0

ψN(t)dMN(t)︸ ︷︷ ︸
=:Rn+1

.

Proposition 4.1. Assume that the state process X = (X1, . . . , Xn) is defined as in Assumption 3.1 with
n = d and detσ(t) 6= 0 for all t ∈ [0, T ∗] P-almost surely. Furthermore, let L0 be integrable. Then the
MRT decomposition (L,X1, . . . , Xn, N)

MRT↔ (R1, . . . , Rn+1) as defined in (3.3) satisfies the properties
P1, P2, P3, P4 , P6, and P6∗. If fi : R → R is twice continuously differentiable for each i = 1, . . . n,
and if (fn+1(N(t)))0≤t≤T ∗ is a again a counting process as N defined in Section 3.1, then P5 is satisfied
as well.

Proof. Obviously, the risk factorsR1, . . . , Rn+1 are random variables, and L =
∑n+1

i=1 Ri, so that P1 and
P6∗ (and thus also P6) are satisfied. The uniqueness property P3 directly follows from Proposition 3.3.
To simplify the proof of the remaining properties, we define ψi := ψWi , Mi := MW

i , i = 1, . . . , n, and
ψn+1 := ψN , Mn+1 := MN . Furthermore, define Z = (Z1, . . . , Zn+1) := (X1, . . . , Xn, N). Assume
that (L,Z1, . . . , Zn+1)

MRT↔ (R1, . . . , Rn+1).

P2: Let i ∈ {1, . . . , n + 1} be arbitrary, but fixed. Assume that L is σ(Zi)-measurable and that Zi is
independent of Zi− := (Z1, . . . , Zi−1, Zi+1, . . . , Zn+1). This implies that L is independent of Zi−
as well. Define

L(t) :=
n+1∑
i=1

∫ t

0

ψi(s)dMi(s) = EP (L| Ft) ,

where the latter equation follows from the martingale property of the considered integrals. Since
we assume that detσ(t) 6= 0 for all t ∈ [0, T ∗] P-almost surely, it follows that

Ft = FZt = FZit ∨ F
Zi−
t ,

where FZ = (FZt )0≤t≤T ∗ denotes the augmented filtration generated by Z, and accordingly FZi =

(FZit )0≤t≤T ∗ and FZi− = (FZi−t )0≤t≤T ∗ . Since FZi−t is independent of L and of FZit , we conclude
that EP (L| Ft) = EP

(
L| FZit

)
. As a result, the process (L(t))0≤t≤T ∗ is independent of each

process Zj, j 6= i, and thus the predictable covariation process satisfies 〈L,Zj〉 (t) = 0 for all
j 6= i, 0 ≤ t ≤ T ∗.

(a) Assume that i = n+ 1. Then 〈Mi, Zj〉 (t) =
〈
MN , Xj

〉
(t) = 0 for all j 6= i, so that

0 = d 〈L,Zj〉 (t) =
n+1∑
k=1

ψk(t)d 〈Mk, Zj〉 (t) =
n∑
k=1

ψk(t)d 〈Mk, Zj〉 (t)

=
n∑
k=1

ψk(t)σk,·(t)σ
>
j,·(t)dt, j 6= i, 0 ≤ t ≤ T ∗,
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where σk,·(t) denotes the k-th row of σ(t). Thus, for any 0 ≤ t ≤ T ∗, this yields the linear
system of equations A>t ψt = 0, where

At :=

σ1,·(t)σ1,·(t)
> . . . σ1,·(t)σn,·(t)

>

...
...

σn,·(t)σ1,·(t)
> . . . σn,·(t)σn,·(t)

>

 , ψt :=

ψ1(t)
...

ψn(t)

 .

However, At = σ(t)σ(t)> so that

detA>t = detAt = detσ(t)σ(t)> = (detσ(t))2 6= 0

for all t ∈ [0, T ∗] P-almost surely which implies ψt = 0 for all t ∈ [0, T ∗] P-almost surely.
Thus, we have Rj =

∫ T ∗

0
ψj(t)dMj(t) = 0 almost surely for all j 6= i.

(b) Now assume that i 6= n+ 1 (w.l.o.g. i = 1). Then we know that

0 = d 〈L,Zn+1〉 (t) =
n+1∑
k=1

ψk(t)d 〈Mk, Zn+1〉 (t) = ψn+1(t)d 〈Mn+1, Zn+1〉 (t)

= ψn+1(t)d 〈Mn+1,Mn+1〉 (t).

By the Itô isometry it follows that

EP

([∫ T ∗

0

ψn+1(t)dMn+1(t)

]2
)

= EP
(∫ T ∗

0

ψ2
n+1(t)d 〈Mn+1,Mn+1〉 (t)

)
= 0,

and thus Rn+1 =
∫ T ∗

0
ψn+1(t)dMn+1(t) = 0 almost surely. Since Z1 is by assumption

independent of Z1− and thus independent of Zj for all j = 2, . . . , n + 1, it follows that
σ1,·(t)σj,·(t)

>dt = d 〈M1, Zj〉 (t) = d 〈Z1, Zj〉 (t) = 0 for all j /∈ {1, n + 1}. Thus, the
matrix At from above now equals

At :=


σ1,·(t)σ1,·(t)

> 0 . . . 0
0
... Ãt
0

 , Ãt :=

σ2,·(t)σ2,·(t)
> . . . σ2,·(t)σn,·(t)

>

...
...

σn,·(t)σ2,·(t)
> . . . σn,·(t)σn,·(t)

>

 ,

and since 0 6= detAt = σ1,·(t)σ1,·(t)
> det Ãt, it must hold det Ãt 6= 0 for all t ∈ [0, T ∗]

P-almost surely. Furthermore, since 〈M1, Zj〉 (t) = 0 (see above) and 〈Mn+1, Zj〉 (t) = 0
for all j /∈ {1, n+ 1}, we obtain

0 = d 〈L,Zj〉 (t) =
n+1∑
k=1

ψk(t)d 〈Mk, Zj〉 (t) =
n∑
k=2

ψk(t)d 〈Mk, Zj〉 (t)

=
n∑
k=2

ψk(t)σk,·(t)σ
>
j,·(t)dt, j /∈ {1, n+ 1}, 0 ≤ t ≤ T ∗.

Analogously to the linear system from above, we get Ã>t ψ̃t = 0, where ψ̃t =
(ψ2(t), . . . , ψn(t))>. Since det Ãt 6= 0 for all t ∈ [0, T ∗] P-almost surely, it follows that
ψ̃t = 0 for all t ∈ [0, T ∗] P-almost surely, and thus Rj =

∫ T ∗

0
ψj(t)dMj(t) = 0 almost

surely for all j /∈ {1, n+ 1}.
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P4: Consider any permutation π : {1, . . . , n + 1} → {1, . . . , n + 1}. Let (L,Zπ(1), . . . , Zπ(n+1))
MRT↔

(R̃1, . . . , R̃n+1) with R̃i =
∫ T ∗

0
ψ̃i(t)dMπ(i)(t), i = 1, . . . , n + 1, where ψ̃i are F-predictable

processes. Since

n+1∑
i=1

∫ T ∗

0

ψ̃i(t)dMπ(i)(t) =
n+1∑
i=1

R̃i
P6∗
= L

P6∗
=

n+1∑
i=1

Ri =
n+1∑
i=1

∫ T ∗

0

ψi(t)dMi(t)

=
n+1∑
i=1

∫ T ∗

0

ψπ(i)(t)dMπ(i)(t),

it follows by the uniqueness of the MRT decomposition that ψ̃i = ψπ(i) λ⊗ P-almost surely, and
thus R̃i = Rπ(i) almost surely for all i = 1, . . . , n+ 1.

P5: Assume that Z̃i(t) := fi(Zi(t)), i = 1, . . . , n + 1, where the functions fi : R → R are Borel
measurable and invertible, and consider (L, Z̃1, . . . , Z̃n+1)

MRT↔ (R̃1, . . . , R̃n+1).

(a) For each i 6= n+ 1, the function fi is by assumption twice continuously differentiable and it
follows by Itô’s lemma that

dZ̃i(t) = dfi(Xi(t))

= f ′i(Xi(t))
d∑
j=1

σij(t)dWj(t) +

(
f ′i(Xi(t))θ(t) +

1

2
f ′′i (Xi(t))

d∑
j=1

σ2
ij(t)

)
dt.

Thus, (Z̃1, . . . , Z̃n) is again an Itô process as in Assumption 3.1, and by Lemma 3.2 the
corresponding compensated risk processes equal

M̃i(t) = f ′i(Xi(t))dMi(t), i = 1, . . . , n.

As a result, for i = 1, . . . , n the MRT risk factors are equal to

R̃i =

∫ T ∗

0

ψ̃i(t)dM̃i(t) =

∫ T ∗

0

ψ̃i(t)f
′
i(Xi(t))dMi(t). (4.1)

(b) If i = n + 1, we require that Z̃n+1 is a again a counting process which fits to our setting.
Otherwise, the MRT decomposition is not defined. First observe that

Z̃n+1(t) = fn+1(N(t))

= fn+1(N(0)) +
∑

0<s≤t

(fn+1(N(s))− fn+1(N(s−)))

= fn+1(N(0))

+
∑

0<s≤t

[
m∑
k=0

1{N(s−)=k} (fn+1(k + 1)− fn+1(k))

]
(N(s)−N(s−))

= fn+1(N(0)) +

∫ t

0

a(s)dN(s)

= fn+1(N(0)) +

∫ t

0

a(s)dMn+1(s) +

∫ t

0

a(s)(m−N(s−))µ(s)ds,
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where a(s) :=
∑m

k=0 1{N(s−)=k} (fn+1(k + 1)− fn+1(k)) is predictable so that Ãn+1(t) :=∫ t
0
a(s)(m − N(s−))µ(s)ds is a predictable finite variation process and M̃n+1(t) :=∫ t

0
a(s)dMn+1(s) is a local martingale. For the third equality we have used that in our frame-

work P(τ ix = τ jx) = 0 for i 6= j (Bielecki and Rutkowski, 2004, p. 269). Then it follows
that

R̃n+1 =

∫ T ∗

0

ψ̃n+1(t)dM̃n+1(t) =

∫ T ∗

0

ψ̃n+1(t)a(t)dMn+1(t). (4.2)

The uniqueness of the MRT decomposition together with (4.1) and (4.2) imply that Ri = R̃i

almost surely, i = 1, . . . , n+ 1.

Of course, the notion of uniqueness in Proposition 3.3 relies on the description ofX in Assumption 3.1
in terms of independent Brownian motions, which generate the filtration G. However, such a description
is not necessarily unique. In particular, ifX is specified in terms of correlated Brownian motions, which
is frequently assumed in literature, a unique description in terms of independent Brownian motions is
not guaranteed. In more detail, assume that G is the augmented filtration generated by a d-dimensional
Brownian motion B = (B1, . . . , Bd) with (possibly) correlated one-dimensional Brownian motions
Bi, i = 1, . . . , d, and assume that the sources of risk X1, . . . , Xn are specified in terms of this Brownian
motion B, i.e.

dX(t) = θ(t)dt+ σ(t)dB(t).

It is well-known that, if

dBi(t)dBj(t) = ρij(t)dt, i, j = 1, . . . , d,

for some deterministic functions ρij(t) taking values in (−1, 1) for i 6= j and ρij(t) = 1 for i = j, and
if the symmetric matrix ρ(t) = (ρij(t))i,j=1,...,d is positive definite for all t, then there exist G-adapted
independent Brownian motions W̃1(t), . . . , W̃d(t) and a matrix A(t) = (aij(t))i,j=1,...,d of deterministic
functions aij(t), which satisfies ρ(t) = A(t)A(t)> and is thus invertible for all t, such that

Bi(t) =
d∑
j=1

∫ t

0

aij(s)dW̃j(s), j = 1, . . . , d

(Exercise 4.16 in Shreve, 2004, p. 200). Note that the augmented natural filtrations generated by B and
W̃ , respectively, coincide. The SDEs of the processes (Xi(t))0≤t≤T ∗ can then be rewritten as

dXi(t) = θi(t)dt+
d∑
j=1

σij(t)dBj(t) = θi(t)dt+
d∑

k=1

d∑
j=1

σij(t)ajk(t)︸ ︷︷ ︸
=:σ̃ik(t)

dW̃k(t), i = 1, ...n, (4.3)

and the situation of Assumption 3.1 is reestablished. However, the matrix A(t) and thus the represen-
tation of (possibly) correlated Brownian motions by means of independent Brownian motions is not
unique, which transfers to the martingale representation consisting of integrals with respect to indepen-
dent Brownian motions. In contrast, we will show in the next corollary that the MRT decomposition
formulated in terms of compensated risk processes is unique even in case of correlated Brownian mo-
tions. In particular, the MRT decomposition is independent of how we actually model correlations
between Brownian motions which is another argument in favor of our decomposition approach. Ac-
tually, in contrast to variance and Hoeffding decomposition, the MRT decomposition would yield in
Example 2.2 the expected result R1 = B1(T ). All these aspects are illustrated in Example 4.3.
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Corollary 4.2. The statement of Proposition 3.3 is still true if W = (W1, . . . ,Wd) is a d-dimensional
Brownian motion with correlated one-dimensional Brownian motionsWi, i = 1, . . . , d, given the corre-
lation matrix ρ(t) = (ρij(t))i,j=1,...,d is symmetric and positive definite for all t ∈ [0, T ∗] almost surely,
and the functions ρij(t) are deterministic taking values in (−1, 1) for i 6= j and ρij(t) = 1 for i = j.

Proof. The existence of the decomposition directly follows by (4.3) and the foregoing discussion,
together with Proposition 3.3. The conditions of Proposition 3.3 are satisfied since det σ̃ik(t) =
detσ(t) detA(t) 6= 0 for all t ∈ [0, T ∗] P-almost surely. Although the representation in (4.3) is not
unique, the uniqueness of the MRT decomposition still follows by the uniqueness from Proposition 3.3
since the compensated risk processes MW

i , i = 1, . . . , n, are the same for each representation.

Example 4.3. As in Example 2.2 let L0 = B1(T ) + 2B2(T ), where B1 and B2 are two one-dimensional
Brownian motions with dB1(t)dB2(t) = ρdt, ρ ∈ (−1, 1)\{0,−0.8}. Then it can be shown that(

B1(t)
B2(t)

)
=

(
W1(t)

ρW1(t) +
√

1− ρ2W2(t)

)
=

(
1 0

ρ
√

1− ρ2

)(
W1(t)
W2(t)

)
,

for some independent Brownian motions W1 and W2, as well as (switching the roles of B1 and B2)(
B1(t)
B2(t)

)
=

(
ρW3(t) +

√
1− ρ2W4(t)

W3(t)

)
=

(
ρ
√

1− ρ2

1 0

)(
W3(t)
W4(t)

)
,

for some independent Brownian motions W3 and W4. Obviously, the two versions imply the two martin-
gale representations with respect to independent Brownian motions

L0 − EP (L0) =

∫ T

0

(1 + 2ρ)dW1(t) +

∫ T

0

2
√

1− ρ2 dW2(t)

= (1 + 2ρ)W1(T ) + 2
√

1− ρ2W2(T )

and

L0 − EP (L0) =

∫ T

0

(ρ+ 2)dW3(t) +

∫ T

0

√
1− ρ2 dW4(t)

= (ρ+ 2)W3(T ) +
√

1− ρ2W4(T ),

respectively. Since e.g. Var((1 + 2ρ)W1(T )) 6= Var((ρ + 2)W3(T )) and Var((1 + 2ρ)W1(T )) 6=
Var(

√
1− ρ2W4(T )) for the considered ρ, the two martingale representations with respect to indepen-

dent Brownian motions are not the same (in the almost sure sense). In contrast, the MRT decomposition
is unique and in both cases equal to

L0 − EP (L0) =

∫ T

0

1 dB1(t) +

∫ T

0

2dB2(t) = B1(T ) + 2B2(T ),

which is also what we actually would expect.

4.2 Calculation of the MRT decomposition
General case

As seen in the proof of Proposition 3.3, when n = d and detσ(t) 6= 0, t ∈ [0, T ∗], it is sufficient to
determine the integrands ψ̃W1 , . . . , ψ̃

W
n , ψ

N resulting from the martingale representation theorem. The
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integrands ψW1 , . . . , ψ
W
n , ψ

N of the MRT decomposition then directly follow. However, as Björk (2005,
p. 157) states in general we know very little about the exact form of the processes ψ̃W1 , . . . , ψ̃

W
n , ψ

N .
The most precise description is provided by the theory of Malliavin calculus, in particular by the so-
called Clark-Ocone formula (for an introduction to Malliavin calculus, see Nualart, 2006). However,
the Clark-Ocone formula is only applicable to independent driving processes, and as soon as mortality
intensities are modeled stochastically, such an independence is usually no longer given between the
number of deaths in the portfolio N and the standard Brownian motion W driving among others the
mortality intensity. Thus, the following three lemmas reduce the problem to finding the martingale
representation of a G-martingale instead of an F-martingale, i.e. the problem is reduced to a Brownian
motion setting.

The first lemma covers discrete survival cash flows.

Lemma 4.4. Let Z be a random variable of the form Z = (m−N(T ))F, 0 ≤ T ≤ T ∗, where F is
a GT ∗-measurable and integrable random variable. Then there exist predictable processes ϕ1, . . . , ϕd
such that

EP (e−Γ(T )F
∣∣Gt) = EP (e−Γ(T )F

)
+

d∑
i=1

∫ t

0

ϕi(u)dWi(u), t ≤ T ∗, (4.4)

and the martingale representation of Z is given by

Z = EP(Z) +
d∑
i=1

∫ T ∗

0

[
(m−N(t−)) eΓ(t)

1[0,T ](t) + (m−N(T )) eΓ(T )
1(T,T ∗](t)

]
ϕi(t)dWi(t)

−
∫ T

0+

EP (eΓ(t)−Γ(T )F
∣∣Gt) dMN(t). (4.5)

Remark 4.5. Assume that X is an n-dimensional Itô process as specified in Assumption 3.1 with com-
pensated risk processes MW

i as given in Lemma 3.2. Then the previous lemma still holds when in both
equations (4.4) and (4.5) the Brownian motions Wj, j = 1, . . . , d, are replaced by the martingales
MW

i , i = 1, . . . , n (when at the same time the summation and the size of the vector ϕ are adapted).
This will be exploited in the proof of Proposition 4.13 ii). It follows from Lemma 4.4 and using, before
and after applying the lemma, the equality

n∑
i=1

∫ t

0

ϕ̃i(u)dMW
i (u) =

∫ t

0

ϕ̃(u)dMW (u) =

∫ t

0

ϕ̃(u)σ(u)dW (u) =
d∑
j=1

∫ t

0

(ϕ̃(u)σ(u))jdWj(u),

where ϕ̃ = (ϕ̃1, . . . , ϕ̃n), MW = (MW
1 , . . . ,MW

n ) and (. . .)i denotes the i-th component of a vector.

For a single policyholder, the proof of Lemma 4.4 given in the Appendix A mainly follows the ideas of
the proof of Proposition 5.2.2 in Bielecki and Rutkowski (2004, pp. 159). We further modify their result
so that it fits to our later application and extend it to an entire (homogeneous) portfolio. In addition,
there seems to be a typo in the proof with respect to the integrands of the dWi-terms which we correct
here. For F GT -measurable instead of (more generally) GT ∗-measurable, similar results (with or without
proof, usually in a specific process setting) have been derived in the context of risk-minimizing hedging
strategies, see e.g. Barbarin (2008, Prop. 4.10, Prop. 5.11), Biagini et al. (2012, Prop. 3.5), Biagini et al.
(2013, Prop. 2, Prop. 9), and Biagini and Schreiber (2013, Lemma 4.2). In particular, most of them also
consider entire portfolios.

The next lemma covers the case of continuous survival cash flows.
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Lemma 4.6. Let Z be a random variable of the form Z =
∫ T

0
(m − N(v))F (v)dv, 0 ≤ T ≤ T ∗,

where F = (F (t))0≤t≤T is a G-predictable process with EP
(
supt∈[0,T ] |F (t)|

)
< ∞. Then there exist

predictable processes ϕ1, . . . , ϕd such that

EP
(∫ T

0

e−Γ(v)F (v)dv

∣∣∣∣Gt) = EP
(∫ T

0

e−Γ(v)F (v)dv

)
+

d∑
i=1

∫ t

0

ϕi(u)dWi(u), t ≤ T, (4.6)

and the martingale representation of Z is given by

Z = EP(Z) +
d∑
i=1

∫ T

0

(m−N(t−))eΓ(t)ϕi(t)dWi(t)

−
∫ T

0+

EP
(∫ T

t

eΓ(t)−Γ(v)F (v)dv
∣∣Gt) dMN(t).

(4.7)

For the sake of completeness, a proof is given in Appendix A. Except of some details, it mainly relies
on the proof of Proposition 4.12 in Barbarin (2008).

Remark 4.7. i) Similarly as for Lemma 4.4, under Assumption 3.1 it can be shown that the previous
lemma still holds when in both equations the Brownian motionsWj are replaced by the martingales
MW

i .

ii) Assume that for every v ∈ [0, T ]

EP (e−Γ(v)F (v)
∣∣Gt) = EP (e−Γ(v)F (v)

)
+

d∑
i=1

∫ t

0

ϕvi (u)dWi(u), t ≤ v,

for some predictable processes ϕv1, . . . , ϕ
v
d. If supt∈[0,T ] EP

(
[F (t)]2

)
< ∞, it can be shown via the

stochastic Fubini theorem (Protter, 2005, Theorem 65) that ϕi in (4.6) equals

ϕi(u) =

∫ T

u

ϕvi (u)dv, u ≤ T.

This may simplify the derivation of (4.6) in some cases. For bounded F, this result has already be
shown in Biagini et al. (2013, Proposition 5).

iii) Since we assume that EP
(
supt∈[0,T ] |F (t)|

)
< ∞, it follows by the theorem of Fubini-Tonelli for

conditional expectations that conditional expectation and integral in the dMN -integrand of (4.7)
can be interchanged.

The next lemma covers continuous cash flows contingent on death.

Lemma 4.8. Let Z be a random variable of the form Z =
∫ T

0
F (v)dN(v), 0 ≤ T ≤ T ∗, where

F = (F (t))0≤t≤T is a continuous and G-predictable process with EP
(
supt∈[0,T ] |F (t)|

)
< ∞. Then

there exist predictable processes ϕ1, . . . , ϕd such that for t ≤ T

EP
(∫ T

0

F (v)e−Γ(v)dΓ(v)

∣∣∣∣Gt) = EP
(∫ T

0

F (v)e−Γ(v)dΓ(v)

)
+

d∑
i=1

∫ t

0

ϕi(u)dWi(u), (4.8)

and the martingale representation of Z is given by

Z = EP(Z) +
d∑
i=1

∫ T

0

(m−N(t−)) eΓ(t)ϕi(t)dWi(t)

−
∫ T

0+

[
EP
(∫ T

t

F (v)eΓ(t)−Γ(v)dΓ(v)

∣∣∣∣Gt)− F (t)

]
dMN(t).

(4.9)
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A proof that relies on a generalization of Proposition 4 in Biagini et al. (2013, p. 130, 138) (which is
actually based on Proposition 4.11 in Barbarin (2008)) is provided in Appendix A. Similar results were
independently derived in Section 3.3 of Biagini et al. (2012) and in Section 4 of Biagini and Schreiber
(2013).

Remark 4.9. i) Part i) and iii) of Remark 4.7 also apply to Lemma 4.8, where for part iii) dΓ(t) in
(4.9) is replaced by µ(t)dt.

ii) Similarly as in Remark 4.7 ii), assume that for every v ∈ [0, T ]

EP (F (v)e−Γ(v)µ(v)
∣∣Gt) = EP (F (v)e−Γ(v)µ(v)

)
+

d∑
i=1

∫ t

0

ϕvi (u)dWi(u), t ≤ v,

for some predictable processes ϕv1, . . . , ϕ
v
d. If supt∈[0,T ] EP

(
[F (t)]4

)
< ∞ and

supt∈[0,T ] EP (µ4(t)) <∞, it can again be shown via the stochastic Fubini theorem (Protter, 2005,
Theorem 65) and using Γ(t) =

∫ t
0
µ(s)ds that ϕi in (4.8) also equals ϕi(u) =

∫ T
u
ϕvi (u)dv, u ≤ T.

Combining the previous three lemmas (and the related remarks) with the Clark-Ocone formula from
Malliavin calculus, we obtain the MRT decomposition of each summand of L0 defined in Section 3.1.
Clearly, the MRT decomposition of L0 itself then follows by summing up the individual decompositions.
Note that the previous three lemmas did not require that X is an Itô process. However, since we aim at
a decomposition with respect to the compensated risk processes, this assumption needs to be added at
this stage.

In what follows, let D1,2 denote the set of random variables that are Malliavin differentiable with re-
spect to each one-dimensional Brownian motion Wi of W = (W1, . . . ,Wd), and let Dt,i(·) denote the
respective time-tMalliavin derivative with respect toWi, i = 1, . . . , d. For a definition of Malliavin dif-
ferentiability and Malliavin derivative, we refer to Definition 3.1 in Di Nunno et al. (2009, p. 27). Note
that all random variables in D1,2 are by definition in L2(P) and GT ∗-measurable. A general introduction
to Malliavin calculus can be found in Di Nunno et al. (2009) or Nualart (2006). A summary with helpful
results is given, among others, by Fournié et al. (1999), Benhamou (2002) and Peng and Hu (2013).

Proposition 4.10. Let X be an n-dimensional Itô process as specified in Assumption 3.1. Assume that
n = d and that the inverse σ−1(t) =

(
σ−1
ij (t)

)
i,j=1,...,n

exists for all t ∈ [0, T ∗] P-almost surely. Let
0 ≤ tk ≤ T ≤ T ∗.

i) Let L0 = C0. If C0 ∈ D1,2, then the unique integrands of the MRT decomposition (3.3) of L0 are
given by

ψWi (t) =
d∑
j=1

EP (Dt,j (C0)| Gt)σ−1
ji (t), i = 1, . . . , n,

ψN(t) = 0.

ii) Let L0 = (m − N(tk))Ca,k. If Ca,k ∈ D1,2, and eΓ(t) ∈ D1,2 for all t ∈ [0, tk], then the unique
integrands of the MRT decomposition (3.3) of L0 are given by

ψWi (t) =
[
(m−N(t−))eΓ(t)

1[0,tk](t) + (m−N(tk))e
Γ(tk)

1(tk,T ∗](t)
]

×
d∑
j=1

EP (Dt,j

(
e−Γ(tk)Ca,k

)∣∣Gt)σ−1
ji (t), i = 1, . . . , n,

ψN(t) = −1[0,tk](t) EP (eΓ(t)−Γ(tk)Ca,k
∣∣Gt) .
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iii) Let L0 =
∫ T

0
(m − N(t))Ca(t)dt. If Ca = (Ca(t))0≤t≤T is a G-predictable process with

EP
(
supt∈[0,T ] [Ca(t)]

2) < ∞, and Ca(t), eΓ(t) ∈ D1,2 for all t ∈ [0, T ], then the unique integrands
of the MRT decomposition (3.3) of L0 are given by for i = 1, . . . , n,

ψWi (t) = 1[0,T ](t) (m−N(t−))eΓ(t)

d∑
j=1

∫ T

t

EP (Dt,j

(
e−Γ(v)Ca(v)

)∣∣Gt) dv σ−1
ji (t),

ψN(t) = −1[0,T ](t)

∫ T

t

EP (eΓ(t)−Γ(v)Ca(v)
∣∣Gt) dv.

iv) Let L0 =
∫ T

0
Cad(t)dN(t). If Cad = (Cad(t))0≤t≤T is a continuous and G-predictable process with

EP
(
supt∈[0,T ] |Cad(t)|

)
<∞, eΓ(t) ∈ D1,2 for all t ∈ [0, T ], and

∫ T
0
Cad(t)e

−Γ(t)dΓ(t) ∈ D1,2,then
the unique integrands of the MRT decomposition (3.3) of L0 are given by for i = 1, . . . , n,

ψWi (t) = 1[0,T ](t) (m−N(t−))eΓ(t)

d∑
j=1

EP
(
Dt,j

(∫ T

0

Cad(v)e−Γ(v)dΓ(v)

)∣∣∣∣Gt)σ−1
ij (t),

ψN(t) = −1[0,T ](t)

[
EP
(∫ T

t

Cad(v)eΓ(t)−Γ(v)dΓ(v)

∣∣∣∣Gt)− Cad(t)] .
Proof. The integrands directly follow from Lemma 4.4, Lemma 4.6 including the related remark, and
Lemma 4.8 together with the Clark-Ocone formula, which can be found in Di Nunno et al. (2009,
p. 196), and the proof of Proposition 3.3. The uniqueness also follows from Proposition 3.3.

We omitted to determine the MRT decomposition of discrete cash flows contingent on death since

(N(tk)−N(tk−1))Cad,k = (m−N(tk−1))Cad,k − (m−N(tk))Cad,k,

i.e. they can be represented as a sum of two discrete survival cash flows. The MRT decompositions of
these two summands can then be determined via Proposition 7 ii). Note that therein we do not require
that Ca,k is Gtk-measurable.

An application of the above proposition is given in the following example, where the MRT decompo-
sition of a pure endowment portfolio is determined.

Example 4.11. Consider a portfolio of m pure endowment policies with survival benefit 1 at time T
and single premium P0 at time 0. In order to keep the example simple, we do not discount the survival
benefit, so that the insurer’s time-0 loss equals L0 = −mP0 + (m − N(T )). The random lifetimes are
modeled as described in Section 3.1. The mortality intensity is assumed to be an affine diffusion process
(Biffis, 2005), i.e.

dµ(t) = θ(t, µ(t))dt+ σ(t, µ(t))dW (t), µ(0) = µ0,

and (Björk, 2005, Proposition 22.2)

EP
(
e−

∫ T
t µ(s)ds

∣∣∣Gt) = eα(t)+β(t)µ(t), T ∈ (t, T ∗], (4.10)

where α and β satisfy certain Riccati ordinary differential equations. Clearly, since −mP0 is determin-
istic, the integrands of its MRT decomposition are zero. Assume that µ(t) is non-negative, θ(t, x) and
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σ(t, x) are continuous in x, detσ(t, µ(t)) 6= 0 for all t ∈ [0, T ] P-almost surely, and eΓ(t) ∈ D1,2 for all
t ∈ [0, T ]. Then it follows by applying part ii) of Proposition 4.10 to (m−N(T )) that

L0 − EP (L0) =

∫ T

0

(m−N(t−))eΓ(t) EP
(
Dt

(
e−Γ(T )

)∣∣Gt)
σ(t, µ(t))

dMW (t)

−
∫ T

0+

EP (eΓ(t)−Γ(T )
∣∣Gt) dMN(t).

Since Dt,j (µ(s)) = 0 for all t > s, and thus by the chain rule Dt,j

(
eΓ(t)

)
= 0, the product rule

(Di Nunno et al., 2009, p. 30) implies

Dt,j

(
eΓ(t)−Γ(T )

)
= eΓ(t)Dt,j

(
e−Γ(T )

)
+ e−Γ(T )Dt,j

(
eΓ(t)

)
= eΓ(t)Dt,j

(
e−Γ(T )

)
,

i.e. eΓ(t)EP
(
Dt

(
e−Γ(T )

)∣∣Gt) = EP
(
Dt

(
eΓ(t)−Γ(T )

)∣∣Gt). Furthermore, exchanging conditional expec-
tation and Malliavin derivative operator (Di Nunno et al., 2009, Proposition 3.12, p. 33) together with
(4.10) we have

EP (Dt

(
eΓ(t)−Γ(T )

)∣∣Gt) = Dt

(
EP (eΓ(t)−Γ(T )

∣∣Gt)) = Dt

(
eα(t)+β(t)µ(t)

)
.

If we additionally assume that the conditions from Theorem 2.2.1 in Nualart (2006, p. 119) on the
diffusion coefficients θ and σ are satisfied, it follows that the Malliavin derivative of µ(t) is given by
Dt (µ(t)) = σ(t, µ(t)), and the chain rule from Malliavin calculus (León, 2003, Lemma 2.1, p. 174)
yields

Dt

(
eα(t)+β(t)µ(t)

)
= eα(t)+β(t)µ(t)β(t)Dt (µ(t)) = eα(t)+β(t)µ(t)β(t)σ(t, µ(t)).

Summing up, we obtain

L0 − EP (L0) =

∫ T

0

(m−N(t−)) eα(t)+β(t)µ(t)β(t)dMW (t)−
∫ T

0+

eα(t)+β(t)µ(t)dMN(t),

where the first summand represents the systematic mortality risk and the second summand the unsys-
tematic mortality risk.

Markov case

Given the cash flows have a certain structure, we can describe the integrands of the MRT decomposition
more explicitly. More precisely, in what follows we assume that X is a diffusion process (and thus
Markov) and that the insurance payments are specific functions of the state variables. In this case, we
can directly evaluate the decompositions via Itô’s formula rather than relying on Malliavin derivatives
as in Proposition 4.10.5

In what follows, we write f ∈ C1,2([0, T ] × Rn) for a function f : [0, T ] × Rn → R if the partial
derivatives ∂f

∂t
, ∂f
∂xi
, ∂2f
∂xi∂xj

, 1 ≤ i, j ≤ n, exist, are continuous on (0, T )×Rn, and have continuous ex-
tensions to [0, T ]×Rn.With respect to notation, we do not explicitly distinguish between the derivatives
and their continuous extensions.

5Note that for globally Lipschitz-continuous coefficients θ and σ with at most linear growth, diffusion processes are
Malliavin differentiable (Nualart, 2006, Theorem 2.2.1, p. 119). However, as the discussion on the Malliavin differentiability
of square-root processes shows (Alòs and Ewald, 2008), the general Malliavin differentiability of diffusion processes is not
guaranteed.
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Assumption 4.12. The state process X = ((X1(t), . . . , Xn(t))>)0≤t≤T ∗ is an n-dimensional diffusion
process satisfying

dX(t) = θ(t,X(t))dt+ σ(t,X(t))dW (t), (4.11)

with deterministic initial value X(0) = x0 ∈ Rn, where the drift vector θ : [0, T ∗]× Rn → Rn and the
volatility matrix σ : [0, T ∗] × Rn → Rn×d are continuous functions such that a unique strong solution
exists to (4.11).

Proposition 4.13. Let X be an n-dimensional diffusion process as specified in Assumption 4.12 and
assume that n = d and that detσ(t,X(t)) 6= 0 for all t ∈ [0, T ∗] P-almost surely. Let 0 ≤ tk ≤
T ∗, 0 ≤ T ≤ T ∗.

i) Let L0 = C0. Assume that C0 is integrable and of the form

C0 = e−
∫ T
0 g(s,X(s))dsh(X(T ))

for some measurable functions g : [0, T ] × Rn → R and h : Rn → [0,∞). Define f(t, x) :=

EP
(
e−

∫ T
t g(s,X(s))dsh(X(T ))

∣∣∣X(t) = x
)
. If f ∈ C1,2([0, T ] × Rn), then the unique integrands of

the MRT decomposition (3.3) of L0 are given by

ψWi (t) = 1[0,T ](t) e
−

∫ t
0 g(s,X(s))ds ∂f

∂xi
(t,X(t)), i = 1, . . . , n,

ψN(t) = 0.

ii) Let (m−N(tk))Ca,k. Assume that Ca,k is integrable and of the form

Ca,k = e−
∫ T
0 g(s,X(s))dsh(X(T ))

for some measurable functions g : [0, T ]× Rn → R and h : Rn → [0,∞).

(a) Assume that T > tk, and define fA : [0, tk]× Rn → R and fB : [0, T ]× Rn → R by

fA(t, x) := EP
(
e−

∫ tk
t µ(s,X(s))dse−

∫ T
t g(s,X(s))dsh(X(T ))

∣∣∣X(t) = x
)
,

fB(t, x) := EP
(
e−

∫ T
t g(s,X(s))dsh(X(T ))

∣∣∣X(t) = x
)
.

If fA ∈ C1,2([0, tk]×Rn) and fB ∈ C1,2([0, T ]×Rn), then the unique integrands of the MRT
decomposition (3.3) of L0 are given by

ψWi (t) = 1[0,tk](t) (m−N(t−))e−
∫ t
0 g(s,X(s))ds∂f

A

∂xi
(t,X(t))

+ 1(tk,T ](t) (m−N(tk))e
−

∫ t
0 g(s,X(s))ds∂f

B

∂xi
(t,X(t)), i = 1, . . . , n,

ψN(t) = −1[0,tk](t) e
−

∫ t
0 g(s,X(s))dsfA(t,X(t)).

(b) Assume that T ≤ tk, and define fA : [0, T ]× Rn → R and fB : [0, tk]× Rn → R by

fA(t, x) := EP
(
e−

∫ tk
t µ(s,X(s))dse−

∫ T
t g(s,X(s))dsh(X(T ))

∣∣∣X(t) = x
)
,

fB(t, x) := EP
(
e−

∫ tk
t µ(s,X(s))ds

∣∣∣X(t) = x
)
.
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If fA ∈ C1,2([0, T ]×Rn) and fB ∈ C1,2([0, tk]×Rn), then the unique integrands of the MRT
decomposition (3.3) of L0 are given by

ψWi (t) = 1[0,T ](t) (m−N(t−))e−
∫ t
0 g(s,X(s))ds∂f

A

∂xi
(t,X(t))

+ 1(T,tk](t) (m−N(t−))Ca,k
∂fB

∂xi
(t,X(t)), i = 1, . . . , n,

ψN(t) = −1[0,T ](t) e
−

∫ t
0 g(s,X(s))dsfA(t,X(t))− 1(T,tk] Ca,kf

B(t,X(t)).

iii) Let L0 =
∫ T

0
(m − N(v))F (v)dv. Assume that EP

(
supt∈[0,T ] [Ca(t)]

2) < ∞, and that Ca(t) is of
the form

Ca(t) = e−
∫ t
0 g(s,X(s))dsh(X(t))

for some measurable functions g : [0, T ] × Rn → R and h : Rn → [0,∞). Define f v(t, x) :=
EP
(
e−

∫ v
t [g(s,X(s))+µ(s,X(s))]dsh(X(v))

∣∣X(t) = x
)
. If f v ∈ C1,2([0, v]×Rn) for all v ∈ [0, T ], then

the unique integrands of the MRT decomposition (3.3) of L0 are given by

ψWi (t) = 1[0,T ](t) (m−N(t−))e−
∫ t
0 g(s,X(s))ds

∫ T

t

∂f v

∂xi
(t,X(t))dv, i = 1, . . . , n,

ψN(t) = −1[0,T ](t) e
−

∫ t
0 g(s,X(s))ds

∫ T

t

f v(t,X(t))dv.

iv) Let L0 =
∫ T

0
Cad(t)dN(t). Assume that EP

(
supt∈[0,T ] |Cad(t)|

)
<∞, and that Cad(t) is of the form

Cad(t) = e−
∫ t
0 g(s,X(s))dsh(t,X(t))

for some measurable and continuous functions g : [0, T ] × Rn → R and h : [0, T ] × Rn →
[0,∞). Define f(t, x) := EP

(∫ T
t
e−

∫ s
t [g(v,X(v))+µ(v,X(v))]dvh(s,X(s))µ(s)ds

∣∣∣X(t) = x
)
. If f ∈

C1,2([0, T ]× Rn), then the unique integrands of the MRT decomposition (3.3) of L0 are given by

ψWi (t) = 1[0,T ](t) (m−N(t−))e−
∫ t
0 g(s,X(s))ds ∂f

∂xi
(t,X(t)), i = 1, . . . , n,

ψN(t) = 1[0,T ](t)
[
Cad(t)− f(t,X(t))e−

∫ t
0 g(s,X(s))ds

]
.

The proof of Proposition 4.13 uses Lemma 4.4, Lemma 4.6, and 4.8 together with Itô’s Lemma, and is
provided in Appendix A. Note that even if n 6= d this proof would imply the existence of the stated MRT
decompositions. However, uniqueness is in general no longer guaranteed. For illustrating Proposition
4.13, we give the following example.

Example 4.14. We again consider the setting from Example 4.11 but now determine the MRT decompo-
sition of L0 − EP (L0) by applying Proposition 4.13. Obviously, the mortality intensity is in this setting
a one-dimensional diffusion process. Assuming a survival benefit and a discount factor of one, respec-
tively, we have that Ca(T ) = e−

∫ T
0 g(s,X(s))dsh(X(T )) for g ≡ 0 and h ≡ 1. The affine property of the

mortality model yields

EP
(
e−

∫ T
t [g(s,X(s))+µ(s,X(s))]dsh(X(T ))

∣∣∣Gt) = EP
(
e−

∫ T
t µ(v)dv

∣∣∣Gt) = eα(t)+β(t)µ(t) =: f(t, µ(t)).
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Since the function f obviously satisfies the smoothness requirements, part b) of Proposition 4.13 ii)
yields the MRT decomposition

L0 − EP (L0) =

∫ T

0

(m−N(t−)) eα(t)+β(t)µ(t)β(t)dMW (t)−
∫ T

0+

eα(t)+β(t)µ(t)dMN(t),

where −mP0 again does not contribute to the integrands since it is deterministic. This confirms the
result from Example 4.11.

To verify that the functions f satisfy the required smoothness conditions imposed in Proposition 4.13,
one can for instance rely on the (sufficient) conditions in Heath and Schweizer (2000). Of course, in case
an analytic expression cannot be determined, the respective function f can be computed numerically via
Monte Carlo or by numerically solving the corresponding partial differential equations given by the
Feynman-Kac theorem.

The following Proposition illustrates the relation between the integrands from Proposition 4.10 and
Proposition 4.13, and generalizes the last part of Example 4.11.

Proposition 4.15. LetX be an n-dimensional diffusion process as specified in Assumption 4.12. Assume
that n = d and that the inverse σ−1(t,X(t)) =

(
σ−1
ij (t,X(t))

)
i,j=1,...,n

exists for all t ∈ [0, T ∗] P-
almost surely. If Xi(t) ∈ D1,2 with Dt,jXk(t) = σkj(t,X(t)) for all i = 1, . . . , n, t ∈ [0, T ∗], and if
f : [0, T ∗] × Rn → R, (t, x) 7→ f(t, x), is a continuously differentiable function with bounded partial
derivatives, then for all t ∈ [0, T ∗] we have f(t,X(t)) ∈ D1,2 and

d∑
j=1

Dt,jf(t,X(t))σ−1
ji (t,X(t)) =

∂

∂xi
f(t,X(t)) ∀i = 1, . . . , n.

Proof. Using the chain rule (Proposition 1.2.3 in Nualart, 2006, p. 28), and Dt,jt = 0 (Theorem 2.2.1
in Nualart, 2006, p. 119), it follows that

Dt,jf(t,X(t)) =
∂

∂t
f(t,X(t))Dt,jt+

n∑
k=1

∂

∂xk
f(t,X(t))Dt,jXk(t)

=
n∑
k=1

∂

∂xk
f(t,X(t))σkj(t,X(t)) ∈ D1,2.

This together with
∑d

j=1 σkj(t,X(t))σ−1
ji (t,X(t)) = 1{k=i} implies that

d∑
j=1

Dt,jf(t,X(t))σ−1
ji (t,X(t)) =

n∑
k=1

∂

∂xk
f(t,X(t))

d∑
j=1

σkj(t,X(t))σ−1
ji (t,X(t))

=
∂

∂xi
f(t,X(t)).

4.3 Diversification properties
It is well known that unsystematic mortality risk arising from finite insurance portfolios vanishes as
the number of policyholders goes to infinity, i.e. it is diversifiable. In the next proposition, we show
that the unsystematic mortality risk implied by the MRT decomposition also satisfies this property. The
following lemma will simplify the proof.
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Lemma 4.16. Let T ∈ [0, T ∗] be fixed. If supt∈[0,T ] EP (µ2(t)) < ∞ and if
(
ψN(t)

)
0≤t≤T is a G-

predictable process with supt∈[0,T ] EP
([
ψN(t)

]4)
<∞, then

1

m

∫ T

0+

ψN(t)dMN(t)
L2

−−−→
m→∞

0.

Proof. We need to show that

EP

([
1

m

∫ T

0+

ψN(t)dMN(t)− 0

]2
)

=
1

m2
EP

([∫ T

0+

ψN(t)dMN(t)

]2
)
−−−→
m→∞

0.

From Andersen et al. (1997, p. 78), we know that the predictable quadratic variation of MN(t) equals〈
MN ,MN

〉
(t) =

∫ t
0
(m−N(s−))µ(s)ds. SinceMN(t) is a martingale (Bielecki and Rutkowski, 2004,

p. 153) and ψN is assumed to be predictable, it follows (see also below) that
∫ T

0+
ψN(t)dMN(t) is a

square integrable martingale, and the Itô isometry yields (for both, see Klebaner, 2005, p. 234)

1

m2
EP

([∫ T

0+

ψN(t)dMN(t)

]2
)

=
1

m2
EP

∫ T

0+

[
ψN(t)

]2
(m−N(s−))︸ ︷︷ ︸

≤m

µ(s)ds


≤ 1

m
EP
(∫ T

0+

[
ψN(t)

]2
µ(s)ds

)
.

(4.12)

Since by assumption C1 := supt∈[0,T ] EP
([
ψN(t)

]4)
< ∞ and C2 := supt∈[0,T ] EP (µ2(t)) < ∞, the

theorem of Fubini-Tonelli and the Cauchy-Schwarz inequality yield

EP
(∫ T

0+

[
ψN(t)

]2
µ(s)ds

)
=

∫ T

0+

EP
([
ψN(t)

]2
µ(s)

)
ds

Cauchy-Schwarz
≤

∫ T

0+

√
EP
(
[ψN(t)]4

)
EP (µ2(s))ds ≤

∫ T

0+

√
C1C2 = T

√
C1C2 =: C <∞.

Together with (4.12) we obtain

0 ≤ 1

m2
EP

([∫ T

0+

ψN(t)dMN(t)

]2
)
≤ 1

m
EP
(∫ T

0+

[
ψN(t)

]2
µ(s)ds

)
≤ 1

m
C −−−→

m→∞
0.

In order to show L2-convergence, the following proposition is restricted to bounded Ca and Cad.
However, convergence in probability could be shown under less restrictive assumptions.

Proposition 4.17. Assume the setting and assumptions from Proposition 4.10 with resulting unsystem-
atic mortality risks in part ii), iii) and iv) of, respectively,

Rm
unsys,ak = −

∫ tk

0+

EP (eΓ(t)−Γ(tk)Ca,k
∣∣Gt) dMN(t),

Rm
unsys,a = −

∫ T

0+

∫ T

t

EP (eΓ(t)−Γ(s)Ca(s)
∣∣Gt) ds dMN(t),

Rm
unsys,ad = −

∫ T

0+

[
EP
(∫ T

t

Cad(s)e
Γ(t)−Γ(s)dΓ(s)

∣∣∣∣Gt)− Cad(t)] dMN(t).
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i) If additionally Ca,k ∈ L4(P) and supt∈[0,tk] EP (µ2(t)) <∞, then 1
m
Rm
unsys,ak

L2

−−−→
m→∞

0.

ii) If additionally supt∈[0,T ] EP (µ2(t)) <∞ and Ca is bounded, then 1
m
Rm
unsys,a

L2

−−−→
m→∞

0.

iii) If additionally supt∈[0,T ] EP (µ4(t)) <∞ and Cad is bounded, then 1
m
Rm
unsys,ad

L2

−−−→
m→∞

0.

The proof of Proposition 4.17 mainly checks the assumptions of Lemma 4.16 and can be found in
Appendix A. While unsystematic mortality risk diversifies, Proposition 4.19 shows that the remaining
risk factors also converge with the number of contracts, but in general not to zero, i.e. they are not
diversifiable. This confirms their interpretation as systematic risks, in particular since the limits no
longer depend on N(t). In applications, if the portfolio is sufficiently large, the limits can be used as
risk approximations. Again, we first show a helpful result.

Lemma 4.18. If ζ = (ζ(t))0≤t≤T is G-adapted and has continuous paths, then for 0 ≤ tk ≤ T ≤ T ∗

1

m

∫ T

0

[
(m−N(t−))eΓ(t)

1[0,tk] + (m−N(tk))e
Γ(tk)

1(tk,T ]

]
ζ(t)dW (t)

P−−−→
m→∞

∫ T

0

ζ(t)dW (t),

where (W (t))0≤t≤T ∗ is a one-dimensional Brownian motion.

Proof. Define

ζm(t) :=

[
(m−N(t−))

m
eΓ(t)

1[0,tk](t) +
(m−N(tk))

m
eΓ(tk)

1(tk,T ](t)

]
ζ(t).

If ζm = (ζm(t))0≤t≤T , m ∈ N, are predictable processes with ζm(t)
a.s.−−−→

m→∞
ζ(t) for all t ∈ [0, T ], and if

there exists a W -integrable process α = (α(t))0≤t≤T such that |ζm(t)| ≤ α(t) for all m ∈ N, t ∈ [0, T ],
then the statement of the lemma follows by the dominated convergence theorem for Itô integrals (Protter,
2005, p. 176) . Since ζ and µ are by assumption predictable, it follows that ζm is predictable for each
m ∈ N. Furthermore, since the remaining lifetimes τ ix, i ∈ N, are assumed to be conditionally i.i.d., a
conditional version of Kolmogorov’s strong law of large numbers (Majerek et al., 2005, p. 154) yields
that m−N(t)

m

a.s.−−−→
m→∞

e−
∫ t
0 µ(s)ds. Since µ(t) is assumed to be continuous, this implies for any t ∈ [0, T ]

m−N(t−)

m

a.s.−−−→
m→∞

e−
∫ t
0 µ(s)ds.

As a result, ζm(t)
a.s.−−−→

m→∞
ζ(t) for all t ∈ [0, T ]. Furthermore, since m−N(t−)

m
≤ 1 for all t ∈ [0, T ], we

have

|ζm(t)| ≤
[
eΓ(t)

1[0,tk](t) + eΓ(tk)
1(tk,T ](t)

]
|ζ(t)| =: α(t).

As the norm of ζ(t) is still continuous and adapted and as the same holds for eΓ(t)
1[0,tk](t)+e

Γ(tk)
1(tk,T ](t),

it follows that α is a continuous and adapted process. This implies (Klebaner, 2005, p. 98) that α is W -
integrable. Summing up, all conditions of the dominated convergence theorem are satisfied, and the
statement follows.

Proposition 4.19. Assume the setting and assumptions from Proposition 4.10 with resulting systematic
risks in part ii), iii) and iv) of

Rm
i, · :=

∫ T

0

[
(m−N(t−))eΓ(t)

1[0,tk](t) + (m−N(tk))e
Γ(tk)

1(tk,T ](t)
] d∑
j=1

ϕj, ·(t)σ
−1
ji (t) dMW

i (t),
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where 0 ≤ T ≤ T ∗, and for the different parts

ϕj, ak(t) = EP (Dt,j

(
e−Γ(tk)Ca,k

)∣∣Gt) (part ii)),

ϕj, a(t) =

∫ T

t

EP (Dt,j

(
e−Γ(s)Ca(s)

)∣∣Gt) ds (part iii) where tk = T ),

ϕj, ad(t) = EP
(
Dt,j

(∫ T

0

Cad(v)eΓ(t)−Γ(v)dΓ(v)

)∣∣∣∣Gt) (part iv) where tk = T ).

Then it follows that for i = 1, . . . , n

1

m
Rm
i, ·

P−−−→
m→∞

∫ T

0

d∑
j=1

ϕj, ·(t)σ
−1
ji (t)dMW

i (t).

The proof of Proposition 4.19 is mainly based on Lemma 4.18 and can be found in Appendix A.

5 Numerical example
In order to demonstrate the applicability and usefulness of the MRT decomposition, we derive the eq-
uity, interest, systematic, and unsystematic mortality risk factor of a guaranteed minimum death benefit
(GMDB), visualize the risk factors’ distributions, and determine their risk contributions by the Euler
allocation principle. GMDBs are common guarantees added to Variable Annuities (VA), which are
deferred, fund-linked annuity contracts (Bauer et al., 2008).

We assume that the VA is offered against a single premium P0 paid at time 0 which is fully invested
in a fund S = (S(t))0≤t≤T ∗ modeled as a geometric Brownian motion with drift µS and volatility σS:

dS(t) = µSS(t)dt+ σSS(t)dWS(t), S(0) > 0,

where WS = (WS(t))0≤t≤T ∗ denotes a P-Brownian motion. In case the insured dies during the VA’s
deferment period [0, T ], the GMDB guarantees that the death benefit paid at the end of the year of death
equals at least the single premium P0 (return of premium death benefit). This means that the insurance
company assumes the risk that the single premium exceeds the account value at the end of the year of
death in which case it has to make up the difference. We focus on the insurer’s risk from the GMDB
payoff itself and assume that the insurance company charges no fee for the additional GMDB guarantee.
Thus, the policyholder’s account value equals A(t) = P0

S0
S(t), t ∈ [0, T ], and if the same contract is

issued to m homogeneous policyholders, the total discounted loss of the insurance company amounts to

L0 =
T∑
k=1

(N(tk)−N(tk−1)) e−
∫ tk
0 r(s)ds max{P0 − A(tk), 0}, (5.1)

where r(t) denotes the short rate, and (the death benefit is paid at end of the year of death) tk = k, k =
0, 1, . . . , T. We can interpret L0 as the amount of money the insurance company needs at time 0 for
being able to cover the GMDB liabilities given it invests its money in the bank account. Equivalently,
we could assume a single upfront fee on top of P0, which would not change L0−EP(L0) thus leading to
the same MRT decomposition. In contrast, for example, a fee extracted continuously from the invested
funds would change the insurer’s risk L0, so that effects from the payoff and the charged fee would
overlap.

The short rate r = (r(t))0≤t≤T ∗ is assumed to follow a Cox-Ingersoll-Ross (CIR) process

dr(t) = κ(θ − r(t))dt+ σr
√
r(t)dWr(t), r(0) > 0,

30



where κ, θ, and σr denote the parameters for mean reversion speed, mean reversion level and volatility,
respectively, and Wr = (Wr(t))0≤t≤T ∗ is a P-Brownian motion. Since r is an affine process, it follows
that (Björk, 2005, Proposition 22.2, p. 331)

EP
(
e−

∫ T
t r(s)ds

∣∣∣Gt) = eαr(t,T )−βr(t,T )r(t), T ∈ [t, T ∗],

where analogously to the risk-neutral case (Brigo and Mercurio, 2006, p. 66), αr and βr can be derived

as αr(t, T ) = 2κθ
σ2
r

log

(
2he(κ+h)

T−t
2

2h+(κ+h)(eh(T−t)−1)

)
, βr(t, T ) = 2(eh(T−t)−1)

2h+(κ+h)(eh(T−t)−1)
, h =

√
κ2 + 2σ2

r .

As proposed by Dahl and Møller (2006), we assume that under P the mortality intensity process
µ = (µ(t))0≤t≤T ∗ follows a time-inhomogeneous CIR process

dµ(t, x) = (γ(t, x)− δ(t, x)µ(t, x))dt+ σµ(t, x)
√
µ(t, x)dWµ(t), µ(0, x) = µ0(x),

where x denotes the dependency on the age at time 0, Wµ = (Wµ(t))0≤t≤T ∗ is a P-Brownian motion,
the initial mortality intensities µ0(x + t) = a + bcx+t are assumed to follow the Gompertz-Makeham
mortality law, and

γ(t, x) =
1

2
σ̂2µ0(x+ t), δ(t, x) = δ̂ −

d
dt
µ0(x+ t)

µ0(x+ t)
, σµ(t, x) = σ̂

√
µ0(x+ t),

for some deterministic parameters a, b, c, δ̂ and σ̂. The specified mortality intensity process is again an
affine process which implies EP

(
e−

∫ T
t µ(s,x)ds

∣∣∣Gt) = eαµ(t,T,x)−βµ(t,T,x)µ(t,x), T ∈ [t, T ∗], where αµ
and βµ satisfy the ordinary differential equations specified in Proposition 3.1 of Dahl and Møller (2006,
p. 197) and cannot be determined analytically. In what follows, we only consider a single cohort, i.e.
we fix the initial age x, and define µ(t) := µ(t, x).

Since we assume that WS, Wr and Wµ are independent one-dimensional Brownian motions, the
volatility function of the process X := (S, r, µ)> equals

σ(t, x) =

σSx1 0 0
0 σr

√
x2 0

0 0 σµ(t, x)
√
x3

 .

Thus, if X remains positive, it follows that detσ(t, x) 6= 0 for all t ∈ [0, T ∗] and for all values x the
process X(t), t ∈ [0, T ∗], assumes. Recall that the geometric Brownian motion remains positive by
definition, and the same holds for the CIR processes r and µ given the Feller conditions 2κθ ≥ σ2

r and
2γ(t, x) ≥ (σµ(t, x))2 (Dahl and Møller, 2006, p. 197), respectively, are satisfied. By the definition of
γ and σµ, the latter is here always satisfied.

For deriving the MRT decomposition of L0 defined in (5.1), first note that L0 can be rewritten as

L0 =
T∑
k=1

(m−N(tk−1)) e−
∫ tk
0 r(s)ds max{P0 − A(tk), 0}

−
T∑
k=1

(m−N(tk)) e
−

∫ tk
0 r(s)ds max{P0 − A(tk), 0},

(5.2)

i.e. it is a sum of survival benefits. Since X is a Markov process, we can define the functions

fA1
k (t, x) := EP

(
e−

∫ tk−1
t µ(s,X(s))dse−

∫ tk
t r(s)ds max{P0 − A(tk), 0}

∣∣∣X(t) = x
)
, 0 ≤ t ≤ tk−1,

fB1
k (t, x) := EP

(
e−

∫ tk
t r(s)ds max{P0 − A(tk), 0}

∣∣∣X(t) = x
)
, 0 ≤ t ≤ tk,

fA2
k (t, x) := EP

(
e−

∫ tk
t [r(s)+µ(s,X(s))]ds max{P0 − A(tk), 0}

∣∣∣X(t) = x
)
, 0 ≤ t ≤ tk,
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which can be simplified by using the independence of S, r, and µ, as well as exploiting the normal
distribution of S, and the affine property of r and µ. This immediately shows that all three functions
are sufficiently smooth, so that we can apply part a) of Proposition 4.13 ii) to derive the MRT decom-
positions of the summands in the first line of (5.2) (using fA1

k and fB1
k ), and accordingly part b) of

Proposition 4.13 ii) to derive the MRT decompositions of the summands in the second line of (5.2) (us-
ing fA2

k ). Note that all conditions of Proposition 4.13 ii) are actually satisfied. Altogether, we obtain for
the MRT decomposition of L0 that

L0 − EP(L0) =
n+1∑
i=1

Ri,

where the systematic risk factors implied by Xi, i = 1, 2, 3, where X = (S, r, µ), equal

Ri :=
T∑
k=1

(∫ tk−1

0

(m−N(t−))e−
∫ t
0 r(s)ds

∂

∂xi
fA1
k (t,X(t))dMW

i (t)

+

∫ tk

tk−1

(m−N(tk−1))e−
∫ t
0 r(s)ds

∂

∂xi
fB1
k (t,X(t))dMW

i (t)

)

−
T∑
k=1

∫ tk

0

(m−N(t−))e−
∫ t
0 r(s)ds

∂

∂xi
fA2
k (t,X(t))dMW

i (t),

and the unsystematic mortality risk factor is given by

Rn+1 := −
T∑
k=1

∫ tk−1

0+

e−
∫ t
0 r(s)dsfA1

k (t,X(t))dMN(t) +
T∑
k=1

∫ tk

0+

e−
∫ t
0 r(s)dsfA2

k (t,X(t))dMN(t).

Note that the independence of WS, Wr and Wµ was not a necessary assumption for applying Propo-
sition 4.13 (as long as detσ(t, x) 6= 0), but significantly simplified the verification of the required
smoothness properties, and prevents the need of nested simulations in the numerical calculations.

For the numerical calculations, we assume m = 100 GMDB contracts with maturity T = 15 and
single premium P0 = 100,000. All policyholders are assumed to be of age x = 50 at time 0. We
perform N = 100,000 simulations for determining the distributions of R := L0 − EP(L0), R1, R2, R3,
and R4. For projecting the risk drivers r and µ as well as for approximating the stochastic integrals,
we use the Euler scheme with n = 100 time steps per year. The number of survivors in the portfolio
are projected by means of the binomial distribution conditioned on the mortality intensities. The ODEs
implied by the mortality model are solved numerically. With respect to the mortality model, we adopt
the parameter values for year 2003, case II, males, from Tables 1 to 3 in Dahl and Møller (2006, p. 211):
a = 0.000134, b = 0.0000353, c = 1.1020, δ̂ = 0.008, and σ̂ = 0.02. For the interest model, we
assume κ = 0.2, θ = 0.025, σr = 0.075 and r(0) = 0.0029. Thus, the Feller condition 2κθ =
0.01 > 0.0056 = σ2

r is satisfied. The parameters of the geometric Brownian motion are µS = 0.06 and
σS = 0.22.

We focus on the distributions scaled by the number of policyholders in the portfolio and the single
premium, i.e. we consider R := 1

mP0
R, Ri := 1

mP0
Ri, i = 1, . . . , 4. The resulting empirical distribution

functions of the total risk R, the fund risk R1, the interest risk R2, the systematic mortality risk R3, and
the unsystematic mortality risk R4 are shown in Figure 1(a). The distribution functions directly imply
that the fund is the most relevant risk driver since its risk factor exhibits almost the same distribution
as the total risk. This appears to be reasonable since it only depends on the fund value whether the
GMDB guarantee is in the money or not in case of death. For m = 100 contracts, the randomness of the
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number of deaths within [0, T ], which trigger a possibly positive payoff, also seems to be rather high.
This is why the range of the unsystematic mortality risk factor is rather wide compared to the ranges
of the interest risk and the systematic mortality risk factor. In contrast, the latter two risk factors seem
to be negligible since their realizations hardly deviate from zero. In particular, the randomness of the
stochastic mortality intensity has almost no influence on the total risk which can explained by its low
volatility parameter. We also see that the distribution function of the fund risk factor is right-skewed
while the distribution functions of all other risk factors are more or less symmetric. In Figure 1(b) we
plotted the histogram values of the interest and mortality risk factors using a bin size of 1e-4. Obviously,
the histogram of the interest risk is slightly shifted to the right compared to the other two histograms,
i.e. more weight is on the risky side. Furthermore, the tails of the interest risk are heavier than the tails
of the systematic mortality risk, but lighter than the tails of the systematic mortality risk.

Clearly, since the stochastic differential equations of the risk drivers r and µ, as well as the stochas-
tic integrals of the risk factors are numerically approximated, the distributions and histogram val-
ues are only approximations. In particular, comparing the left-hand side R and the right-hand side
R1 +R2 +R3 +R4 of the decomposition, we obtain

• for the absolute error: EP
(∣∣R− (R1 +R2 +R3 +R4

)∣∣) = 3.7173e-04,

• for the weak error:
∣∣EP

(
R
)
− EP

(
R1 +R2 +R3 +R4

)∣∣ = 6.4665e-06.

Clearly, the distribution of R, which is the distribution of an option, is not completely absolutely con-
tinuous, since R equals −EP (L0) with positive probability. The same actually also holds for the risk
factorsRi, i = 1, . . . , 4, but as a result of the discretization of the risk factor integrals, the approximated
distributions seem to be absolutely continuous. For solving this problem, more advanced numerical pro-
cedures would be necessary. However, this goes beyond the scope of this paper.
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Figure 1: GMDB portfolio with m = 100 contracts.

In order to quantify the total risk we apply three different risk measures:

• Standard deviation: ρ(R) =
√

Var
(
R
)
,

33



• Value-at-Risk at the 99% level: ρ(R) = inf
{
x ∈ R : P

(
R ≤ x

)
≥ 0.99

}
,

• Tail-Value-at-Risk: ρ(R) = EP
(
R
∣∣R ≥ VaR0.99

(
R
))
,

The total risk ρ(R) is allocated to the four sources of risk by means of the Euler principle (for an
extensive discussion of allocation principles, see Bauer and Zanjani, 2013). In fact, since the chosen
risk measures are (positively) homogeneous, Euler’s homogeneous function theorem yields

ρ(R) =
4∑
i=1

∂ρ
(
a1R1 + a2R2 + a3R3 + a4R4

)
∂ai

∣∣∣∣∣
a1=a2=a3=a4=1

,

and each summand can be interpreted as the risk contribution of the respective risk factor. We have as-
sumed that ρ

(
a1R1 + a2R2 + a3R3 + a4R4

)
is differentiable in each ai, i = 1, . . . , 4. For the standard

deviation as risk measure, this can be easily shown and the Euler allocation results in the well-known co-
variance principle (McNeil et al., 2005, p. 258). For the other two risk measures, differentiability is not
clear, but a numerical approximation of the respective functions suggests sufficient smoothness. Thus,
in what follows we also assume differentiability for value-at-risk and tail-value-at-risk and numerically
approximate the respective risk contributions via

∂ρ
(
a1R1 + a2R2 + a3R3 + a4R4

)
∂ai

∣∣∣
a1=a2=a3=a4=1

≈ ρ(R + hRi)− ρ(R− hRi)

2h
,

i = 1, . . . , 4, where we choose h = 0.01. In Table 2 we see for each risk measure the quantified total
risk ρ(R) and the allocated risk contributions in the first line (rounded to four decimals), and all values
from the first line as a percentage of the sum of the four individual risk contributions in the second line.
As a result of the numerical approximations, the allocated values do not perfectly add up to the total risk
ρ(R), in particular with the value-at-risk allocation.

R (total) R1 (fund) R2 (interest) R3 (syst. mort.) R4 (unsyst. mort.)

Std. dev. abs. 0.0179 0.0160 0.0001 0.0000 0.0018

perc. 100.0% 89.3% 0.3% 0.2% 10.1%

VaR0.99 abs. 0.0675 0.0553 0.0005 0.0002 0.0117

perc. 99.6% 81.7% 0.8% 0.2% 17.3%

TVaR0.99 abs. 0.0813 0.0592 0.0008 0.0004 0.0208

perc. 100.0% 72.9% 1.0% 0.5% 25.6%

Table 2: Euler risk contributions for a GMDB portfolio withm = 100 contracts in absolute terms (abs.),
and relative to the sum of the four individual risk contributions (perc.).

The allocated risk contributions confirm our observations from the empirical distributions and the
histogram values. With all three risk measures, the fund is responsible for at least 70% of the total
risk. The risk contributions of interest and systematic mortality are at about the same low level. The
unsystematic mortality risk implies a risk contribution of 10.1% with the standard deviation, 17.3% with
the value-at-risk, and 25.6% with the tail-value-at-risk Euler allocation. Obviously, the unsystematic
mortality risk becomes more relevant in the tail of the total risk, which makes sense keeping in mind
that high losses can only occur if the policyholder actually dies.

Increasing the number of policies from m = 100 to m = 10,000 results in the distributions from
Figure 2. Confirming our theoretical convergence results from Section 4.3, the increased portfolio
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size immensely reduces the unsystematic mortality risk per contract, whereas the systematic risks per
contract remain more or less unaffected. Since the total risk per contract equals the sum of the individual
risks, it also decreases.
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Figure 2: Cumulative distribution functions of the standardized risk factors R, R1, R2, R3, and R4 for
a GMDB portfolio with m = 10,000 contracts.

6 Conclusion
The present paper provides a profound analysis of risk decomposition methods which allocate the ran-
domness of life insurance liabilities to risk factors associated with different sources of risk. For evaluat-
ing the usefulness of different approaches, we first introduced a list of properties we posit a meaningful
risk decomposition should satisfy. Then we proposed a novel decomposition method, labeled MRT de-
composition, and showed that it satisfies all of these desirable properties. In contrast, it turned out that
for each of the decomposition approaches proposed in literature so far at least one of the properties fails
to hold. As opposed to most literature, we explicitly focus on the decomposition of life insurance lia-
bilities into risk factors, which are again random variables, and not on quantifying the risk contributions
with the help of risk measures. A decomposition into random risk factors allows not only the application
of the risk measure of choice in later quantitative comparisons, but also enables an analysis of the risk
structure with respect to dependencies or distributional characteristics of the risk factors. Furthermore,
it is clear that we first need to understand the properties of the decomposition method underlying a risk
quantification before a reliable interpretation of the results can become possible.

Our alternative decomposition method is mainly based on the martingale representation theorem, thus
labeled MRT decomposition, and decomposes life insurance liabilities into Itô integrals with respect
to the compensated sources of risk. The considered life insurance setting is rather general with an
arbitrary (finite) insurance portfolio modeled by a counting process, and an insurance payoff entailing
discrete as well as continuous survival and death benefits. The (systematic) sources of risk are assumed
to be driven by a finite-dimensional Brownian motion. We showed that, under certain assumptions, the
MRT decomposition exists and is unique, which still holds if the driving one-dimensional Brownian
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motions are correlated. We were able to first isolate the influence of the unsystematic risk, so that
explicit formulas for the MRT decomposition could be derived by means of the Clark-Ocone formula
from Malliavin calculus in the general case and by Itô’s lemma for diffusion processes in the Markov
case.

We came back to the desirable properties derived in Section 2.1 and proved that the MRT decom-
position satisfies all meaningful risk decomposition properties. We also showed that the unsystematic
mortality risk as specified by the MRT decomposition is diversifiable, i.e. it vanishes as the portfo-
lio increases, whereas the systematic risk factors approach a non-zero limit. This observation agrees
with common opinion, and confirms the interpretation of the integrals. Furthermore, if the portfolio is
sufficiently large, the limits can provide useful risk approximations in applications.

In Section 2.2 the paper reviews several decomposition methods from the actuarial literature. By
means of simple examples, we detected serious drawbacks within all approaches, so that none of them
satisfies all meaningful risk decomposition properties. Above all, the well-known and widely used vari-
ance decomposition is based on a risk decomposition method which is not unique, in the sense that the
order of conditioning matters. As a result, in some examples the method yields doubtable results. The
Hoeffding decomposition eliminates the drawback of the stochastic variance decomposition. However,
it introduces co-movement factors which cannot be allocated to a specific source of risk, but sometimes
capture the total randomness. Thus, the method’s usefulness for decomposing risk is not always given.
Finally, the results from the Taylor expansion and the Solvency II approach are more than sensitive with
respect to the required problem-specific choices.

In Section 5 we explicitly calculated the MRT decomposition of a GMDB policy with return-of-
premium guarantee. Interest and mortality rates were assumed to follow affine processes and the Vari-
able Annuity account was modeled as a geometric Brownian motion. Thus, we analyzed the influence of
four sources of risk: equity, interest rate, aggregate mortality, and actual deaths observed in the portfolio
of insured. We illustrated the distributions of the total risk and all four risk factors and quantified the re-
spective risk contributions by the Euler allocation principle. Our calculations show that for an unhedged
exposure, equity risk is by far the most dominant risk, particularly when considering moderately sized
insurance portfolios. Furthermore, unsystematic mortality risk immensely reduces when increasing the
number of policyholders from 100 to 10,000 confirming the theoretical result. In particular, this example
demonstrates the applicability and usefulness of the MRT decomposition.

In summary, the present paper shows that the appropriateness of the application of currently prevailing
decomposition methods such as the stochastic foundation of the variance decomposition approach can be
questioned. Instead, we propose an alternative method, the so-called MRT decomposition, which seems
to be promising. For future research, it would be desirable to transfer the MRT decomposition to a more
general Lévy setting, and to find approximations of the risk factors to reduce computational efforts. An
application of the method to more advanced insurance guarantees such as guaranteed annuity options
as well as a more detailed analysis of the decomposition results would be interesting. Finally, since our
life insurance setting is closely related to credit risk settings a transfer of the MRT decomposition to this
field of research could be worthwhile.
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Appendix

A Proofs
Proof of Lemma 3.2. i) Assuming that the drift vector θ is G-adapted with continuous paths, it fol-

lows that AWi is a predictable finite variation process. Since MW
i is a local martingale and Xi(t) =

Xi(0) + MW
i (t) + AWi (t) for all t ∈ [0, T ∗], AWi is a compensator of Xi. The uniqueness follows

by Theorem 34 in Protter (2005, p. 130).
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ii) As a result of the assumptions, AN is a predictable finite variation process and MN is a martingale
(for the latter, cf. Bielecki and Rutkowski, 2004, p. 153). Thus, AN is a compensator of N and the
uniqueness again follows by Theorem 34 in Protter (2005, p. 130).

Proof of Lemma 4.4. Since U = (U(t))0≤t≤T ∗ with U(t) := EP
(
e−Γ(T )F

∣∣Gt) is a G-martingale, it
follows by the martingale representation theorem that there exist predictable processes ϕ1, . . . , ϕd such
that (4.4) holds. We first show the lemma for a single policyholder with remaining lifetime τ ix, i.e.
m = 1 and F = G∨ Ii for any arbitrary, but fixed i ∈ {1, . . . ,m}. In contrast to the proof of Proposition
5.2.2 in Bielecki and Rutkowski (2004, pp. 159), we apply the integration by parts formula here to the
product L̃i(t)U(t) instead ofLi(t)U(t),whereLi(t) := 1{τ ix>t}e

Γ(t) and L̃i(t) := EP (Li(T )| Ft) for any
i ∈ {1, . . . ,m}. This will lead to corrected integrands of the dWi-terms. Since Li(t) is an F-martingale
(Bielecki and Rutkowski, 2004, p. 152), it follows that L̃i(t) = Li(t) for t ≤ T, and L̃i(t) = Li(T )
for t ≥ T. Furthermore, it holds U(T ∗) = e−Γ(T )F which implies Zi := 1{τ ix>T}F = L̃i(T

∗)U(T ∗).

Thus, applying the Itô integration by parts formula (Protter, 2005, p. 68) to the product L̃i(t)U(t) and
considering the continuity of U(t) yields

Zi = L̃i(0)U(0) +

∫ T ∗

0

L̃i(t−)dU(t) +

∫ T ∗

0+

U(t)dL̃i(t) + [L̃i, U ]T ∗

= Li(0)U(0) +

∫ T ∗

0

[
Li(t−)1[0,T ](t) + Li(T )1(T,T ∗]

]
dU(t) +

∫ T

0+

U(t)dLi(t) + [Li, U ]T ,

(A.1)

where the second equality follows from the definition of L̃i. Using 1{τ ix>0} = 1 a.s. (which follows from
the assumptions on µ), (3.1), and the GT ∗-measurability of F, we have that

Li(0)U(0)
a.s.
= EP (e−Γ(T )F

)
= EP (EP (

1{τ ix>T}
∣∣GT ∗

)
F
)

= EP (
1{τ ix>T}F

)
= EP(Zi).

Also note that

MN
i (t) := 1{τ ix≤t} −

∫ t

0

1{τ ix>s−}µ(s)ds = 1{τ ix≤t} −
∫ t∧τ ix

0

µ(s)ds.

Thus, since the G-adapted cumulative mortality intensity Γ of τ ix is continuous and increasing, Proposi-
tion 5.1.3 (i) from Bielecki and Rutkowski (2004, p. 153) implies that

dLi(t) = −Li(t−)dMN
i (t).

Plugging in the definitions of Li and MN
i , this can be further transformed into

dLi(t) = −eΓ(t)
(
1{τ ix>t−}d1{τ ix≤t} − 1{τ ix>t−}1{τ ix>t}µ(t)dt

)
= −eΓ(t)dMN

i (t).

Moreover, [Li, U ]t = 0 for every t ∈ [0, T ∗] (Bielecki and Rutkowski, 2004, p. 160). Additionally using
the martingale representation of U(t), equation (A.1) becomes

Zi = EP(Zi) +
d∑
j=1

∫ T ∗

0

[
Li(t−)1[0,T ](t) + Li(T )1(T,T ∗]

]
ϕj(t)dWj(t)−

∫ T

0+

U(t)eΓ(t)dMN
i (t).

Together with the continuity and adaptedness of µ, this proves the statement of the proposition for any
single policyholder. In the portfolio case, where F = G ∨

∨m
i=1 Ii, the conditional independence of the

τ ix’s implies that EP (Zi| Ft) = EP (Zi| Gt ∨ I it) . Thus, additionally using the conditionally identical
distribution of τ ix, i = 1, . . . ,m, the proposition follows for the entire portfolio from applying the
previous part of the proof to each summand of Z =

∑m
i=1 1{τ ix>T}F separately and adding the respective

decompositions.
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Proof of Lemma 4.6. Note that by the martingale representation theorem, there exist predictable pro-
cesses ϕ1, . . . , ϕd such that (4.6) holds. We first show the statement for a single policyholder with
remaining life τ ix, i.e. m = 1 and F = G ∨ Ii for an arbitrary, but fixed i ∈ {1, . . . ,m}. Since F
is assumed to be G-predictable with EP

(
supt∈[0,T ] |F (t)|

)
< ∞, it follows from Proposition 5.1.2 in

Bielecki and Rutkowski (2004, p. 149) that

EP
(∫ T

0

1{τ ix>v}F (v)dv

∣∣∣∣Ft)
=

∫ t

0

1{τ ix>v}F (v)dv + EP
(∫ T

t

1{τ ix>v}F (v)dv

∣∣∣∣Ft)
=

∫ t

0

1{τ ix>v}F (v)dv + Li(t) EP
(∫ T

t

e−Γ(v)F (v)dv

∣∣∣∣Gt)
=

∫ t

0

1{τ ix>v}F (v)dv − Li(t)
∫ t

0

e−Γ(v)F (v)dv + Li(t) EP
(∫ T

0

e−Γ(v)F (v)dv

∣∣∣∣Gt) , (A.2)

where Li(t) := 1{τ ix>t}e
Γ(t). Note that Proposition 5.1.2 in Bielecki and Rutkowski (2004) actually

requires
∫ T

0
F (s)ds to be bounded. However, via dominated convergence it can be shown that the result

still holds if F satisfies EP
(
supt∈[0,T ] |F (t)|

)
< ∞. Biagini et al. (2012, p. 22) already pointed out a

possible relaxation to EP
(
supt∈[0,T ] |F (t)|2

)
<∞.

As in the proof of Lemma 4.4, it follows by applying integration by parts to the last two addends of
(A.2) that

Li(t)

∫ t

0

e−Γ(v)F (v)dv =

∫ t

0

1{τ ix>s−}F (s)ds−
∫ t

0

(∫ s

0

e−Γ(v)F (v)dv

)
eΓ(s)dMN

i (s),

and

Li(t) EP
(∫ T

0

e−Γ(v)F (v)dv

∣∣∣∣Gt)
= EP

(∫ T

0

e−Γ(v)F (v)dv

)
+

d∑
i=1

∫ t

0

1{τ ix>s−}e
Γ(s)ϕi(s)dWi(s)

−
∫ t

0

EP
(∫ T

0

e−Γ(v)F (v)dv

∣∣∣∣Gs) eΓ(s)dMN
i (s)

where MN
i (t) := 1{τ ix≤t} −

∫ t
0
1{τ ix>s−}µ(s)ds. Summing up the representations of all summands from

(A.2) and using the FT -measurability of
∫ T

0
1{τ ix>v}F (v)dv, we obtain

∫ T

0

1{τ ix>v}F (v)dv = EP
(∫ T

0

e−Γ(v)F (v)dv

)
+

d∑
i=1

∫ T

0

1{τ ix>t−}e
Γ(t)ϕi(t)dWi(t)

−
∫ T

0+

EP
(∫ T

t

eΓ(t)−Γ(v)F (v)dv

∣∣∣∣Gt) dMN
i (t).

Additionally, the theorem of Fubini-Tonelli and the construction of τ ix imply that

EP
(∫ T

0

e−Γ(v)F (v)dv

)
= EP

(∫ T

0

1{τ ix>v}F (v)dv

)
.
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By the conditional independence assumption on τ ix, i = 1, . . . ,m, we have in the portfolio case
with F = G ∨

∨m
i=1 Ii that EP

(∫ T
0
1{τ ix>v}F (v)dv

∣∣∣Ft) = EP
(∫ T

0
1{τ ix>v}F (v)dv

∣∣∣Gt ∨ I it) . Thus,
the statement for the portfolio directly follows by applying the obtained equation to each summand∫ T

0
1{τ ix>v}F (v)dv, i = 1, . . . ,m, separately and adding the respective decompositions.

Proof of Lemma 4.8. Note that by the martingale representation theorem, there exist predictable pro-
cesses ϕ1, . . . , ϕd such that (4.8) holds. Since F is continuous, it follows from the definition of Lebesgue
integrals that

Z =

∫ T

0

F (v)dN(v) =
m∑
i=1

1{τ ix≤T}F (τ ix). (A.3)

We first show the statement for a single policyholder with remaining life τ ix, i.e. m = 1 and F = G ∨ Ii
for an arbitrary, but fixed i ∈ {1, . . . ,m}. Observe that

EP (
1{τ ix≤T}F (τ ix)

∣∣Ft) = EP (
1{t<τ ix≤T}F (τ ix)

∣∣Ft)+ 1{τ ix≤t}F (τ ix), (A.4)

since 1{τ ix≤t}F (τ ix) is Ft-measurable. Since F is assumed to be G-predictable with
EP
(
supt∈[0,T ] |F (t)|

)
< ∞, it follows from Corollary 5.1.3 in Bielecki and Rutkowski (2004, p. 148)

that

EP (
1{t<τ ix≤T}F (τ ix)

∣∣Ft) = 1{τ ix>t}E
P
(∫ T

t

F (v)eΓ(t)−Γ(v)dΓ(v)

∣∣∣∣Gt)
= Li(t)E

P
(∫ T

0

F (v)e−Γ(v)dΓ(v)

∣∣∣∣Gt)− Li(t)∫ t

0

F (v)e−Γ(v)dΓ(v),

where Li(t) := 1{τ ix>t}e
Γ(t). Again, Proposition 5.1.1 and thus Corollary 5.1.3 in Bielecki and

Rutkowski (2004, p. 148) actually require F to be bounded. However, via dominated convergence it can
be shown that both results generalize to non-bounded processes F that satisfy EP

(
supt∈[0,T ] |F (t)|

)
<

∞. Biagini et al. (2012, p. 19) already pointed out a possible relaxation to EP
(
supt∈[0,T ] |F (t)|2

)
<∞.

As in the proof of Lemma 4.4, it then follows by applying integration by parts to both addends that

EP (
1{t<τ ix≤T}F (τ ix)

∣∣Ft)
= EP

(∫ T

0

F (v)e−Γ(v)dΓ(v)

)
+

d∑
i=1

∫ t

0

1{τ ix>s−}e
Γ(s)ϕi(s)dWi(s)

−
∫ t

0+

EP
(∫ T

s

F (v)eΓ(s)−Γ(v)dΓ(v)

∣∣∣∣Gs) dMN
i (s)−

∫ t

0

1{τ ix>s}F (s)dΓ(s),

where MN
i (t) := 1{τ ix≤t} −

∫ t
0
1{τ ix>s−}µ(s)ds. On the other hand, we obtain by (A.3) that

1{τ ix≤t}F (τ ix) =

∫ t

0

F (s)d1{τ ix≤s} =

∫ t

0

F (s)dMN
i (s) +

∫ t

0

F (s)1{τ ix>s}dΓ(s).

Summing up the representations of the two summands from equation (A.4) and using the FT -
measurability of 1{τ ix≤T}F (τ ix), we obtain

1{τ ix≤T}F (τ ix) = EP
(∫ T

0

F (v)e−Γ(v)dΓ(v)

)
+

d∑
i=1

∫ T

0

1{τ ix>t−}e
Γ(t)ϕi(t)dWi(t)

−
∫ T

0+

[
EP
(∫ T

t

F (v)eΓ(t)−Γ(v)dΓ(v)

∣∣∣∣Gt)− F (t)

]
dMN

i (t).
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Additionally, Corollary 5.1.3 in Bielecki and Rutkowski (2004) also implies that

EP
(∫ T

0

F (v)e−Γ(v)dΓ(v)

)
= EP (

1{τ ix≤T}F (τ ix)
)
.

By the conditional independence assumption on τ ix, i = 1, . . . ,m, we have in the portfolio case with
F = G ∨

∨m
i=1 Ii that EP

(
1{τ ix≤T}F (τ ix)

∣∣Ft) = EP
(
1{τ ix≤T}F (τ ix)

∣∣Gt ∨ I it) . Thus, the statement for
the portfolio directly follows by applying the obtained equation to each summand 1{τ ix≤t}F (τ ix), i =
1, . . . ,m, separately and adding the respective decompositions.

Proof of Proposition 4.13. Since n = d and detσ(t,X(t)) 6= 0 for all t ∈ [0, T ∗] P-almost surely, the
uniqueness of the decompositions follows by Proposition 3.3. Furthermore, Assumption 4.12 implies
that X is a Markov process which together with the factorization lemma yields for all cases i) to iv)
below that

EP ( ·| Gt) = EP ( ·|X(t)) = f(t,X(t)), (A.5)

where f(t, x) := EP ( ·|Xt = x) . Define G(t) :=
∫ t

0
g(s,X(s))ds, 0 ≤ t ≤ T, and note that (Shreve,

2004, p. 480)

d[G,G](t) = d[G,Γ](t) = d[Γ,Γ](t) = d[G,Xi](t) = d[Γ, Xi](t) = 0. (A.6)

i) The assumption on the form of C0 together with (A.5) yield that

EP (C0| Gt) = e−G(t)EP
(
e−

∫ T
t g(s,X(s))dsh(X(T ))

∣∣∣Gt) = e−G(t)f(t,X(t))

=: f̃(t, G(t), X(t)).

Since f is assumed to be smooth, this holds for f̃ as well. Thus, Itô’s formula yields for 0 ≤ t ≤ T
(Theorem 33 in Protter, 2005, p. 81)

EP (C0| Gt)− EP (C0) =
n∑
i=1

∫ t

0

e−G(s) ∂f

∂xi
(s,X(s))dMW

i (s) +

∫ t

0

a(s)ds,

where a = (a(t))0≤t≤T ∗ is short-hand for all ds-quantities. We have used (A.6) and that
(t, G(t), X(t)) has continuous paths. By the tower property of conditional expectations, the right-
hand side EP (C0| Gt) − EP (C0) is a martingale. On the other hand, the stochastic integrals with
respect to MW

i , i = 1, . . . , n, are martingales as well. Thus, it follows by the uniqueness of the
Doob-Meyer decomposition (cf. Theorem 16 in Protter, 2005, p. 116) that the ds-term has to van-
ish. Since C0 is GT -measurable, the statement follows.

ii) In both cases, T > tk and T ≤ tk, we derive the MRT decomposition with the help of Lemma 4.4
and the related remark. Thus, we mainly need to determine the MRT decomposition of e−Γ(tk)Ca,k
less its expectation.

(a) If T > tk, we consider the decomposition

e−Γ(tk)Ca,k − EP (e−Γ(tk)Ca,k
)

=
[
e−Γ(tk)EP (Ca,k| Gtk)− EP (e−Γ(tk)Ca,k

)]
+ e−Γ(tk)

[
Ca,k − EP (Ca,k| Gtk)

]
,

(A.7)

and separately derive the MRT decompositions of the two parts.
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The assumption on the form of Ca,k together with (A.5) yield for 0 ≤ t ≤ tk that

EP (e−Γ(tk)EP (Ca,k| Gtk)
∣∣Gt) = EP (e−Γ(tk)Ca,k

∣∣Gt)
= e−Γ(t)e−G(t)EP (eΓ(t)−Γ(tk)eG(t)−G(T )h(X(T ))

∣∣Gt)
= e−Γ(t)e−G(t)fA(t,X(t))

=: f̃A(t,Γ(t), G(t), X(t)).

Since fA is assumed to be smooth, this holds for f̃A as well. Thus, Itô’s formula yields for
0 ≤ t ≤ tk (Theorem 33 in Protter, 2005, p. 81)

EP (e−Γ(tk)EP (Ca,k| Gtk)
∣∣Gt)− EP (e−Γ(tk)EP (Ca,k| Gtk)

)
=

n∑
i=1

∫ t

0

e−Γ(s)e−G(s)∂f
A

∂xi
(s,X(s))dMW

i (s) +

∫ t

0

a(s)ds,

where a = (a(t))0≤t≤T ∗ is short-hand for all ds-quantities. We have used (A.6) and that
(t,Γ(t), G(t), X(t)) has continuous paths. By the same arguments as in i) the ds-term has to
vanish, and since e−Γ(tk)EP (Ca,k| Gtk) is Gtk-measurable it follows that

e−Γ(tk)EP (Ca,k| Gtk)− EP (e−Γ(tk)Ca,k
)

=
n∑
i=1

∫ tk

0

e−Γ(s)e−G(s)∂f
A

∂xi
(s,X(s))dMW

i (s).

Furthermore, applying part i) to Ca,k it holds that

e−Γ(tk)
[
Ca,k − EP (Ca,k| Gtk)

]
=

n∑
i=1

∫ T

tk

e−Γ(tk)e−G(s)∂f
B

∂xi
(s,X(s))dMW

i (s).

In total, by (A.7) we have

e−Γ(tk)Ca,k − EP (e−Γ(tk)Ca,k
)

=
n∑
i=1

∫ T

0

[
e−Γ(s)e−G(s)∂f

A

∂xi
(s,X(s))1[0,tk](s)

+ e−Γ(tk)e−G(s)∂f
B

∂xi
(s,X(s))1(tk,T ](s)

]
dMW

i (s).

The statement then follows by Lemma 4.4 and the related remark.

(b) If T ≤ tk, we consider the decomposition

e−Γ(tk)Ca,k − EP (e−Γ(tk)Ca,k
)

=
[
EP (e−Γ(tk)

∣∣GT )Ca,k − EP (e−Γ(tk)Ca,k
)]

+
[
e−Γ(tk) − EP (e−Γ(tk)

∣∣GT )]Ca,k
and again separately derive the MRT decompositions of the two parts. Analogously to above,
we obtain

EP (e−Γ(tk)
∣∣GT )Ca,k − EP (e−Γ(tk)Ca,k

)
=

n∑
i=1

∫ T

0

e−Γ(s)e−G(s)∂f
A

∂xi
(s,X(s))dMW

i (s),

and [
e−Γ(tk) − EP (e−Γ(tk)

∣∣GT )]Ca,k =
n∑
i=1

∫ tk

T

e−Γ(s)Ca,k
∂fB

∂xi
(s,X(s))dMW

i (s),
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so that

e−Γ(tk)Ca,k − EP (e−Γ(tk)Ca,k
)

=
n∑
i=1

∫ tk

0

[
e−Γ(s)e−G(s)∂f

A

∂xi
(s,X(s))1[0,T ](s)

+ e−Γ(s)Ca,k
∂fB

∂xi
(s,X(s))1(T,tk](s)

]
dMW

i (s).

The statement then follows by Lemma 4.4 and the related remark.

iii) The assumption on the form of Ca(v) together with (A.5) yield that, for each v ∈ [0, T ],

EP (e−Γ(v)Ca(v)
∣∣Gt) = e−Γ(t)e−G(t)EP

(
e−

∫ v
t [g(s,X(s))+µ(s,X(s))]dsh(X(v))

∣∣∣Gt)
= e−Γ(t)e−G(t)f v(t,X(t))

=: f̃ v(t,Γ(t), G(t), X(t)), t ≤ v,

where f v : [0, v] × Rn → R. Since f v is assumed to be smooth, this holds for f̃ v as well. Thus,
Itô’s formula yields for t ≤ v (Protter, 2005, p. 81)

EP (e−Γ(v)Ca(v)
∣∣Gt)− EP (e−Γ(v)Ca(v)

)
=

n∑
i=1

∫ t

0

e−Γ(s)e−G(s)∂f
v

∂xi
(s,X(s))dMW

i (s) +

∫ t

0

a(s)ds,

where a = (a(t))0≤t≤T ∗ is short-hand for all ds-quantities. We have used (A.6) and that
(t,Γ(t), G(t), X(t)) has continuous paths. By the same arguments as in i), the ds-term has to
vanish. Thus, we obtain by Lemma 4.6 and the related remark that

ψWi (t) = (m−N(t−))eΓ(t)

∫ T

t

ϕvi (t)dv

= (m−N(t−))eΓ(t)

∫ T

t

e−Γ(t)e−G(t)∂f
v

∂xi
(t,X(t))dv

= (m−N(t−))e−G(t)

∫ T

t

∂f v

∂xi
(t,X(t))dv, i = 1, . . . , n,

and

ψN(t) = −
∫ T

t

EP (eΓ(t)−Γ(v)Ca(v)
∣∣Gt) dv

= −
∫ T

t

e−G(t)EP
(
e−

∫ v
t [g(s,X(s))+µ(s,X(s))]dsh(X(v))

∣∣∣Gt) dv
= −e−

∫ t
0 g(s,X(s))ds

∫ T

t

f v(t,X(t))dv.

iv) Since all involved processes are G-adapted, and by the assumption on the form of Cad(t) and µ(t)
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together with (A.5), it follows that for 0 ≤ t ≤ T

EP
(∫ T

0

Cad(s)e
−Γ(s)µ(s)ds

∣∣∣∣Gt)
=

∫ t

0

Cad(s)e
−Γ(s)µ(s)ds+ EP

(∫ T

t

Cad(s)e
−Γ(s)µ(s)ds

∣∣∣∣Gt)
=

∫ t

0

Cad(s)e
−Γ(s)µ(s)ds+ e−Γ(t)e−G(t)EP

(∫ T

t

eΓ(t)−Γ(s)eG(t)−G(s)h(s,X(s))µ(s)ds

∣∣∣∣Gt)
= I(t) + e−Γ(t)e−G(t)f(t,X(t))

=: f̃(t,Γ(t), G(t), X(t), I(t)),

where I(t) :=
∫ t

0
Cad(s)e

−Γ(s)µ(s)ds. Since f is assumed to be smooth, this holds for f̃ as well.
Thus, Itô’s formula yields for 0 ≤ t ≤ T (cf. Theorem 33 in Protter, 2005, p. 81)

EP
(∫ T

0

Cad(s)e
−Γ(s)µ(s)ds

∣∣∣∣Gt)− EP
(∫ T

0

Cad(s)e
−Γ(s)µ(s)ds

)
=

n∑
i=1

∫ t

0

e−Γ(s)e−G(s) ∂f

∂xi
(s,X(s))dMW

i (s) +

∫ t

0

a(s)ds,

where a = (a(t))0≤t≤T ∗ is short-hand for all ds-quantities. We have used (A.6),

d[I,Γ](t) = d[I,G](t) = d[I,Xi](t) = 0

(Shreve, 2004, p. 480), and that (t,Γ(t), G(t), X(t)) has continuous paths. By the same arguments
as in i) the ds-term has to vanish. Since analogously to Lemma 4.4 it can be shown that Lemma 4.8
also holds with respect to dMW

i -integrals instead of dWi-integrals, the statement follows.

Proof of Proposition 4.17. Note that any conditional expectation EP(·|Gt) is predictable, since it is by
definition Gt-measurable and Gt is left-continuous as a result of the continuity of Brownian motions.

i) Define ψNak(t) := EP
(
eΓ(t)−Γ(tk)Ca,k

∣∣Gt) for all t ∈ [0, tk].According to the introductory comment,
the process (ψNak(t))0≤t≤tk is predictable. Furthermore, applying Jensen’s inequality for conditional
expectations (cf. Protter, 2005, p. 11), and using that Γ(t) is non-decreasing in t, it follows that

sup
t∈[0,tk]

EP
([
ψNak(t)

]4)
= sup

t∈[0,tk]

EP
([

EP (eΓ(t)−Γ(tk)Ca,k
∣∣Gt)]4)

≤ sup
t∈[0,tk]

EP
(

EP
([
eΓ(t)−Γ(tk)Ca,k

]4∣∣∣Gt)) ≤ sup
t∈[0,tk]

EP (EP ( [Ca,k]
4
∣∣Gt))

= sup
t∈[0,tk]

EP ([Ca,k]4) = EP ([Ca,k]4) <∞ (by assumption).

Since we also assume that supt∈[0,tk] EP (µ2(t)) <∞, the statement follows by Lemma 4.16.

ii) Define ψNa (t) :=
∫ T
t

EP
(
eΓ(t)−Γ(s)Ca(s)

∣∣Gt) ds for all t ∈ [0, T ]. According to the introductory
comment, the process (ψNa (t))0≤t≤T is predictable. Furthermore, since 0 ≤ eΓ(t)−Γ(s) ≤ 1 for s ≥ t
and since C := sup0≤t≤T EP (|Ca(t)|) < ∞ as a result of the boundedness of Ca(t), it follows by
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applying Jensen’s inequality for integrals and for conditional expectations (for the latter, cf. Protter,
2005, p. 11) that for any t ∈ [0, T ]∣∣ψNa (t)

∣∣ =

∣∣∣∣∫ T

t

EP (eΓ(t)−Γ(s)Ca(s)
∣∣Gt) ds∣∣∣∣ ≤ ∫ T

t

∣∣EP (eΓ(t)−Γ(s)Ca(s)
∣∣Gt)∣∣ ds

≤
∫ T

t

EP (eΓ(t)−Γ(s) |Ca(s)|
∣∣Gt) ds ≤ C T.

Thus, we have

sup
t∈[0,T ]

EP
([
ψNa (t)

]4) ≤ sup
t∈[0,T ]

EP ([CT ]4
)

= C4 T 4 <∞.

Since we also assume that supt∈[0,T ] EP (µ2(t)) <∞, the statement follows by Lemma 4.16.

iii) Since Xm, Ym, X, Y ∈ L2(P) and Xm
L2

−→ X, Ym
L2

−→ Y implies that Xm + Ym
L2

−→ X + Y, it is
sufficient to show that

a)
1

m

∫ T

0+

[
−EP

(∫ T

t

Cad(s)e
Γ(t)−Γ(s)µ(s)ds

∣∣∣∣Gt)] dMN(t)
L2

−−−→
m→∞

0, and

b)
1

m

∫ T

0+

Cad(t)dM
N(t)

L2

−−−→
m→∞

0.

Define ψNad,1(t) := −EP
(∫ T

t
Cad(s)e

Γ(t)−Γ(s)µ(s)ds
∣∣∣Gt) and ψNad,2(t) := Cad(t) for all t ∈ [0, T ].

Note that since by assumption supt∈[0,T ] EP (µ4(t)) <∞, it also follows by Jensen’s inequality that

sup
t∈[0,T ]

EP (µ2(t)
)
≤ sup

t∈[0,T ]

√
EP (µ4(t)) <∞.

ad a): According to the introductory comment, the process (ψNad,1(t))0≤t≤T is predictable. Since
0 ≤ eΓ(t)−Γ(s) ≤ 1 for s ≥ t and since C1 := supt∈[0,T ] EP (|Cad(t)|) < ∞ as a result of
the boundedness of Cad(t), it follows by applying Jensen’s inequality for integrals and for
conditional expectations (for the latter, cf. Protter, 2005, p. 11) that∣∣ψNad,1(t)

∣∣ =

∣∣∣∣EP
(∫ T

t

Cad(s)e
Γ(t)−Γ(s)µ(s)ds

∣∣∣∣Gt)∣∣∣∣
≤ EP

(∫ T

t

|Cad(s)| eΓ(t)−Γ(s)µ(s)ds

∣∣∣∣Gt)
≤ C1 EP

(∫ T

t

µ(s)ds

∣∣∣∣Gt) ≤ C1 EP
(∫ T

0

µ(s)ds

∣∣∣∣Gt) .
Since by assumption C2 := supt∈[0,T ] EP (µ4(t)) <∞, this implies

sup
t∈[0,T ]

EP
([
ψNad,1(t)

]4) ≤ sup
t∈[0,T ]

EP

([
C1 EP

(∫ T

0

µ(s)ds

∣∣∣∣Gt)]4
)

(∗)
≤ sup

t∈[0,T ]

C4
1 EP

(
EP
(∫ T

0

µ4(s)ds

∣∣∣∣Gt)) = sup
t∈[0,T ]

C4
1 EP

(∫ T

0

µ4(s)ds

)
(∗∗)
= sup

t∈[0,T ]

C4
1

∫ T

0

EP (µ4(s)
)
ds ≤ C4

1 C2 T <∞.
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where (∗) again follows by Jensen’s inequality for integrals and conditional expectations and
(∗∗) from the theorem of Fubini-Tonelli. Since supt∈[0,T ] EP (µ2(t)) < ∞ as shown above,
the statement follows by Lemma 4.16.

ad b): By assumption the process (ψNad,2(t))0≤t≤T is predictable. As a result of the boundedness of
Cad(t), it also holds C1 := supt∈[0,T ] EP (|Cad(t)|) <∞, so that

sup
t∈[0,T ]

EP
([
ψNad,2(t)

]4)
= sup

t∈[0,T ]

EP ([Cad(t)]4) ≤ C4
1 <∞.

Since supt∈[0,T ] EP (µ2(t)) <∞ as shown above, the statement follows by Lemma 4.16.

Proof of Proposition 4.19. Since MW
i (t) =

∑d
k=1

∫ t
0
σik(s)dWk(s), 0 ≤ t ≤ T ∗, it follows that

Rm
i, · =

d∑
k=1

d∑
j=1

∫ T

0

[
(m−N(t−))eΓ(t)

1[0,tk](t) + (m−N(tk))e
Γ(tk)

1(tk,T ](t)
]

× ϕj, ·(t)σ−1
ji (t)σik(t)dWk(t).

(A.8)

Because of the additivity of integration and the continuous mapping theorem, it is sufficient to prove
the convergence of each summand in (A.8), i = 1, . . . , n, j, k = 1, . . . , d, separately. For this, by
Lemma 4.18, we only need to show that each ϕj, ·(t)σ−1

ji (t)σik(t) is G-adapted and continuous. We
have:

• By assumption, σ(t) is G-adapted with continuous paths.

• When determining the inverse of σ(t) with Cramer’s rule and the necessary determinants with
Laplace’s formula, it can be seen that σ−1

ij (t) is a continuous function of the matrix components
σij(t), i = 1, . . . n, j = 1 . . . , d. So σ−1

ij (t) has itself continuous paths and is G-adapted.

• In all parts ii), iii) and iv), ϕj, ·(t) is a conditional expectation of the form EP ( ·| Gt) or can be
transformed into such an expectation. As a result, ϕj, ·(t) is by definition G-adapted. Furthermore,
it follows by the martingale representation theorem that it is also continuous.

As a result, the product ϕj, ·(t)σ−1
ji (t)σik(t) is also G-adapted and continuous, and the statement follows

by Lemma 4.18.
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