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a b s t r a c t

With the rise of the cyber insurance market, there is a need for better quantification of the economic
impact of this risk and its rapid evolution. Due to the heterogeneity of cyber claims, evaluating
the appropriate premium and/or the required amount of reserves is a difficult task. In this paper,
we propose a method for cyber claim analysis based on regression trees to identify criteria for
claim classification and evaluation. We particularly focus on severe/extreme claims, by combining a
Generalized Pareto modeling – legitimate from Extreme Value Theory – and a regression tree approach.
Coupled with an evaluation of the frequency, our procedure allows computations of central scenarios
and of extreme loss quantiles for a cyber portfolio. Finally, the method is illustrated on a public
database.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Cyber risk is a natural consequence of the digital transforma-
ion. Digital technologies induce new vulnerabilities for economic
ctors, with a rapid evolution of practices, threats, and behaviors.
ith the increase of cyber threats, insurance contracts appear as

undamental tools to improve the resilience of society.
However while the cyber insurance market is growing fast

see for example the report of European Insurance and Occu-
ational Pensions Authority (EIOPA), 2019), risk analysis faces
lack of consistent and reliable data in a context where the

mount of claims is particularly volatile (see Matthews, 2019).
herefore, quantifying this emerging and evolving risk is a dif-
icult task. In this paper, we propose to analyze cyber claims via
egression trees in order to constitute clusters of cyber incidents.
hese clusters achieve a compromise between homogeneity and
sufficient size to allow a reliable statistical estimation of the

isk. A particular attention is devoted to large claims, for which
eavy tail distributions are fitted. The study of large claims raises
he question of insurability of the risk, and the clustering tech-
ique we propose may help to separate types of incidents or
ircumstances according to whether they can be covered without
ndangering risk pooling. In the present work, we develop a
egression tree methodology specifically adapted to the study of
eavy-tailed distributions, and discuss its relevance to embrace
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the challenges of cyber risk quantification. A first contribution
is methodological: by adapting the methodology of regression
trees to extreme value regression purpose, we provide a flexible
and still intelligible modeling tool, that can be valuable for a
wide range of risks (not only in the field of cyber). On the other
hand, we aim to discuss their practical behavior on a real cyber
related database. In order to allow reproducibility of our work,
we consider a publicly available database. Through this analysis,
we show how the output of our method can be used for cyber
insurance risk management, and to identify stylized facts useful
for practitioners. Furthermore, public databases on cyber events
are an important source in order to complement the information
(usually poor due to the relative novelty of the risk) available for
insurance companies. We hope that the detailed description of
the path of our analysis can help to improve the integration of
such public information in cyber risk quantification.

Topics recently addressed in cyber insurance are reviewed in
Biener et al. (2015), Eling and Schnell (2016) and Marotta et al.
(2017). However most of these approaches are performed from
the point of view of a cyber analyst. For instance, Fahrenwaldt
et al. (2018) study the topology of infected networks, and In-
sua et al. (2021) gather expert judgments using an Adversarial
Risk Analysis. Eling and Loperfido (2017) and Edwards et al.
(2016) developed more established insurance modeling methods
illustrated on the Privacy Rights Clearinghouse (PRC) database
(available for public download at https://privacyrights.org/data-
breaches). PRC database has also been studied by Maillart and
Sornette (2010). It gathers data breaches events for which a sever-
ity indication is given (through the volume of breached data),
making it valuable for insurance applications. On the other hand,
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his database is not fed by an insurance portfolio but by various
ources of information, each reporting heterogeneous types of
laims. In particular, the exposure (that is the number of entities
xposed to the risk in the scope of PRC organization) is blur.
In the present paper, we consider the same PRC database to

llustrate our methodology, that can be easily extended to other
ypes of data. The method we develop is adapted to detect such
nstabilities in this context of a database fed by sources of infor-
ation which variety may disturb the evaluation of the risk. We
specially focus on ‘‘extreme’’ events, that is events for which the
everity of the claim is larger than a fixed (high) threshold, seek-
ng to gain further insight on the impact of the characteristics of
ompanies and of the circumstances on a cyber event. Therefore,
elying on regression trees inference and extreme value theory,
e introduce a statistical methodology that takes into account
oth the heterogeneity and the extreme features. In addition, we
ropose an insurance pricing and reserving framework based on
ssumptions on the exposure and on the costs of data breaches
n order to take advantage of the PRC database within the realms
f possibility.
Regression trees are good candidates to understand the origin

f the heterogeneity, since they allow to perform regression and
lassification simultaneously. Since the pioneer works of Breiman
t al. (1984) who introduced CART algorithm (Clustering And
egression Tree), regression trees have been used in many fields,
ncluding industry (see e.g. González et al., 2015), geology (see
.g. Rodriguez-Galiano et al., 2015), ecology (see e.g. De’ath and
abricius, 2000), claim reserving (see e.g. Lopez et al., 2016). A
ice feature of this approach is to introduce nonlinearities in the
ay the distribution is modeled, while furnishing an intelligible

nterpretation of the final classification of response variables.
further argument in favor of the use of regression trees is

he simplicity of the algorithm: such models are fitted to the
ata via an iterative decomposition. The splitting criterion de-
ends on the type of problems one wishes to investigate: the
tandard CART algorithm uses a quadratic loss since it aims at
erforming mean-regression. Alternative loss functions may be
onsidered as in Chaudhuri and Loh (2002) in order to perform
uantile regression or in Su et al. (2004) for log-likelihood loss
or example. Loh (2011, 2014) provide detailed descriptions of
egression trees procedures and a review of their variants. In the
resent paper, we use different types of splitting criteria, with a
articular attention devoted to the tail of the distribution of the
laim size, which describes the behavior of extreme events. We
herefore use a Generalized Pareto distribution to approximate
he tail of the distribution—which is at the core of the ‘‘Peaks Over
hreshold’’ procedure in extreme value theory (see e.g. Pickands,
975; Beirlant et al., 2004)—with parameters depending on the
lasses defined by the regression tree.
The rest of the paper is organized as follows. In Section 2, we

ive a short presentation of the PRC database, its advantages and
ts inconsistencies. The general description of regression trees and
heir adaptation to extreme value analysis is done in Section 3.
hese methodologies are applied to the PRC database in Section 4,
eading to a model for the severity of claims. This model is com-
ined with a frequency model in Section 5.2, in order to quantify
he impact of this analysis on (virtual) insurance portfolios.

. A public data breaches database

The Privacy Rights Clearinghouse (PRC) database is one of the
ew publicly available databases on cyber events which associates
quantification of the severity with a claim. This piece of in-

ormation is crucial from an insurance perspective: evaluation of
he risk associated with a policyholder requires to estimate the
robability of being a victim of a cyber event (or the frequency of
93
Table 1
List of the available variables in the PRC database.
PRC database Variable

Victim data
Name of organization
Sector of organization
Geographic position of organization

Event data

Source of release
Date of release
Type of breach
Number of affected records
Description of the event

Table 2
Labels for activity sectors of victims in the PRC database.
BSF Businesses - Financial and Insurance Services
BSO Businesses - Other
BSR Businesses - Retail/Merchant - Including Online Retail
EDU Educational Institutions
GOV Government & Military
MED Healthcare, Medical Providers & Medical Insurance Services
NGO Nonprofits

occurrence of such events), and to quantify the potential random
loss. Regarding the severity, PRC database does not directly pro-
vide the loss associated with an event, but reports the number
of records (that is the number of user accounts) affected by
the breach. This number is correlated to the financial impact
of the claim, which can be approximatively retrieved through
a formula given in Jacobs (2014) which will be described later
on in Section 5.1. We describe the database in Section 2.1. A
focus on the sources feeding the database is done in Section 2.2.
This short overview helps us to identify some characteristics and
inconsistencies of cyber data summarized in Section 2.3, and will
motivate the use of the methodology developed in the rest of the
paper.

2.1. Description of the database

Privacy Rights Clearinghouse is a nonprofit organization
founded in 1992 which aims at protecting US citizens privacy.
Especially, PRC has maintained a chronology since 2005, listing
companies that have been involved in data breaches affecting
US citizens. This article is based on a download of this database
made on January 23 2019, corresponding to 8860 cyber events
on companies, mainly American companies. Among them, only
8298 events were kept for our analysis, since we eliminated
duplicated and/or inconsistent events (e.g. information on the
targeted company are sometimes not consistent).

The PRC database gathers information regarding each cyber
event (its type, the number of records affected by the breach, a
description of the event) and its victim (the targeted company
name, its activities, its localization). These variables and their
modalities are summarized in Tables 1 to 3. Additional statistics
are shown in the supplementary material (Section 1).

2.2. Multiple sources feeding the database

In this section, we focus on the variable ‘‘Source of release’’.
The PRC organization gathers cyber events from different sources,
which can be clustered into four groups:

• US Government Agencies on the federal level: in the health-
care domain, the Health Insurance Portability and Account-
ability Act (HIPAA) imposes a notification to the Secretary
of the U.S. Department of Health and Human Services for
each breach that affects 500 or more individuals, U.S. HHS
department (2020b). Those notifications are reported online
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Fig. 1. Scatter plots of data breaches listed in the PRC database (the x-axis is the date of the release and the y-axis is the number of records) depending on the
source of information.
Table 3
List of the types of data breaches as labeled in the PRC database.
CARD Fraud involving debit and credit cards that is not accomplished

via hacking

HACK Hacked by outside party or infected by malware

INSD Insider (someone with legitimate access intentionally breaches
information)

PHYS Includes paper documents that are lost, discarded or stolen (non
electronic)

PORT Lost, discarded or stolen laptop, PDA, smartphone, memory stick,
CDs, hard drive, data tape, etc.

STAT Stationary computer loss (lost, inappropriately accessed, discarded
or stolen computer or server not designed for mobility)

DISC Unintended disclosure (not involving hacking, intentional breach
or physical loss)

UNKN Unknown

with free access on the breach portal (U.S. HHS department,
2020a).

• US Government Agencies on the state level: since 2018, ev-
ery state has a specific legislation related to data breaches.
Differences have been studied by Privacy Rights Clearing-
house (2019). Particularly, there is no uniformity on the
threshold (in terms of number of victims) above which a
notification becomes mandatory. Some states publicly re-
lease notifications, which is the case of California through
the online portal (State of California, 2020), but this is not
systematic.

• Media: PRC organization monitors media to list data
breaches that have received extensive media coverage.
94
• Non profit organizations: the PRC database includes the data
breaches reported by other non profit organizations than
PRC, for instance Databreaches.net (2020).

While merging different sources of notifications increases the
scope of the PRC chronology, it also introduces some hetero-
geneity among the reported events, since each source reports a
particular kind of claims. Additionally, the proportion of reported
events from a given source fluctuates through time, as shown in
Figs. 1 and 2.

2.3. Heterogeneity and inconsistencies in PRC database

The way the database has been fed has evolved over time.
These changes have had an impact on our main objective, which
is to analyze the severity of these events. Indeed one may for
example guess that cyber claims that were exposed by media are
more likely to be more ‘‘spectacular’’ (and hence more severe).
This intuition will be confirmed by the quantitative results of
Section 3.

Moreover, a short descriptive analysis of the severity variable
(‘‘number of records’’, see Table 4) shows that it is highly volatile.
One can note an important difference between the median of the
number of records (2000) and the empirical mean (1.821 mil-
lions) because the latter is mainly driven by extreme events (the
largest having 3 billions of records). This important dispersion is
expected, due to the extreme variety of situations considered in
the database. This pleads for reducing this heterogeneity by intro-
ducing appropriate risk classes, and in which we could separate
the sources of information if they appear to be correlated with the
severity of the claim. To determine such classes, our procedure
relies on regression trees which are described in Section 3. They
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Fig. 2. Barplots of data breaches listed in the PRC database (the x-axis is the date of the release and the y-axis is the number of records) depending on the source
f information.
able 4
escriptive statistics for the variable ‘‘Number of records’’ depending on the source of information (first column). qα denotes the empirical α-quantile, that is such
hat α% of observations are smaller than qα .

Number Mean q0.25 Median q0.75 q0.9 q0.95 Max

Total 6160 1821682 597 2000 10891 70000 300000 3000000000
US GA: Federal - HIPAA 1949 84358 981 2300 8009 28440 75016 78800000
US GA: State 888 89377 20 4010 2403 18000 63825 40000000
Media 595 16208786 1400 11266 137193 4420000 41029090 3000000000
Nonprofit organization 2309 422623 380 2000 14000 86333 247200 250000000
Unknown 419 853736 958 2300 9154 30194 61863 191000000
a
a
(

f

offer the advantage to perform an automatic clustering, without
any a priori on the covariates.

3. Regression trees and extreme value analysis

Regression trees are a convenient tool when one wants to
imultaneously predict a response and filter heterogeneity by
etermining clusters among the data. In the sequel, Y denotes
response variable (a ‘‘cost’’ variable representing the severity
f the claim), and X ∈ Rd some covariates (the circumstances of
he claim, the victim(s), the source which detected the event...).
ur observation set is composed of i.i.d. replications (Yi,Xi)1≤i≤n
f (Y ,X). Regression trees aim at determining ‘‘rules’’ to gather
bservations in risk classes depending on the values of their
haracteristics Xi. Therefore they are particularly adapted to the
ituations where the variety of profiles of Xi induces some het-
rogeneity. The CART algorithm, used to compute the trees, is
resented in Section 3.1. Depending on the purpose of regression
rees (typically, in our situation, depending on whether we wish
o investigate the center or the tail of the distribution), an ap-
ropriate loss function has to be defined in order to evaluate the
95
quality of the tree and define splitting rules for the clustering part
of the algorithm. Generalized Pareto regression trees, introduced
in Section 3.2, rely on a splitting rule which is designed to focus
on the tail of the distribution, due to key results in extreme value
theory.

3.1. Regression trees

Regression Trees are modeling tools that allow one to intro-
duce modeling of (nonlinear) heterogeneity between the observa-
tions, by splitting them into classes on which different regression
models are fitted. The aim is to retrieve a regression function
m∗

= argminm∈M E[φ(Y ,m(X))], where, again, Y is our response
variable (the severity of a cyber claim in our case), X ∈ X ⊂ Rd is
set of covariates, M is a class of target functions on Rd and φ is
loss function that depends on the quantity we wish to estimate
see Section 3.1.2).

In the following, we will consider three different types of
unctions φ:

• the quadratic loss φ(y,m(x)) = (y − m(x))2 corresponds to
the situation where the objective is the conditional mean



S. Farkas, O. Lopez and M. Thomas Insurance: Mathematics and Economics 98 (2021) 92–105

f
o
m
a
a
f
c
S
g
r
p

3

o
o
c
x
s
c
s
x
b
i
t
d
r
t
k

S
o

S

T
c
s
o
p
t

3

n
e
t
c
t

C

a
t
(
t
s
a
a
t
B
s

m∗(x) = E[Y |X = x] and M is the set of functions of x with
finite second order moment;

• the absolute loss φ(y,m(x)) = |y − m(x)|, where m∗ is the
conditional median;

• a log-likelihood loss φ(y,m(x)) = − log fm(x)(y), where F =

{fθ : θ ∈ Θ ⊂ Rk
} is a parametric family of densities. This

corresponds to the case where one assumes that the con-
ditional distribution of Y |X = x belongs to the parametric
family F for all x, with parameter m(x) depending on x.

This split of the data is performed in an iterative way, by
inding at each step an appropriate simple rule (that is a condition
n the value of some covariate) to separate the data into two
ore homogeneous classes. The procedure includes two phases:
‘‘growing’’ phase which corresponds to the CART algorithm, and
‘‘pruning’’ step which consists in the extraction of a subtree

rom the decomposition obtained in the initial phase. Pruning
an therefore be understood as a model selection procedure. In
ection 3.1.1, we describe a general version of the CART al-
orithm, and explain in Section 3.1.2 how an estimation of a
egression model can be deduced from a tree obtained in this first
hase. The pruning step is then described in Section 3.1.3.

.1.1. Growing step: construction of the maximal tree
The CART algorithm consists in determining iteratively a set

f ‘‘rules’’ x = (x(1), . . . , x(d)) → Rj(x) to split the data, aiming at
ptimizing some objective function (also referred to as splitting
riterion). More precisely, for each possible value of the covariates
, Rj(x) = 1 or 0 depending on whether some conditions are
atisfied by x, with Rj(x)Rj′ (x) = 0 for j ̸= j′ and

∑
j Rj(x) = 1. In

ase of regression trees, these partitioning rules have a particular
tructure, since they can be written as Rj(x) = 1x1≤x<x2 for some
1 ∈ Rd and x2 ∈ Rd, and the comparison symbols have to
e understood as componentwise comparisons. In other terms,
f d = 1, rules can be identified as partitioning segments, if d = 2
hey are rectangles (hyper-rectangles in the general case). The
etermination of these rules from one step to another can be
epresented as a binary tree, since each rule Rj at step k generates
wo rules Rj1 and Rj2 (with Rj1(x)+Rj2(x) = 0 if Rj(x) = 0) at step
+ 1. The algorithm can be summarized as follows:

tep 1: R1(x) = 1 for all x, and n1 = 1 (corresponds to the root
f the tree).

tepk + 1 : Let (R1, . . . , Rnk ) denote the rules obtained at step k.
For j = 1, . . . , nk,

• if all observations such that Rj(Xi) = 1 have the same
characteristics, then keep rule j as it is no longer possible
to segment the population;

• else, rule Rj is replaced by two new rules Rj1 and Rj2 de-
termined in the following way: for each component X (l) of
X = (X (1), . . . , X (d)), define the best threshold x(l)j⋆ to split the
data, such that x(l)j⋆ = argminx(l) Φ(Rj, x(l)), with

Φ(Rj, x(l)) =

n∑
i=1

φ(Yi, m̂(Rj))Rj(x)

−

n∑
i=1

φ(Yi,ml−(Xi, Rj))1X (l)
i ≤x(l)Rj(x)

−

n∑
i=1

φ(Yi,ml+(Xi, Rj))1X (l)
i >x(l)Rj(x),

where

m̂(Rj) = arg min
m∈M

n∑
φ(Yi,m(Xi))Rj(Xi),
i=1

96
ml−(x, Rj) = arg min
m∈M

n∑
i=1

φ(Yi,m(Xi))1X (l)
i ≤xRj(Xi),

ml+(x, Rj) = arg min
m∈M

n∑
i=1

φ(Yi,m(Xi))1X (l)
i >xRj(Xi).

Then, select the best component index to consider: l̂ =

argminl Φ(Rj, x
(l)
j⋆ ).

Define the two new rules Rj1(x) = Rj(x)1x(̂l)≤x(̂l)j⋆
, and Rj2(x) =

Rj(x)1x(̂l)>x(̂l)j⋆
.

• Let nk+1 denote the new number of rules.

Stopping rule: stop if nk+1 = nk.
As it has already been mentioned, this algorithm has a binary

tree structure. The list of rules (Rj)1≤j≤nk are identified with the
leaves of the tree at step k, and the number of leaves of the tree
is increasing from step k to step k + 1.

In this version of the CART algorithm, all covariates are con-
tinuous or {0, 1}-valued. For qualitative variables with more than
two modalities, they must be transformed into binary variables,
or the algorithm must be slightly modified so that the splitting
step of each Rj should be done by finding the best partition into
two groups on the values of the modalities that minimizes the
loss function. This can be done by ordering the modalities with
respect to the average value – or the median value – of the
response for observations associated with this modality.

The stopping rule can also be slightly modified to ensure that
there is a minimal number of points of the original data in each
leaf of the tree at each step.

3.1.2. From the tree to the regression function
From a set of rules R = (Rj)j=1,...,s, an estimator m̂R of the

function m is given by

m̂R(x) =

s∑
j=1

m̂(Rj)Rj(x).

he final set of rules RM obtained from the CART algorithm is
alled the maximal tree. This leads to a trivial estimator of m,
ince either the number of observations in a leaf is one, or all
bservations in this leaf have the same characteristics x. The
runing step consists in extracting a subtree from the maximal
ree, achieving a compromise between simplicity and good fit.

.1.3. Selection of a subtree: pruning algorithm
For the pruning step, a standard way to proceed is to use a pe-

alized approach to select the appropriate subtree (see Breiman
t al., 1984; Gey and Nédélec, 2005). A subtree S of the maximal
ree is associated with a set of rules RS

= (RS
1 , . . . , RS

nS ) of
ardinality nS . One then selects the subtree Ŝ(α) that minimizes
he criterion

α(S) =

n∑
i=1

φ(Yi,mRS
(Xi)) + αnS, (3.1)

mong all subtrees of the maximal tree, where α is a posi-
ive constant. Hence, the trees with large numbers of leaves
i.e. of rules) are penalized compared to smaller ones. To de-
ermine this tree Ŝ(α), it is not necessary to compute all the
ubtrees from the maximal tree. It suffices to determine, for
ll K ≥ 0, the subtree SK which minimizes the criterion (3.1)
mong all subtrees S with nS = K , and then to choose the
ree SK which minimizes the criterion with respect to K . From
reiman et al. (1984, p. 284–290), these SK are easy to determine,
ince S is obtained by removing one leaf to S .
K K+1



S. Farkas, O. Lopez and M. Thomas Insurance: Mathematics and Economics 98 (2021) 92–105

f
b
s
c
a

t
e

3
d

n
b
d
a

3

b
s
l
o
w

w

p
E
γ
v
a
(
D
i
a
P

h
C
a
t
t
b
t

t
b
c
p

R
0

a
b
G
M

w
b

u

t
h
f
t
a
a
t
i
w
e
t
(

s
n
l
e
a
q
p
o
u
t
f
o
c
p

The penalization constant α is chosen using a test sample or k-
old cross-validation. In the first case, data are split into two parts
efore growing the tree (a training dataset of size n and a test
ample which is not used in computing the tree). In the second
ase, the dataset is randomly split into k parts which successively
ct as training or test sample.
Let α̂ denote the penalization constant calibrated using the

est sample or the k-fold cross-validation approach, our final
stimator is then m̂(x) = mŜ (̂α)(x).

.2. Generalized Pareto regression trees for analyzing the tail of the
istribution

Since the severity of cyber events is highly volatile, it seems
ecessary to develop a specific approach for the tail of distri-
ution. In Section 3.2.1, we recall why Generalized Pareto (GP)
istributions naturally appear in the analysis of heavy-tailed vari-
bles. This motivates our GP trees described in Section 3.2.2.

.2.1. Peaks over threshold method for extreme value analysis
Extreme value analysis is the branch of statistics which has

een developed and broadly used to handle extreme events,
uch as extreme floods, heat waves episodes or extreme financial
osses (Katz et al., 2002; Embrechts et al., 1997). Given a series
f independent and identically distributed observations Y1, Y2, . . .
ith an unknown survival function F̄ (that is F̄ (y) = P(Y1 > y)).

A natural way to define extreme events is to consider the values
of Yi which exceed some high threshold u. The excesses above u
are then defined as the variables Yi − u given that Yi > u. The
asymptotic behavior of extreme events is characterized by the
distribution of the excesses which is given by

F u(y) = P[Y1 − u > y | Y1 > u] =
F (u + y)

F (u)
, y > 0 .

If F satisfies the following property

lim
t→∞

F (ty)

F (y)
= y−1/γ , ∀y > 0, (3.2)

ith γ > 0, then

lim
u→∞

sup
y>0

|F u(y) − Hσu,γ (y)| = 0 (3.3)

for some σu > 0 and Hσu,γ necessarily of the form

Hσu,γ (y) =

(
1 + γ

y
σu

)−1/γ

, y > 0. (3.4)

Here, σu > 0 is a scale parameter and γ > 0 is a shape
arameter, which reflects the heaviness of the tail distribution.
specially, if γ ∈]0; 1[, the expectation of Y is finite whereas if
≥ 1 the expectation of Y is infinite. In our situation of highly

olatile severity variables, the assumption γ > 0 is reasonable
nd supported by the empirical results of Maillart and Sornette
2010) (who even estimated γ > 1). The result from Balkema and
e Haan (1974) states that, if the survival function of the normal-
zed excesses above a high threshold u weakly converges towards
non-degenerate distribution, then the limit is a Generalized
areto distribution (see also Pickands, 1975).
In practice, the so-called Peaks over Threshold (PoT) method

as been widely used since 1990 (see Davison and Smith, 1990;
oles, 2001). It consists in choosing a high threshold u and fitting
GP distribution on the excesses above that threshold u. The es-
imation of the parameters σ and γ may be done by maximizing
he GP likelihood. The choice of the threshold u implies a balance
etween bias and variance. Too low a threshold is likely to violate
he asymptotic basis of the model, leading to bias; too high a
97
hreshold will generate few excesses with which the model can
e estimated, leading to high variance. The standard practice is to
hoose as low a threshold as possible, subject to the limit model
roviding a reasonable approximation.

emark 3.1. Property (3.2) is called regular variation. When γ >

, we say that F is heavy-tailed, meaning that its tail decreases
polynomially. Usual distributions as Pareto, Cauchy and Student
distributions satisfy this property. For more details, see De Haan
and Ferreira (2007, Appendix B).

3.2.2. Generalized Pareto regression trees
When it comes to studying the severity of cyber claims, we

expect to see a potential heterogeneity in the tail of the distribu-
tion. In order to improve the precision of our analysis, a natural
idea is to study the impact of the circumstances of the claim and
of the characteristics of the victim on the response variable. In
our regression framework, for each value of the covariate x, we
ssume the conditional distribution of Y |X = x to be heavy-tailed,
ut the parameters γ , σ (and the threshold u above which the
P distribution approximation seems satisfactory) depend on x.
ore precisely, this means that (3.2) becomes

lim
t→∞

F (ty|x)
F (y|x)

= y−1/γ (x), ∀y > 0, (3.5)

here F (y|x) = P(Y ≥ y|X = x) with γ (x) > 0 for all x, and (3.3)
ecomes

lim
(x)→∞

sup
y>0

|F u(x)(y | x) − Hσu(x)(x),γ (x)(y)| = 0. (3.6)

where F u(x)(y | x) = P[Y − u(x) > y | Y > u(x),X = x].
The idea is then to apply the procedure of Section 3 to the

observations (Yi − u(Xi),Xi) for which Yi ≥ u(Xi), using the
Generalized Pareto log-likelihood as split function, that is

φ(y,m(x)) = − log(σ (x)) −

(
1

γ (x)
+ 1

)
log

(
1 +

yγ (x)
σ (x)

)
,

where m(x) = (σ (x), γ (x)) (we use the notation σ (x) = σu(x)(x)
o simplify). The function u(x) is an input of the procedure, and
as to be taken so that the GP distribution fit seems appropriate
or all considered values of covariates. The practical choice of
his function is a delicate problem (see Section 4 in Beirlant
nd Goegebeur, 2004). To simplify, we consider in the following
fixed threshold u(x) = u for all values of covariates x. The

hreshold u is chosen large enough so that the GP approximation
s correctly fitted to the data (practical choice of this parameter
ill be discussed in Section 4.2, see also Remark 3.2). In the
nd, the leaves of the tree identify classes, each corresponding
o different tail behaviors (that is with different values of m(x) =

σ (x), γ (x)), the function m being constant on each leaf.
Compared to competing approaches in extreme value regres-

ion, the advantage of the procedure is to introduce disconti-
uities in the regression function while parametric approaches,
ike in Beirlant and Goegebeur (2003), suppose a form of lin-
arity. More flexible nonparametric approaches, as in Beirlant
nd Goegebeur (2004), rely on smoothing techniques that re-
uire covariates to be continuous. Chavez-Demoulin et al. (2015)
ropose a semiparametric framework to separate the continu-
us covariates from the discrete ones. Smoothing splines are
sed to estimate nonparametrically the continuous part, while
he influence of discrete covariates is captured by a parametric
unction. Due to the nice properties of this technique applied
n operational risk data in Chavez-Demoulin et al. (2015), we
ompare the results of our GP regression tree approach to their
rocedure in Section 4.3.
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Fig. 3. Trees obtained from the CART algorithm based on the quadratic (left-hand side) and the absolute (right-hand side) losses. For each leaf, the value of the
empirical median (first line) and mean (second line) are given. Percentage of observations affected to each leaf is mentioned.
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Remark 3.2. As already stated, the conditional version of (3.4)
sed in extreme value regression leads to the introduction of a
hreshold function u(x) that potentially depends on x. A possi-
ility would be to adapt the CART algorithm to select, at each
tep, a choice of threshold that could be different in each leaf.
owever, this complexifies considerably the technique, and we
id not consider it.

. PRC database analysis with regression trees

In this section, we apply the different variations of the regres-
ion tree approach of Section 3 to the response variable Y =

‘Number of Records’’ in the PRC database. Let us note that,
espite its name, this variable can be considered as continuous,
ince this number of records takes a wide range of values (see
able 4) with few ties (caused by rounded numbers). Section 4.1
escribes regression tree analysis of the central part of the distri-
ution, while the tail part is considered in Section 4.2, applying
P trees. Comparison with the fit of a GAM model as in Chavez-
emoulin et al. (2015) is shown in Section 4.3. Section 4.4 shows
ow our two regression tree approaches (one for the central part
f the distribution, one for the tail) can be combined to provide a
lobal analysis of the distribution. A discussion on the insurability
f cyber risk—which, from a probabilistic point of view, is closely
elated to the value of the tail parameter γ—is done in Section 4.5.

4.1. Central part of the severity distribution

In order to estimate the conditional mean E[Y |X = x], with
regression tree, the loss function φ has to be chosen as the
uadratic loss φ(y,m(x)) = (y − m(x))2. The conditional mean
s particularly important in view of computing a pure premium
n insurance (pure premium corresponds to estimating the ex-
ectation of the cost, which requires to estimate the frequency of
ccurrence and the mean value of a claim), but this indicator is
ot robust, due to its sensitivity to large observations. Let us also
bserve that this conditional expectation may even not be defined
or some values of X since Y is heavy-tailed. Since the variable Y
we study is highly volatile, investigating the conditional median
of the distribution of Y |X = x (that is med(Y |X = x) =

nf{y : F (y|x) ≥ 1/2}, where F (y|x) = P(Y ≤ y|X = x)) may
e more stable. Estimating the conditional median corresponds
o the choice of the absolute loss as the loss function, that is
(y,m(x)) = |y − m(x)|.
We fit regression trees using these two loss functions. These

rees are computed using the R package rpart (see Therneau and
linic, 2019), by using a user defined split function. The pruning
tep has been done thanks to a 10-fold cross validation used for
rror measurement and the selection of a proper subtree. The
btained trees are shown in Fig. 3.
98
The structure of the trees is different for the conditional me-
ian compared to the conditional expectation, although some
imilarities exist. For example, the category of victims ‘‘Business
Other)’’ seems generally associated with higher severity: for the
ean tree, all events are gathered in the same leaf, except for

hose affecting this category of targets, which are associated with
he largest predicted values. The picture is slightly different for
he median tree: the highest predicted values are still linked with
he ‘‘Business (Other)’’ category, but only under particular circum-
tances. In both cases, the Media source is generally associated
ith larger events.
The leaves of the trees determine clusters. If one wants to get

distribution for the claim severity, a distribution can be fitted on
ach leaf, see the supplementary material (Section 1.3) for more
etails.

emark 4.1. Our procedure consists in first determining clusters
using regression trees with L2 or L1 loss), and then fitting log-
ormal distributions to each leaf. This last step is only required if
ne wishes to have a global model for the distribution of Y . One
ould directly use a log-normal log-likelihood as split criterion to
btain different clusters that should improve the log-normal fit.
he reason for not choosing this path is because our purpose is
ssentially to understand which covariates drive the central part
f the distribution (in order to compare it to the study of the
ail, which is our main objective), but comparisons with a direct
og-normal fit can be found in Section 2.1 of the supplementary
aterial. The L2 and L1 trees are supposed to provide clusters that
re based on the expectation or the median, with no particular
ssumption on the conditional distribution of Y in each leaf. In
act, fitting these trees can be done even in the case where all
he leaves do not correspond to the same family of distribution
one may fit a gamma distribution in one leaf, a log-normal in
nother).

.2. Tail part of the severity distribution

In view of applying the GP regression tree approach of Sec-
ion 3.2.2, our first task is to determine the threshold u above
hich the GP distribution approximation seems reasonable. This
hoice is made from the Hill plot (shown in the Appendix A,
ig. 6) (see Resnick, 2007, pp 85–89 for more details on Hill plots).
rom the shape of the curve, we chose u = 27 999 (which
orresponds to a stabilization of the Hill plot) which leads to keep
he 1000 highest observations (around 16% of the total number of
reaches). Let us note that Hill plots are not designed for regres-
ion methods. In our context, as already pointed in Remark 3.2,
ne could look at thresholds depending on the covariates. See also
ection 4 in Beirlant and Goegebeur (2004) who discussed this
hoice of thresholds in extreme value regression, and Section 4
f the supplementary material.
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able 5
eneralized Pareto parameters estimated by the Generalized Pareto regres-
ion Tree based on excesses and the 95% confidence intervals (given under
rackets).

Leaf 1 Leaf 2 Leaf 3

γ 1.43 [1.21;1.64] 1.72 [1.41;2.04] 3.26 [2.62;3.91]
σ .10−5 0.36 [0.29;0.43] 0.76 [0.55;0.97] 1.82 [0.98;2.67]

Fig. 4. Tree obtained from the CART algorithm based on the Generalized Pareto
log-likelihood splitting rule (fitted on the observations exceeding the threshold
u). For each leaf, the estimates of γ and their 95% confidence intervals are given.

Fig. 4 shows the obtained GP tree (fitted using the library
part in R, with the appropriate user defined loss function), and
ariable importance is evaluated in Table 8 (more details on the
omputation of variable importance can be found in the supple-
entary material, Section 4). The confidence intervals for the pa-

ameters estimates in each leaf are reported in Table 5. Goodness-
f-fit for the different leaves is shown through quantile–quantile
lots in Appendix A.2, see Fig. 7. Let us first note that the structure
f the GP tree is quite different from the ones obtained from the
entral part of the distribution. The estimated values of the shape
nd scale parameters on each leaf have first to be compared to
he values obtained if we fit a GP distribution to the whole set
f observations greater than u. In this case, maximum likelihood

estimation leads to σ̂ = 48 243 (the 95% confidence interval is
[40 685; 55 802]) and γ̂ = 2.16 (the 95% confidence interval is
1.96; 2.36]). The worst case scenario, corresponding to the leaf
ith shape estimate 3.26, is even worse than this benchmark. Yet,
he two other leaves, representing 82% of the extreme events,
re ‘‘lighter’’ (although still associated with a shape parameter
reater than 1, that is such that the expectation is not finite).
Moreover, let us observe that the major part of these events

orresponds to a shape parameter equal to 1.43, which is close
o the estimate of the tail distribution index provided by Maillart
nd Sornette (2010).

emark 4.2. The value γ̂ = 2.16 obtained from the whole
ample implies that E[Y ] = ∞. This indicates that the quadratic
ased regression method may not only lack robustness, but leads
o ill-defined estimates (since the conditional expectation is not
efined, at least for some leaves in the tree).

.3. Comparison with generalized additive models

To compare the GP regression tree with competing extreme
alue regression approaches, we implemented the methodology
eveloped by Chavez-Demoulin et al. (2015), that is using a Gen-
ralized Additive Model based on GP distributions for studying
he tail (that is for Y ≥ u). We will use the notation GAM GPD
 d

99
Fig. 5. Tree obtained from the CART algorithm based on the absolute loss fitted
on the observations such that the variable ‘‘Number of Records’’ is less than u.
For each leaf, the median (above) and the mean (below) are given.

to refer to this technique. A short description of this technique is
provided in the supplementary material (Section 3.1), along with
estimates for the values of the model parameters.

Table 6 compares the fits of the GP tree with GAM GPD. Clas-
sical GP distribution fit (that is, using the PoT approach and with-
out taking attention to the impact of the covariates) is also con-
sidered as a benchmark. We see that, in terms of log-likelihood
and Akaike criterion (AIC), both regression techniques signifi-
cantly improve this benchmark model, with a slightly better fit
for the GP tree.

4.4. Global distribution analysis

The GP tree of Fig. 4 only provides an analysis of the distribu-
tion above a threshold u. If one wishes a global distribution, one
must combine this approach with an analysis of the central part
of the distribution. On the other hand, the analysis of Section 4.1
provides such a global analysis, but without taking the tail into
account. Moreover, going back to the trees of Fig. 3, one can notice
that, in each leaf, there is a significant difference between the
value of the mean and the value of the median, as it is the case
in the global set of observations (see Section 2.3). This invites us
to look at a regression tree computed using the same method
as in Section 4.1 (using absolute loss since less sensitive to large
observations, the tree obtained via quadratic loss is shown in the
supplementary material) but only on observations smaller than
the threshold u. To summarize, observations are cut in two parts:
observations with Y ≤ u are fitted using a regression tree based
on absolute loss, while observations larger than u are fitted using
the GP tree of Section 4.2.

This leads to the regression tree of Fig. 5. We see that the gap
between the empirical median and the empirical mean in each
leaf has been drastically reduced. On the other hand, the tree has
a different structure than the one obtained from the global set of
observations in Fig. 3, which shows that the presence of extreme
values influences the obtained clusters.

A log-normal distribution (truncated by u) is fitted on the
leaves of the absolute tree. The corresponding parameters are
listed in Table 7.

To obtain the global distribution of the variable Y = ‘‘Number
f records’’, the combination of the results of the trees from Figs. 5
nd 4 and Table 7 is done in the following way. We consider that
he conditional distribution of Y is a mixture variable with same

istribution as δZ1 + (1 − δ)Z2, where:
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Table 6
Comparison of extreme value theory methodologies.

Covariates used for σ Covariates used for γ LL AIC

GP distribution – – −2122 4249
GPD GAM Organization and source Date and organization −2031 4098
GP tree Type of organization and source Type of organization and source −2024 4072
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Table 7
Truncated log normal parameters estimated by the absolute loss tree based on
data below u. The parameter µ is the location parameter (expectation of the
logarithm of the variable) and σ the scale parameter (standard deviation of the
logarithm of the variable). Leaves are numerated from left to right according to
the representation of the tree from Fig. 5. 95% intervals are given in brackets.

Leaf 1 Leaf 2 Leaf 3

µ 5.62 [5.30;5.94] 6.79 [6.54;7.04] 6.95 [6.73;7.16]
σ 3.37 [3.13;3.61] 2.46 [2.26;2.65] 2.19 [2.02;2.35]

Leaf 4 Leaf 5 Leaf 6

µ 7.64 [7.57;7.70] 8.20 [7.85;8.54] 8.72 [8.36;9.07]
σ 1.31 [1.26;1.36] 2.27 [2.04;2.49] 1.91 [1.69;2.13]

Table 8
Variable importance for the absolute tree of Fig. 5 and for the Generalized Pareto
tree of Fig. 4 (in %).

Source Type of breach Type of organization Year

Central part tree 47 17 18 17
Tail part tree 35 – 48 17

• δ is a Bernoulli random variable independent from X, and
p = P(δ = 1) is the probability for an observation Yi to be
smaller than the threshold u;

• Z1|X = x has a distribution given by the absolute tree
of Fig. 5 (where each leaf is associated with a truncated
log-normal distribution determined by the parameters of
Table 7);

• Z2|X = x has a distribution given by the GP tree of Fig. 4;
• δ is independent from (Z1, Z2) and Z1 and Z2 are independent

conditionally to X.

et us recall that our estimate for p, in the PRC case, is the
roportion of observations whose number of records is smaller
han u, that is 0.84.

To complete this section, Table 8 reports the variable impor-
ance for both trees involved in this scheme. This confirms the
elevance of separating the tail from the center of the distribution,
ince the variables driving the tail are different (at least in terms
f hierarchy) from the ones driving the center.

.5. Insurability of cyber risk

If we focus only on the tail of the distribution, the model
itted by the GP regression tree induces a mixture of three GP
istributions for the unconditional distribution of Y . The advan-
age, compared to fitting a single GP distribution to all data
arger than u, is that the tail index that the resulting shape index
ends to be too pessimistic. Theoretically speaking, the tail index
stimation of the global distribution should converge towards the
orst tail index of the elements of the GP mixture. The GP
ree technique presents the advantage to allow identification of
ome groups of claims that are still associated with a heavy tail
ehavior, but with more moderate consequences (in our example,
ll three leaves of the tree in Fig. 4 correspond to an infinite
xpectation, but let us recall that we are working with a proxy
ariable for the real amount of a claim). Hence we argue that
sing such techniques on more elaborate insurance databases can
e a valuable tool to identify which types of cyber risks should be
xcluded from the policies (if the insurance company is unable to
100
anage it), and potentially be used to reduce the premium if the
nsured population is associated with a lower risk.

. An illustration on virtual cyber portfolios

The statistical approach performed in Section 4 is done using
ll the covariates present in the public PRC database. The aim is to
chieve the best possible understanding of what drives the sever-
ty of cyber events. On the other hand, if one wishes to combine
his analysis with an insurance perspective, an adaptation has to
e made. It is the purpose of the present section to explain how
his can be done. The question of coupling public database with
ntern information (from the history of the portfolio) is indeed
undamental in the context of cyber insurance, due to the lack
f experience on the risk for many companies.
In this paper, we only address how to use the GP regression

rees to project the result of a cyber insurance portfolio. In a real-
ife situation, this has to be combined with more reliable (but
oorer) intern data. We perform simulations on four portfolios of
000 policies, where each portfolio is composed of policyholders
oming from only one of the following sectors of activities: BSF,
SO, BSR, or MED. The simulations use the different models we
itted on data. Nevertheless, the severity analysis we performed
n Section 4 must be completed by three additional assumptions
o produce an evaluation of the cost:

1. a transformation f that maps a number of records Y to a
financial loss f (Y );

2. a frequency analysis to model the occurrence of cyber
claims, that is a distribution for Ni = number of incidents
for the ith policyholder within 1 year;

3. once a claim has occurred, a probability distribution to
determine the type of incident: indeed, since the type
of breach has been seen to have a significant impact on
the distribution of the claim size, we need to distinguish
between these different categories of claims.

The total loss of the portfolio is then

S =

1000∑
j=1

Ni∑
j=1

f (Yi,j),

where (Yi,j)1≤i≤n,1≤j≤Ni are the number of records for the claims of
policyholder i (the number of records are supposed independent
from Ni in this simple model). The distribution of S is then
deduced from the points 1 to 3 above. In Sections 5.1 to 5.3 , we
address successively each of these points. We then explain the
simulation procedures we use to evaluate the total loss of each
portfolio in Section 5.4.

5.1. Loss quantification of a data breach

Jacobs (2014) provided a model to transform a volume of data
breach Y into a financial loss L = f (Y ). This model, which has
also been used in Eling and Loperfido (2017), is based on data
from Ponemon Institute LLC used Cost of Data Breach (CODB)
reports of 2013 and 2014. The formula is

log(L) = 7.68 + 0.76 log(Y ). (5.1)
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able 9
ata breaches used to calibrate Formula (5.2): the costs of moderate breaches
ave been computed using Formula (5.1); the mega breaches are the only two
ommunicated in CODB 2018.

Moderate breaches Mega breaches

Number of records 10000 100000 1000000 50000000
Costs (in $) 2 373458 13657827 39490000 350000000
Costs per record (in $) 237 137 39 7

A limit for this formula and analysis is that, in 2014, data
athered by the Ponemon Institute LLC was restricted. Indeed,
he highest observed data breach had a size of 100 000 records,
ar from the highest one of the actual PRC database (which is 3
illions). Hence we propose to use a modified version of (5.1),
sing additional information contained in the 2018 CODB report,
n which, ‘‘for the first time, [one] attempt[s] to measure the cost
f a data breach involving more than one million compromised
ecords, or what [one] refer[s] to as a mega breach’’.

Since only two costs of mega breaches are publicly available
n the 2018 CODB report, we performed a rough fit of a linear
elationship between log L and log Y , based on four points de-
ailed in Table 9. These four points are the two mega breaches,
nd two artificial points obtained, for moderate breaches, by the
pplication of Formula (5.1). This presents the advantage to take
ormula (5.1) into account and benefit from the fact that it has
een calibrated on a large (non public) database, while using the
dditional information on mega breaches.
This leads to the following formula that will be used in our

oss quantification,

log(L) = 9.59 + 0.57 log(Y ). (5.2)

The difference between the results of Formulas (5.1) and (5.2)
s shown in the supplementary material (Section 3.2). The results
re relatively close for the most part of the events contained in
he PRC database, but for the largest ones, the difference becomes
ignificant (with Formula (5.2) leading to smaller costs).
Clearly, we do not claim that Formula (5.2) is accurate for

he association of a financial loss to the number of records. Our
urpose is only to have a rough approximation of it. From the
public) data we have at our disposal, there is no way to pretend
ne is able to perform this evaluation with a good statistical
recision. In practice, based on real loss data, the analysis that
e provide can be seen as a rough benchmark that clearly needs
o be improved by the use of more precise information.

Let us also note that Romanosky (2016) also studied the cost
f data breaches using a private database gathering cyber events
nd associated losses. However, the obtained calibration requires
nformation which is unavailable in the database used in this
aper (but should be known from an insurance company when
ealing with a real portfolio).

emark 5.1. The GP regression tree of Fig. 4 has been done on
he variable Y and not on the loss variable f (Y ). This choice has
een done because we wanted to focus on the most reliable data,
hile Formula (5.2) is an approximation. However, the shape
arameter of the GP distribution of f (Y ) can be easily deduced.
et us recall that this parameter is of most importance, since
t gives us the decay of the survival function of f (Y ) (if this
arameter is larger or equal to 1, f (Y ) has no expectation, and
ence can be considered as ‘‘non-insurable’’ in a simplified vision
f the problem). If P(Y ≥ y) ∼ Cy−1/γ , where γ > 0 is the

shape parameter of Y and C is a constant, considering f (y) =

exp(α + β log y) leads to

P(f (Y ) ≥ z) = P
(
Y ≥ exp

(
log z − α

))
∼ C
β

101
× exp
(

−
α

βγ

)
z−

1
βγ .

Hence, the shape parameter of f (Y ) is βγ . In (5.2), β = 0.57.
ence, the three leaves of the tree of Fig. 4 have respective shape
arameters 0.82, 0.98, 1.86. If we do not separate our claims
nto these three classes of risk, the shape parameters would have
een 0.57 × 2.16 = 1.23. All of these numerical results should

be taken carefully: the question of insurability is not so simple
as determining if a GP shape parameter is smaller than one
or not (and let us observe that, with Formula (5.1), all shapes
parameters would have been greater than 1), but it still shows
the importance to distinguish tail behaviors depending on the
covariates in order to identify more clearly which type of risks
can be managed and which cannot.

5.2. Frequency analysis

To provide an insurance pricing methodology, estimation of
the annual frequency of claims is mandatory. The PRC database
is not adequate to estimate this quantity rigorously. Neverthe-
less, we present here a possible way to roughly evaluate this
frequency. This seems important for, at least, two reasons: (1)
we want to provide an order of magnitude for the cost of cy-
ber contracts; (2) even for an insurance company with a cyber
portfolio, it is likely that frequency would be poorly estimated
only based on internal historical data: since the risk is new, the
number of reported claims would be too small to perform an
accurate estimation. Hence, we believe that the combination of
these information with external information – including public
databases like PRC – is essential to improve the evaluation of the
risk.

An important issue with the PRC database is the lack of knowl-
edge of the exposure to the risk. Typically, it is impossible to
know from such data which part of the increase of reported
claims along time is caused by an evolution of the risk, and which
is caused by an instability in the way the database is fed. This
can be seen, for example, from Fig. 2. For example, the choice of
PRC to stop gathering data breaches revealed by nonprofit orga-
nizations as from 2013 and a peak of data released by the media
between 2015 and 2016 may be observed. Moreover, Bisogni et al.
(2017) claim that the majority of data breaches proves to be
unreported.

Hence, we propose two heuristics to derive a frequency anal-
ysis from the PRC database:

(H1) we restrain ourselves to companies listed in the PRC
database that have been breached at least twice according
to the PRC database. Since almost 90% of companies listed
in PRC are reported only once, one may fear that the infor-
mation about them is not completely reliable. On the other
hand, a repeatedly reported company has more chances
to have its major breaches exhaustively reported in the
database. The frequency is estimated from companies that
have been breached multiple times, considering that we
are dealing with 1-truncated data.

(H2) we restrain ourselves to companies quoted on the New
York Stock Exchange (NYSE) that have been breached at
least once according to the PRC database. This idea has
first been suggested by Wheatley et al. (2016). Here, 94%
of companies of NYSE are absent from the PRC database.
Assuming that no breach occurred for all of them seems
unrealistic and would considerably lower the frequency:
their absence is more likely due to the fact that these
breaches have not been reported by the processes of PRC.
If a company is associated with 0 claim, it is therefore not
certain that this absence from PRC is really caused by the
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absence of a breach, or by the fact that this entity was not
in the scope of PRC. Hence, we consider that data from
these companies is 0-truncated.

In the following, we consider two portfolios corresponding
ither to case (H1) (PRC portfolio) or case (H2) (NYSE portfolio).
summary of descriptive count statistics for both portfolios is

iven in the supplementary material (Section 1.2).
To model the number of claims striking a portfolio, we fit a

eneralized Linear Model (GLM), considering the sector of activity
s a covariate. For the PRC portfolio, we consider the sectors
SF, BSO, BSR, EDU, GOV and MED only, deliberately excluding
he NGO sector because of lack of data on this category. The
YSE portfolio does not contain companies from sectors EDU,
OV and NGO. We consider two cases: a GLM based on a Poisson
istribution, and one on a geometric distribution (for all k ≥ 0,

the probability that a geometric distribution is k is p(1 − p)k,
where p is a parameter taking values in (0, 1)). More precisely,
these two models can be written as

g(E[N|X]) = Xβ , with

⎧⎨⎩N ∼ P(λ) and g(x) = log(x).
or

N ∼ G(p) and g(x) = log
( x
1−x

)
.

(5.3)

On the PRC database, fitting indicators can be found in the
supplementary material, Section 1.2, showing that the geometric
GLM seems more adequate than the Poisson one.

5.3. Type of incident

The frequency of claims determined in Section 5.2 does not
include the variety of cyber incidents: it is a global frequency,
regardless the type of claims. If we want to simulate the impact
on our insurance portfolio, we must simulate also a type of event
once an event occurred. In our simulation scheme, the idea is to
use a multinomial random variable to draw the type of event. We
assume that the parameters only depend on the type of activity of
the victim (which is the only variable available for the insurance
company, among those present in the regression trees).

Let S denote an indicator of the sector of activity, and M
denote the type of breach. We can write

P(M = m|S = s) =
eβs,0+βs,m∑
m′ eβs,0+βs,m′

,

where βs,0 corresponds to a reference category (here we took as
reference category the incidents for which the type of organiza-
tion is unknown).

In full generality, this would lead to the estimation of a large
number of coefficients, with few data to calibrate them. To re-
duce the number of parameters, we used a LASSO dimension
reduction technique (the log-likelihood is penalized using a L1-
penalty on the fitted coefficients βs,m, with a parameter tuned
through 10-fold cross validation, see e.g. Tibshirani (1996)). The
matrix of fitted coefficients can be found in Section 1.2 of the
supplementary material.

5.4. Results

We now show the impact of these models on our virtual
portfolios. We recall that we consider four portfolios with 1000
policyholders, each composed of entities of a single category
among BSF, BSR, EDU and MED. The losses of each portfolio are
simulated according to the following procedure:

1. For each policyholder, we simulate a number of claims
under the geometric model of Section 5.2.
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2. For each claim, we determine which type of incident has
caused the claim from the multinomial distribution of
Section 5.3.

3. We simulate the number of records accordingly to four
methodologies, assuming, in each case, that the distribu-
tion is the same as the one given by one single source of
information (US GA State or Media):

• Clustering: we use the tree obtained with the abso-
lute loss from Fig. 3 to determine risk classes. The
distribution of the claims in each leaf of the tree is
considered as log-normal using the following set of
parameters: (7.56, 2.66) for leaf 1, (8.88, 3.11) for
leaf 2, (8.19, 3.25) for leaf 3, (12.67, 4.19) for leaf 4,
(13.47, 4.42) for leaf 5 (leaves numerated from left
to right, first parameter (resp. second) is the expec-
tation (standard deviation) of the logarithm of the
log-normal variable).

• GP regression tree: we use the combination of the
trees of Figs. 4 and 5, as described in Section 4.4.
For the central part, log-normal distributions are used,
with the fitted parameters of Table 7.

• GAM GPD: for comparison, we considered the ap-
proach developed by Chavez-Demoulin et al. (2015),
which is exposed in detail in the supplementary ma-
terial.

4. We use (5.2) to convert this number of records into a
financial loss (a comparison with the use of (5.1) can be
found in the supplementary material, Section 3.2).

Results of these simulation procedures are summarized in Ta-
ble 10. Let us first remark that, regarding the clustering approach
based on a single tree (built using absolute loss), the difference
between the median quantile q0.5 and q0.9 is much smaller than
for the two other approaches. This was expected, due to the use
of a GP distribution to model the tail for the last two models. On
the other hand, the order of magnitude of all tree-based methods
is much smaller than for the GAM GPD approach, although all
sectors generally keep the same ranking in terms of severity from
one model to another.

It is also interesting to notice that, in our tree-based methods,
separating the tail from the central part of the distribution pushes
up the value of the median quantile of the loss (of course the
push on the q0.9 quantile was expected, because a specific model
has been done on the tail of the distribution). Through this phe-
nomenon, one can observe once again the benefit of separating
‘‘extreme’’ observations from the others: their presence in the
sample distorts the fitting of the tree and of the log-normal
distributions in the leaves, even though we chose a relatively
stable procedure through the use of the absolute loss.

6. Conclusion

In this paper, we applied regression trees as a valuable tool
for analyzing cyber claims. For reproducibility purpose, all models
have been fitted on a public database, the PRC database. Although
this database, widely used in the literature, presents serious
drawbacks and inconsistencies as we discussed it intensively
throughout the paper, the methodology can be easily extended
to other private databases, and several conclusions we draw can
be generalized. The first observation is the heterogeneity of cyber
events in terms of severity. This is, of course, a well known
fact. However the regression tree approaches allow a clarifica-
tion and a quantification of some characteristics that create this
heterogeneity. For example, some sectors of activity (Healthcare,

Education, Nonprofit organization) seem to have significantly
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Table 10
Comparison of median and 0.9-quantile depending on the methodology used (through columns) and the additional hypothesis
regarding the source of information and the frequency portfolio (through lines). Quantities are given in million of dollars and have
been obtained after 10 000 simulations.
Modeling methodology Clustering GAM GPD GP tree

Source Frequency Organization q0.5 q0.9 q0.5 q0.9 q0.5 q0.9

US GA State

(H1)

BSF 286 424 2561 58 764 433 1 320
BSO 363 522 4806 156 055 572 1 755
BSR 235 358 1851 41 563 351 1 074
MED 305 447 497 2446 284 574

(H2)

BSF 342 498 3426 75 515 532 1 558
BSO 202 317 1445 41 952 292 916
BSR 244 374 2077 46 042 365 1 140
MED 223 345 332 1 695 203 434

Media

(H1)

BSF 884 1 491 3651 82 832 3455 78 978
BSO 23 686 62 795 6857 223 796 5602 123 629
BSR 12 236 38 421 2695 58 175 2511 51 070
MED 942 1 556 744 3 744 348 648

(H2)

BSF 1 056 1 747 5110 105 458 4604 106 816
BSO 11 860 37 837 2086 60 200 1900 40 166
BSR 13 069 40 128 3005 66 493 2698 55 113
MED 683 1 204 508 2 478 252 475
lighter tail than the others (see Fig. 4). Moreover, it appears
that the central part of the distribution does not behave like the
tail—in the sense that the impact of the covariates on this right
tail does not seem to be identical to what we can observe on
the core of the distribution. Among the categories of targeted
organizations which are associated with the lightest tail, one
can observe that Healthcare and Education are mainly affected
to the right-hand side of the tree describing the central part of
the distribution (see Fig. 5), meaning that the severity of claims
striking them is, in average, higher. This shows the importance of
a separate analysis of ‘‘typical’’ claims, and ‘‘extreme’’ ones. This
dissemblance between what drives the center and what drives
the tail of the distribution is not specific to cyber, but is probably
reinforced by the various profiles of cyber criminals (home-made
attacks versus larger scale criminal organizations). Finally, the
results on our analysis based on GP trees reveal that there may be
a significant operational impact if we pay attention to clustering
types of ‘‘extreme’’ claims.

We want to emphasize this last point: our analysis tends to
cknowledge that a classical peaks over threshold approach (that
s ignoring the influence of covariates on the shape parameter)
eads to considering the whole tail of the distribution as too
eavy. On the other hand, identifying some clusters for extreme
vents could at least be interesting for designing appropriate
isk management strategies for some type of claims. Our purpose
s not to draw a clear line between which criterion should be
sed to exclude or not some type of claims from the perimeter of
nsurance contracts, our data are not accurate enough to elaborate
recise recommendations. Nevertheless we strongly advocate for
eveloping such regression approaches to better understand and
anage extreme claims.
Regarding estimation of the frequency, the approach we took

s very approximative due to the lack of consistency of data. Nev-
rtheless, this analysis seemed to us essential in order to show
ow a whole insurance pricing and reserving methodology can
e developed. Moreover, due to the relative novelty of the risk,
he information gathered by insurance companies are sufficiently
ecent to take advantage on additional sources of (public) data.
ence we believe that a promising field of research is to find
proper way for companies to combine internal data and these
xternal sources, provided that a rigorous statistical analysis has
irst identified and corrected their biases.
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Fig. 6. Hill plot for the number of records.
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Appendix A

A.1. Hill plot

Fig. 6 shows the Hill plot for the number of records (see
Resnick, 2007, pp 85–89 for more details on Hill plots). From the
shape of the curve, we chose u = 27 999 (which corresponds to a
stabilization of the Hill plot) which leads to keep the 1000 highest
observations (around 16% of the total number of breaches).

A.2. Goodness of fit for GP tree and comparison tests

Fig. 7 gathers quantile–quantile plots corresponding to each
leaf of our final GP tree of Fig. 4. After fitting the GP tree of Fig. 4,
we check that the three clusters can be considered dissimilar
enough so that they cannot be grouped into a single one (which

https://bitbucket.org/sebastien_farkas/cyber_claim_analysis_gpd_regression_trees/
https://bitbucket.org/sebastien_farkas/cyber_claim_analysis_gpd_regression_trees/
https://bitbucket.org/sebastien_farkas/cyber_claim_analysis_gpd_regression_trees/
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Fig. 7. Quantile plots of Generalized Pareto distribution fits on all observations exceeding the threshold u (Figure (a)) and on samples of each of the 3 leaves of
he Generalized Pareto tree of Fig. 4 (Figures (b), (c) and (d)).
able 11
tatistics and p-values of the two sample Kolmogorov–Smirnov tests computing
n samples of the leaves of the Generalized Pareto tree, two by two.
Leaf of the first
sample

Leaf of the
second sample

KS
statistic

KS p-value

1 2 0.22 1.94 × 10−8

1 3 0.44 <2.2 × 10−16

2 3 0.32 8.07 × 10−11

would considerably simplify the study by performing standard
extreme value analysis methodologies, i.e. without taking covari-
ates into account). A Kolmogorov–Smirnov test (see Section 6.9
in Lehmann and Romano, 2006) has been used to compare the
empirical distribution of each couple of leaves. The p-values are
iven in Table 11. They suggest a rejection of the null hypothesis.
e also considered a likelihood ratio test (see Section 12.4.4 in

ehmann and Romano, 2006) which uses the particular structure
104
of GP distribution. This consists in computing the difference
between the log-likelihood obtained from the tree to the log-
likelihood obtained when a single GP distribution is fitted to the
whole set of observations. The value of this test statistic is 169.8,
leading to a p-value lower than 2.2 × 10−16, which once again
suggests a significant improvement of the fit.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.insmatheco.2021.02.009.
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