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Abstract

This research introduces a novel supervisory tool, the Pioneers Detection Method,
aimed at enhancing resilience in insurance markets dealing with the uncertainties of
climate change. The paper builds on a theoretical model of the insurance market,
where independent experts set premiums based on their individual risk evaluations.
The segmented nature of the private insurance market slows the estimations of the
tail parameter of the loss distribution, and there’s no direct way to eliminate bias, as
extreme events are infrequent. The proposed supervisory tool uses temporal changes
to consolidate expert opinions, pinpointing those who rapidly and accurately identify
extreme climate-related events. The effectiveness of the Pioneers Detection Method is
affirmed through a series of simulations, where it surpasses traditional pooling methods
within a Bayesian framework. This supervisory approach also proves to be the most
beneficial in improving welfare in a fragmented insurance market comprised of a few
private insurance companies.
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1 Introduction

Climate change, characterized by long-term shifts in temperatures and weather patterns,
leads to both direct (e.g., heatwaves, droughts) and indirect (e.g., desert expansion, wildfires,
storms) extreme events with increasing frequency and intensity (Stott et al., 2016). Although
a well-established phenomenon1, there is no consensus on whether climate change will be
continuous or whether there will be unexpected shocks that will pose significant challenges for
financial systemic risks, which fall within the mandate of financial supervisors (Svartzman
et al., 2021). One such challenge is determining the insurability of risks in a constantly
changing environment2 and one of the supervisory tools for this challenge is to leverage
insurance company expertise by pooling their opinions. In the foundational work by Stone
(1961), opinion pooling is presented as the method of merging experts’ subjective probability
distributions to form a collective judgment. However, traditional pooling methods were not
specifically devised for situations involving radical uncertainty, as defined by Knight (1921),
and a loss distribution tail parameter that can never be exactly estimated. As a result,
they encounter two primary hurdles: potential inconsistencies in expert opinions over time
due to model shortcomings, and slow decision-making processes in accepting or rejecting
insurability hypotheses. In this study, an insurance market is modeled to design, validate,
and estimate the welfare benefits of introducing a novel opinion pooling strategy specifically
designed for this context.

I start by designing an insurance market model derived from Raviv (1979) and following
the insurability problem presented by Charpentier (2008). I derive this model and study
its equilibrium to determine the optimal insurance contracts and supervision actions. Cli-
mate change is impacting both the frequencies and magnitudes of events and, in the model,
yearly aggregated3 insurance losses for an asset class follow a Pareto distribution with an
unobservable tail index. This paper models non-cooperative4 private insurance experts with

1Early works on climate change include those by Fourier (1824), Foote (1857), Arrhenius (1896), Callendar
(1938). Recent contributions are reviewed in Hegerl et al. (2007) and (Change, IPCC Climate and others,
2014).

2For insurability criteria, see Berliner (1985).
3The aggregate or magnitude component of losses can be understood as yearly aggregates of losses faced by

an insurance company for a given asset class. The paper assumes that insurance companies cannot completely
discriminate policyholders, so premium pricing is equivalent to modeling the magnitude components.

4The European Court of Justice established in 1987 (Judgement of 27.1.198) that EU competition law is
fully applicable to the insurance sector. Some exemptions were allowed by the Insurance BER” (Regulation
(EEC) No. 3932/1992) as Collaboration between insurance undertakings [. . .] in the compilation of infor-
mation (which may also involve some statistical calculations) allowing the calculation of the average cost
of covering a specified risk [. . .] makes it possible to improve the knowledge of risks [. . .]. This can in turn
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proprietary information sets and modeling expertise. Insurance buyers are slower at updat-
ing their loss distributions, for simplicity I consider that in the time frame of the model
they do not update their estimations. Therefore after a tipping point5 there is a situation of
heterogeneous beliefs among participants. After this distinct and unanticipated shock, in-
surance experts update their risk models to determine whether, and under what conditions,
they provide insurance coverage for the affected asset class6. This paper doesn’t study the
strategic behavior of insurance companies, and market shares are considered as fixed and
exogenous7. An insurance supervisor with a financial stability mandate completes the model
and decides whether it should give incentives for experts to continue providing insurance
coverage for a given class of assets. To do so and for the supervisor to estimate the risk after
a tipping point, the context calls for a new insurance supervision tool.

In this paper, I introduce a potential innovative supervisory tool, a Pioneers Detection
Method, tailored for the dynamic climate context, where the unavailability of ground truth
data hinders the evaluation of expertise based on historical estimates. The method aims to
allocate substantial weight to reliable pioneers, who are defined as experts8 who consistently
caution against the escalating severity of climate-related risks, using transparent models and
datasets, and whose opinions are being implicitly validated by their peers. The weights of
the opinion pooling are conceptualized as implicit inter-temporal votes among experts.

When an asset class’s insurability suddenly becomes uncertain, two problematic scenarios
can arise from a financial stability perspective. The first concern is that some insurance
companies might underestimate the impacts of the change and be exposed to ruin. This
paper primarily focuses on the second scenario, where non-cooperative insurance companies
can exit the market or offer premiums close to the coverage limit9. To determine whether

facilitate market entry and thus benefit consumers.” The “Insurance BER” was stopped on April 1, 2017.
Automatic exemptions were discarded to avoid misapplications, considering that guidelines were sufficient
(Stancke, 2017).

5This concept refers to a critical threshold in a complex system, where minor perturbations can result in
substantial, often irreversible, changes in the system’s overall behavior or state (Gladwell (2006) and Lenton
et al. (2008)).

6A class can be understood here as either a region or a business line.
7An extension is to use the supervisory data to estimate the demand sensitivity to premiums to make

the market shares endogenous to the model, resulting in heterogeneous private information and incentives to
invest in modeling each class’s idiosyncratic risk. This would allow introducing situations where an insurer
with low exposure to an asset class could offer loss-making premiums to grow its share, introducing ruin
gamble not present in this model.

8Examples include Meadows et al. (1972) and Jean-Marc Jancovici (Jancovici, 2004), whose diagnostics
have been based on transparent data and utilized for making predictions and recommendations that are
increasingly becoming mainstream over time.

9Winter (1994) acknowledges that supply will always be positive at some price but mentions premiums
reaching 90% of the coverage limit for firms removing asbestos.
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the reduction in insurance supply is justified by the increase in risks or the inability of
insurance experts to accurately estimate risks, the supervisor can decide to collect expertise
using ad-hoc on-site inspections of insurance companies and pool expertise. Although there
is a rich literature on stress tests (Battiston et al., 2017) and their use in learning about the
insurance market and guiding supervisory actions10, little research has been conducted on
recommending ad-hoc inspections for pooling opinions for the same purpose11. This paper
aims to fill this gap by demonstrating how supervisors can use their regular supervision
or ad-hoc inspection activities to reinforce their knowledge and understanding of climate
change’s disruptive potential for the insurance markets.

More broadly, this paper contributes to the continuing discourse on insurance supervision
in the context of climate change. In countries like France, debates exist on whether housing
insurance state guarantees for clay soil risks should be scrapped and how a supervisor can
act once the market is fully private. Currently, 40% of the state natural catastrophe scheme
(CatNat) is used to cover losses for houses exposed to the risk of Withdrawal-Swelling of Clay
Soils (WSCS) under the effect of drought12. The Court of Auditors is advising the exclusion
of WSCS from the CatNat regime, given that the unpredictable nature of the risk is no longer
being addressed due to the effects of climate change (Cour des comptes, 2022). The novel
methodology enhances supervision by aggregating expertise at the insurance group level, a
common practice, instead of initiating procedures to obtain granular underwriting data for
evaluating climate-related financial risks post-shock. While the United States Department of
the Treasury’s Federal Insurance Office (FIO) has considered collecting granular data from
property and casualty insurers regarding homeowners’ insurance13, it has faced resistance.
One policy recommendation of this paper is to allow the use of this new tool to help super-
visors determine if an asset class is insurable. Upon determining an asset class’s insurability,
the supervisor can then advise the regulator on whether to utilize public or private insurance
mechanisms, such as syndication or reinsurance, for coverage.

Literature This paper contributes to the literature on opinion pooling and combination
forecasting, building upon previous reviews by Genest and Zidek (1986), Clemen (1989),
Timmermann (2006), and Wang et al. (2022). This literature concludes that in a Gaussian

10For example, the ECB Banking Supervision launched a 2022 climate risk stress test using macroeconomic
scenarios from the NGFS.

11The closest strategy is NAIC’s Climate Risk Disclosure Survey, a voluntary risk management tool through
which state regulators can request annual, non-confidential disclosure of insurers’ assessment and manage-
ment of their climate-related risks. Source: Moody’s report on Insurance Conference 2022.

12Fleureau et al. (1993) characterizes the phenomenon, and Babaeian et al. (2019) describes the modeling
challenges compounded by limitations of remote sensing of soil moisture.

13The FIO issued a request for comment on a proposed data call on October 18, 2022.
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context it is almost impossible to beat a mean method potentially excluding outliers. In a
context with fat tails, extreme events do occur but are rare, hence learning is slow and I
design a new method that relies on inter-temporal opinion changes to weight experts that
are the most likely to learn faster about extreme events.

This paper adds to the rich literature and ongoing debate surrounding the impacts of
climate change on insurance losses. There are mixed conclusions on the effects of climate
change on loss trends, as discussed by Pielke Jr et al. (2008), Kousky (2014), Hsiang (2016),
Botzen, Deschenes and Sanders (2020), and Mills (2005). I use publicly available data to
model the evolution of losses over time in Appendix A. I find that the combined influences of
climate and macroeconomic changes lead to increases in both average expectations and tail
fatness of losses. The modeling addresses heavy-tailed distributions, drawing on the Extreme
Value Theory (EVT) literature and its applications in insurance, as seen in the seminal works
of Frechet (1927), Fisher and Tippett (1928), Gnedenko (1943), de Haan (1970), Balkema and
De Haan (1974). EVT has been applied to various aspects of climate change, including the
analysis of extreme weather events (Coles et al., 2001; Palutikof, Subak and Agnew, 1997)
and the estimation of extreme financial losses (McNeil, Frey and Embrechts, 2015). The
primary challenge, which remains unresolved, is that loss tails must be estimated with limited
observations. Consequently, after an unforeseen tipping point, expert model uncertainty
increases. This paper adds to the literature on modeling loss tails under uncertainty, building
upon the works of Danielsson et al. (2001), Scarrott and MacDonald (2012), and Raftery
et al. (2017), by exploring the combination of EVT and expert opinion.

This paper builds upon the literature on insurability and the challenges climate change
poses to insurability. Climate change is testing the insurability of various business lines
and geographic regions, as demonstrated by Kunreuther (1996), Charpentier (2008), Kousky
and Cooke (2012), Mills (2007), and Surminski (2014). Both pandemics and climate change
risks are difficult to mutualize in a cross-sectional manner due to their complex nature and
widespread impacts. While pandemics can be insured intertemporally due to their episodic
nature, climate change might not be, as it is expected to be an irreversible trend with
potential tipping points. This paper demonstrates that, although preventive actions against
climate change are primarily the responsibility of regulators, a supervisor operating further
down the line for insurance market stability can utilize this paper to direct his prudential
activities to avoid disturbances caused by uncertainty. My approach differs from the work
of Jaffee and Russell (1997) as I do not focus solely on catastrophes. Jaffee and Russell
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(1997) consider that catastrophes are actuarially insurable14 as they are infrequent, local and
uncorrelated. In my approach, I consider yearly cumulative losses each insurance company
face and how climate change fatten the subjectively estimated tail of this distribution up to
uninsurability.

Section 2 presents a model of the insurance market in the context of climate change. In
Section 3, I introduce a novel insurance supervision instrument designed to aggregate expert
knowledge under extreme uncertainty, the Pioneers Detection Method. Section 4 describes
simulation-based validations of the new tool. Section 5 provides policy recommendations
based on the model and simulations. Finally, Section 6 offers concluding remarks.

2 A model of insurance market under climate
change

A risk-averse insurance buyer (IB) with a utility function denoted by U , with U ′(.) > 0 and
U ′′(.) < 0, faces a risk of loss of x (αt) to his asset, where x is a random variable following
a Pareto15 distribution with an unknown tail parameter αt. An insurance contract for an
insurance company (IC) i is defined as a pair (I(x), Πi (I(x))), with an indemnity schedule
I(x) and an insurance premium Πi (I(x)). I consider risk-neutral IC who act on a perfectly
competitive insurance market. Raviv (1979) extends Arrow (1963) and demonstrates that
under these conditions an optimal contract is full insurance above a deductible. Ghossoub
(2017) extends Marshall (1992) and demonstrates that under heterogeneous beliefs with a
non-decreasing ratio of subjective probability density the deductible result holds. Without
loss of generality, I normalize this deductible to unity even when it is found non-constant.
This simplifies the insurance contract to a one-dimension parameter16 problem where the
indemnity follows a Pareto with a tail parameter αt and a unity threshold. Pareto optimal

14Jaffee and Russell (1997) that considers that uninsurability is mainly due to the lack of (tax) incentives
for insurance companies to accumulate a pool of liquid assets to meet catastrophe losses.

15Hogg and Klugman (1983), Hogg and Klugman (1984) on grouped data, Embrechts, Klüppelberg and
Mikosch (2013). Balkema and De Haan (1974) introduces the class of functions for which exceedances over
a large threshold converge to the Generalized Pareto Distribution (GPD).

16The tail parameter is sufficient to characterize both the magnitude of the expected indemnity and the
tail of the distribution: Ei [I (xt)] = α̂t

i

α̂t
i
−1 .
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contracts are solution of the simplified program 1.


maxI(αt),Π E [U (w − x (αt) + I(αt) − Πi [I(αt)])]

subject to Πi(αt) = E [I(αt) + γi (I(αt))]

and 0 ≤ I(αt) ≤ x (αt)

(1)

where w is the IB initial wealth and γi each IC has his private cost policy. I make the
usual assumption that γ′

i(.) ≥ 0, to reflect the monitoring and auditing effort when claims
are processed.

In a hypothetical steady state, IB and IC would agree on an estimation of α, α− and
each IC would have his own estimates α̂−

i which aggregate to α−. Climate change, combined
with macroeconomic factors such as inflation17, impacts the tail parameter over time t with
potentially disturbing tipping points, but the realization of αt is never observable. IB do
not internalize the effect of climate change on their estimates and keep a subjective tail
parameter estimation of α−. IC have Bayesian or Frequentist experts to estimate the tail
parameter and calibrate their insurance contracts.

An insurance supervisor18 S, with financial stability mandate completes the model. S

is a social planner which program is to maximize the welfare of the IB and IC, which is
equivalent to maximizing the IB welfare19, solving the program 1. S can evaluate his own
tail parameter α̂t

S and decide if he can improve the welfare by sharing his opinion with the
IC.

3 A Pioneers Detection Method

Two main assumptions from the model lead to the design of a new method for weighing
expert estimates. First, estimations can never be compared to a realization of the tail
parameter for weight calculation based on historical performance or forecast errors (Genest
and Zidek, 1986; Stock and Watson, 2004). As a result, the tool must rely on cross-sectional
and temporal comparisons of expert model outcomes. Second, the distributions exhibit fat

17In this paper, both climate and economic effects on risk are refereed to as “climate change” for simplicity.
18Real life examples will be the International Association of Insurance Supervisors (IAIS)’s members:

European Insurance and Occupational Pensions Authority (EIOPA), France’s Autorité de Contrôle Pruden-
tiel et de Résolution (ACPR), Germany’s Bundesanstalt für Finanzdienstleistungsaufsicht (BAFIN), UK’s
Prudential Regulation Authority (PRA), etc.

19This is a “benevolent supervisor assumption” which is equivalent to consider that S dislike leaving a
rent to the IC or considering S maximizes IB and IC surplus when the IC is risk-neutral in a competitive
insurance market.
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tails, indicating that extreme events have low probability of occurrence but do happen.
Experts learn from their claims20, hence experts already exposed to extreme event at time
t will have a faster learning rates compared with experts not yet exposed to tail events.
This is a significant departure from the traditional literature on expert combination, where
only a minority exhibit a bias (Min and Zellner, 1993). In a climate change environment, a
subset of experts might accurately internalize the change before a majority converges toward
this initial subset. The Pioneers Detection Method (PDM) aims to identify this subset of
pioneers as early as possible to increase the learning of tail parameters.

Pioneers are experts who deviate from the majority opinion but towards which other
experts’ opinions converge over time, although experts do not cooperate21. This can also be
thought of as implicit inter-temporal voting among experts to identify pioneers.

The main benefit of the PDM is that the supervisor recognizes the convergence as soon
as it begins and does not wait for the differences in estimates to narrow; a convergence in
direction is enough to trigger a shift in weights. This PDM could also be envisaged for other
context where non-cooperating experts are learning on rare events. I introduce four steps
for the PDM.

Step 1: identify trends

First, I smooth the time series to identify underlying trends in pioneers and followers. This
can be achieved using moving averages or filtering techniques, depending on the specific
phenomenon being studied.

Step 2: distance reduction

Second, I determine if the distance between an expert’s estimate and the average of the
other experts’ estimates has decreased between t − 1 and t. This is represented by a dummy
variable, δt

distance, which serves as a necessary but not sufficient condition for an expert to
be considered a pioneer.

20Equation 36 provides an expression of their posterior when experts estimations are Bayesian
21Liefferink and Wurzel (2017) introduce a clear distinction between pioneers as being ‘ahead of the troops

or the pack’ and leaders which have ‘the explicit aim of leading others, and, if necessary, to push others in
a follower position’.

7



FIGURE 1
Distance reduction dummy to identify Pioneers
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Notes: i represents the expert of interest and m the average estimate of his
competitors (i excluded). δt

distance = 1∆t<∆t−1

Step 3: orientation change for convergence

Third, I identify if the orientation of the segments between an expert’s estimate and the
average of the other experts’ estimates has decreased between t−1 and t. This is represented
by a dummy variable, δt

orientation. If the second step results in a positive dummy, this step
helps determine whether the significant convergence of trends is due to the other experts
agreeing22 with the expert (who is then considered a pioneer) or if the expert is the one
converging toward the average of the other expert judgments (and is thus a follower). This
distinction is made by attributing the change in direction primarily to either the expert or
the average of his peers. If the change in direction is mainly due to the average of the expert’s
peers, then the expert is considered a pioneer.

22Agreeing here means: Their estimates change direction over time towards the expert’s estimate, and
both time series converge (or are cointegrated).

8



FIGURE 2
Orientation change dummy to identify Pioneers
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Notes: i represents the expert of interest and m the average estimate of his
competitors (i excluded). The measure is δt

orientation = 1θt
m>θt

i
. In both

panels, i can be considered a pioneer. The right panel is interesting because
i is not consistent, an aspect that is taken care of both in the smoothing of
the time series and in the second characteristic of the measure.

Step 4: proportion of the convergence attributed to a Pioneer

Fourth, I calculate the proportion of the orientation decrease attributable to the average
of the other estimates, m, with respect to the considered expert’s estimate, i. The pioneer
score for each expert, indexed by i, is then derived from a combination of the four steps,
as shown in Equation 2 and is used as a weighing for his opinion in the final estimate of S:
α̂t

S = ∑
i wt

iα̂
t
i.

wt
i = δt

distance × δt
orientation × |θt

m|
|θt

m| + |θt
i |

(2)

where m is the mean of all expert estimates, i excluded.

3.1 Pioneers Detection Method convergence properties

I show that the new supervision has some desired convergence properties.
Property 1. When Bayesian experts’ claims are independent and identically distributed

(iid), as m → ∞, the PDM converges to the mean of the experts’ estimations.
Writting S’s subjective opinion ot, it is constructed with the PDM assigning a vector

wt to the experts judgment Ât, ot = Âtwt. As each expert posterior of α follows a Gamma
distribution with all the same t and α, then as demonstrated in Mathai (1982), an omniscient
expert opinion will follow a Gamma distribution with mt as a shape parameter, hence the
mean of the experts’ opinions. As m → ∞, the Bayes omniscient expert opinion will converge
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to the true value of α, de Zea Bermudez and Turkman (2003) find this Bayesian approach
robust and having lower variance than Maximum Likelihood Estimation. Then as m → ∞,
it becomes impossible for any expert to lead the omniscient expert, which is also the average
of all other experts, hence the PDM applies a weight of 1 to the omniscient expert and 0 on
all experts, which is equivalent to assigning a weight 1

m
to each expert’s opinion.

Property 2. When Bayesian experts’ claims are iid, as t → ∞, the PDM converges to
the mean of the experts’ estimations.

For an expert, his posterior’s rate parameter is an exponential autoregressive process as
defined in Gaver and Lewis (1980), with a unit root: rt+1

i = rt
i + ϵt

i with ϵi ∼ Exp(α), ∀i.
As such, cov

(
rt+1

i , rt
i

)
= 1

α2 t hence as t → ∞ the covariance between two experts estimates
cannot be distinguished as leading any other and all experts will be treated equivalently by
the PDM, hence wt

i −−−→
t→∞

1
m

.

3.2 Discussion and alternative novel approaches

The last two steps of the PDM rely on angles characterizing the direction change between the
previous estimate and the latest. These last two steps could be envisaged with a distance ratio
as illustrated in the right panel Figure 3. The main difference between the two approaches
lies in the speed of convergence which is only taken into account when weights are defined
with angles as detailed in Appendix B. This weighing with distance is found to be non-robust
to non-linear transformation of estimates, Table 2, 3 and 4.

FIGURE 3
Alternative to the orientation change dummy to identify Pioneers
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Alternative inter-temporal pioneers detection methods could also be implemented with
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more traditional time series methods. I list the five candidate methods and demonstrate how
it boils down to implementing the Granger Causality, lagged-correlation and probabilistic
combinations methods as alternatives to the PDM.

3.2.1 Granger Causality

The core principle of the PDM entails assigning indirect votes based on expert estimates.
While experts are non-cooperative and do not exert influence on one another, this approach
exhibits certain similarities with the identification of Granger Causality, which tests whether
a given time series is beneficial in predicting another. It examines whether an expert’s opin-
ion change appears to precede a similar opinion change from his competitors. I implement
the test introduced by Granger (1969). Toda and Yamamoto (1995) take into account po-
tential integration and cointegration between time series. Hasbrouck (1995) also introduces
cointegration to determine the information share of each random variable. In the context
of climate change and small time series (maximum lag of 2), the integration or cointegra-
tion orders cannot be tested robustly. Therefore, I assume that the time series are locally
stationary and apply a Granger Causality test with a lag of one.

3.2.2 Lagged Correlation

An alternative approach involves measuring correlations between lagged estimates from each
expert and the estimates from his competitors. This can be measured using the Pearson
coefficient (Pearson, 1895), as in Sakurai, Papadimitriou and Faloutsos (2005) and Forbes
and Rigobon (2002) for financial applications.

3.2.3 Probabilistic combinations

When estimates are not points but probabilistic distributions, on top of the above methods,
two additional methods are considered. The first is the Bayesian Model Averaging (BMA,
Draper (1995)) which presents three challenges (Wang et al., 2022), a blocking one for my
approach is to elicit a prior which comes back to doing a combination choice. Quantile
combinations (Vincent, 1912) present the advantage to keep location-scale family after the
transformation. I apply the vincentization as a candidate in a probabilistic set up, results
are available from the author.
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3.2.4 Multivariate Linear Regressions

A related approach to the Granger causality test involves using multivariate linear regressions
of each expert’s estimates on the average estimate from his competitors, as in Yi et al.
(2000). If significant, the coefficients can be considered as voting weights for each expert.
This approach with limited history returns to searching for correlation and Granger causality
between time series.

3.2.5 Information Transfer

I also explore the information transfer literature and measures (Schreiber, 2000). The idea is
to measure whether the time series act as if there were transfer entropy, that is, information
transport from one series to another. For financial applications with non-Gaussian random
variables, this approach requires discretizing continuous time series with bins. Dimpfl and
Peter (2014) limit their analysis to three bins and divide the return data along the 5% and
95% quantiles, as they “assume that extreme (tail) events are more informative than the
median observation.”

The information transfer method tests whether an expert’s opinion change appears to be
informative to his competitors. With non-cooperative experts, no information is exchanged,
and therefore, if an apparent information transfer is detected, it is as if one expert learnt from
the Data Generating Process (DGP) before his competitors, and then the DGP informs the
competitors, which is similar to the expert directly informing his competitors if the expert
learns faster. Barnett, Barrett and Seth (2009) demonstrate that this method is similar to
Granger causality if the random variables are Gaussian. When experts are Bayesian, the
posteriors are the random variables of interest and can be approximated as Gaussian, hence
I implement the Granger causality method.

4 Testing and validating the Pioneers Detection
Method

I test and validate the PDM against alternative opinion pooling methods using the Root
Mean Square Error (RMSE), employing a known fat-tailed distribution with Monte Carlo
simulations.
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4.1 Comparison the Pioneers Detection Method with Existing Combination
Methods

I compare the PDM with existing combination forecast methods. Following the work of
Stock and Watson (2004), which relies on the dataset from Bessler and Brandt (1981), all
methods are evaluated using their RMSE relative to the autoregressive model. As with the
original paper, I find that combination forecasts improve upon autoregressive forecasts (Table
1). The PDM performs best, although with only three forecasters, there are some situations
where no expert can be identified as a pioneer (e.g., when all three experts are diverging from
one another). This is a limitation in the application of this method for combining forecasts.
Note that the three novel methods introduced—Granger Causality, Lagged Correlation, and
Pioneers—do not rely on past performance and do not include the actual true time series to
be estimated.

4.2 Validation of the Pioneers Detection Method with Fragmented Insurance
Market Shares

I evaluate the PDM on a fragmented insurance market through the use of Monte Carlo
simulations. By fixing a tail parameter, I can calculate the RMSE for each expert estimation.
The unknown tail parameter represents a new value following a tipping point and I simulate
that after this tipping point the climate has stabilized to an unobservable state. I benchmark
the performance of the PDM against existing opinion pooling techniques as well as other
novel approaches introduced within this study.

As IC experts can be either Bayesian or Frequentist, I test two extreme configurations,
a full Bayesian and a full Frequentist.

4.2.1 A full Bayesian configuration

I model Bayesian insurance experts who learn losses generated from a Pareto type I distri-
bution with a tail parameter close to unity, meaning a fat tail environment. Each expert’s
observations are independent from one another both in cross-section and over time. In such
an environment, experts will observe extreme values over time, but might have to wait for
some time before observing an extreme event and being able to refine their calibration of
the tail parameter. The PDM starts with at least one set of past data points, and it weights
pioneers as soon as a change of direction to their estimates occurs. The supervisor needs at
least one past period of estimations to form his own subjective opinion. Once the estimation
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can be formed, the PDM outperforms the other opinion pooling methods (Table 2). This
performance is robust to scaling (Table 3) and non-linear transformations such as logarith-
mic (Table 4), the method is not scale but ordinally invariant. The performance of the new
method is significant in early stages, especially at the first period where an estimate can be
formed (t = 2). The performance is also found to be more stable over time, using mean,
median, and the standard deviation over the first ten periods (Table 5).

I test the new method’s capacity to identify linear relationships between time series
(Section Appendix C). As expected from the literature, in a Gaussian context, the linear
opinion pooling performs best, and the new PDM does not improve performance, but its
performance converges in the long term with the linear method (Table 6).

Table 7 reports robustness checks for the new supervision tool where the tail parameter
α and the number of Bayesian experts are varied. The PDM minimizes the RMSE for all
configurations.

4.2.2 Frequentist experts

I follow the same philosophy as section 4.2.1 except that I now consider Frequentist insurance
experts. When I assume that all experts are Frequentist, Table 8 reports robustness checks
for the new supervision tool where the tail parameter α and the number of Frequentist
experts are varied. The PDM minimizes the RMSE for configurations with the least expert
counts.

I therefore recommend using the PDM in a Bayesian context, but this conclusion is more
nuanced when some experts can be considered as Frequentist.

5 Policy recommendations

5.1 Insurability testing when the IB has a reserve premium

An asset is uninsurable if the optimal premium is above what the IB can afford to pay for the
coverage. I model a simple situation where the IB has a reservation premium23 Π∗ that for
simplicity is constant24 over the observation period. S tests the insurability hypothesis, that

23The reservation premium is dependent on the IB outside option and ability to pay premiums based on
their income and asset value.

24This inelasticity can be interpreted as buyers having limited capacity to estimate climate change impacts
on losses and the reservation premium representing their ability to pay premiums based on their income and
asset value. In practice this reservation premium would need to be corrected at least with inflation and wage
changes.
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FIGURE 4
IC profit probability as a function of his estimate and the tail parameter
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in for this test is simplified leaving out the IC cost function
(
H t

S : Πt = E [I(αt)] = α̂t
i

α̂t
i−1 ≤ Π∗

)
,

becomes (H t
S : αt > α∗, if α∗ > 1).

When the insurability condition is met, then the probability for an IC i to actually make
a profit is given by a Pareto cdf

z
(
α̂t

i, α
)

:= P

(
loss ≤ α̂t

i

α̂t
i − 1

)
= 1 −

(
α̂t

i

α̂t
i − 1

)−α

∂z

∂α
= (1 − z) ln

(
α̂t

i − 1
α̂t

i

)
> 0, ∀α > 1, α̂t

i > 1

∂z

∂α̂t
i

= − α

(α̂t
i)2

(
α̂t

i − 1
α̂t

i

)α−1

< 0, ∀α > 1, α̂t
i > 1

z is increasing in α and decreasing in α̂t
i, illustrated Figure 4. When α̂t

i decreases the
profit likelihood of IC increases as the IB is willing to pay more, hence an expert would want
to set his offered premium based on the IB reserve α∗. As α increases, the likelihood of losses
decreases so the expected profit of insurance companies increases.
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5.1.1 Case of interset: reserve premium above the true insurable risk

When 1 < α∗ < αt, this means that the IB reserve premium is above the true cost of the risk
exposure and the asset is certainly insurable. When the expert estimate respects α∗ ≤ α̂t

i,
then the expert advise to offer protection and the insurance company is likely to make profit.
When at time t the expert estimation is such that α̂t

i < α∗ then she advise her IC to exit
the market, which is a missed opportunity for her company. Hence, the situation of interest
for S is when α̂1

i < α∗ < α, meaning that after the first year, one expert i wants to exit
the insurance market and hence stop learning. Appendix D provides the stopping condition
for S based on the risk estimate and time spent. As there is no closed form formula for the
PDM, I adopt a welfare consideration framework.

5.2 Climate change, welfare and supervision actions

The previous section explored how S can test the insurability hypothesis in a Bayesian
context. I next explore S’s possible actions and evaluate their welfare implications.

When S believes an IC is optimist (α̂t
i > α̂t

S) and subject to ruin, the traditional approach
is for S to ask the regulator to modify the IC solvency constraint. When S belives that an IC
is pessimist and decide to reduce insurance coverage, I show that my approach with a PDM
and a communication delivers the best welfare improvement among the actions considered.
First, it would not be efficient for S to ask the regulator to modify the IC solvency constraint.
In a model à la Kleindorfer and Klein (2003), the IC exposure is impacted by the decision
on the solvency constraint, but in a context of climate change where risk and uncertainty
increase, only a more stringent rule seems credible. Hence, in a configuration where IC
are pessimist, an action from S on the solvency constraint cannot alleviate a reduction in
insurance coverage. A second approach is to regulate the rate-of-return of IC. I adapt Averch
and Johnson (1962) to this model and show Appendix E that such a regulation cannot meet
both the IC participation constraint and the aim to reduce an IC pessimist bias. A third
approach, following Lee (2017), is to impose a maximal margin on IC premium. I show
Appendix F that the effect can be ambiguous. The fourth approach, put forward in this
paper, is linked to the third and focuses on reducing the IC bias. As part of his supervision
activities, S already collects internal model reporting from IC and thus has access to their
individual estimates α̂t

i. S observe the insurance market contracts and can decide 1) to
exploit the estimates α̂t

i at a fix cost cS (dedicate a team to this task on available data) or
2) to audit IC (e.g. with on-site ad-hoc inspections) to get detailed claim history at a cost
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proportional to the information size. S functioning costs are embedded in the costs of the
IC, as IC pay fees to the supervisor, those fees as passed on to the IB as part of the IC cost
function. As the realization of αt is never observable, S has to form ex ante his own estimate
to decide whether it would be beneficial to engage the costs and influence expert estimations
at the estimated costs. S can decide to pool information using the new tool and impact the
premium if

E
[
U
(
w − x

(
αt
)

+ I(αt) −
[
Π
(
α̂−

S,tool

)
+ cS

])]
≥ E

[
U
(
w − x

(
αt
)

+ I(αt) − Π(¯̂αt)
)]

(3)

where ¯̂αt is the aggregate of offered premium based on the IC estimates.
S can decide to acquire granular information for supervision at a higher cost with the fix

cost of gathering a team plus a term linear in the size of the information to collec cS + λ#x.
If S acquire this information, then it can estimate Π based on a more precise estimation of
the tail parameter α̂−

S,full, the precision depends on the risk itself (αt) and on the size of the
available sample. S can decide to invest in this audit if:

E
[
U
(
w − x (αt) + I(αt) −

[
Π
(
α̂−

S,full

)
+ cS + λ#x

])]
≥ E

[
U
(
w − x (αt) + I(αt) −

[
Π
(
α̂−

S,tool

)
+ cS

])]
(4)

In the decision equation 3 and 4, I make the implicit assumption that a supervisor an-
nouncement is fully trusted by an IC, hence I plug Π

(
α̂−

S,tool

)
and Π

(
α̂−

S,full

)
. For complete-

ness, once calibrated, S should integrate in the simulation how his announcement, α̂−
S,tool,

can be integrated by a Bayesian or Frequentist expert depending on his evaluation of his
credibility and alignment with his objectives.

5.3 Bayesian versus Frequentist estimations and improvement with observa-
tions count

5.3.1 Bayesian experts

Following Arnold and Press (1989), each Bayesian insurance expert’s natural conjugate prior
family for the Pareto exponent is a Gamma distribution of shape st

i and rate rt
i , detailed

in Appendix G. The posterior of the tail parameter of each expert is unimodal and roughly
symmetric, as demonstrated by Le Cam (1953), and can be approximated by a normal
distribution.

π(αt| ∪t xt
i) ∼ N

(
α̃t

i,
[α̃t

i]
2

s − 1

)
(5)
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FIGURE 5
Bayesian versus Frequentist lower confidence interval bound
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Source: author’s computation. In green the Bayesian lower bound evolution with the observations count
and in blue the Frequentist. With α = 1.5 and 105 Monte Carl runs.

where α̃t
i is the mode of the Gamma posterior.

5.3.2 Frequentist experts

Frequentist experts will use maximum likelihood estimation. Zajdenweber (1996) demon-
strates that above a unit threshold, the tail parameter can be estimated25 with t claims
as

1
α̂i

= 1
t

t∑
k=1

log xk
i (6)

As x1
i , . . . , xt

i are independent and identically Pareto distributed, then ln
(
xk

i

)
are inde-

pendent and identically (exponentially) distributed, as demonstrated in (Rytgaard, 1990),

√
t (α̂i − α) → N (0, α2) (7)

Therefore, asymptotically the Frequentist and Bayesian methods estimate follow the same
normal distribution. Nevertheless, this is not true with few yearly observations as in the
insurance market model, therefore I compare the bias that each approach can introduce in
the estimation of the tail parameter.

5.3.3 Comparison of Bayesian and Frequentist expert approaches

To compare Bayesian with Frequentist approaches, I run Monte Carlo simulations with the
same tail parameter at 1.5 and observation counts from a minimum of 3 to 50. I use the

25This is called the Hill estimator, (Hill, 1975).
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FIGURE 6
Cost versus utility benefit of S actions
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asymptotic distribution of the estimate to compute the 95% confidence interval lower bound-
ary, α̂ − Φ(.025) α̂2

t
where Φ(.) is the percentage point function of the normal distribution.

Figure 5, the frequentist lower bound evolution is non linear. When estimating the tail
parameter, the lowest observation is taken as the Pareto threshold and when the sample
size is small, this initially limits the capacity to improve the tail estimate. As the sample
size grows, the threshold is more likely to be close to the actual Pareto threshold and the
likelihood to observe tail events increases, hence the tail parameter estimation improves with
the sample size. Depending on the IC approach, Bayesian or Frequentist, in the model the
IC can be either optimist or pessimist. S can elicit the IC method to determine the most
likely sign of the bias to evaluate the opportunity to intervene.

5.4 Policy recommendation to use the Pioneers Detection Method

The recommendation to use the PDM will depend on the insurance market configuration
and the evolution of the tail parameter. I use a logarithm utility as in Mossin (1968) and
apply the Delta method to estimate the gain or loss in utility26 at the 95% lower confidence
interval bound. The loss of utility is proportional to the variance of the estimate of α, I
normalize the variance with the Bayesian estimate variance in the case of a market with a
unique expert, then I can express the variance for the fully informed S as 1

mt
.

As there is no closed form for the variance of the estimate outcome with the PDM, I
apply Monte Carlo simulations with a tail parameter α = 1.5 and vary the number of IC,

26It simplifies to applying the Delta method to V ar
(

log
[
constant + α

α−1

])
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m, and find a strong linear relationship between m and the ratio of the estimate standard
deviations, σα̂tool

σα̂full
=a+bm. Figure 6 illustrates the utility improvement versus the cost S has to

spend. Figure 6, I display the normalized benefit of full information without the linear cost
and find that S would never find it beneficial to spend the effort to collect the full information
set from IC using on-site inspection when there are less than five IC. When S incurs a linear
cost to collect granular information, this threshold shifts to the right, I illustrate this with a
dashed line.

With my model and set up, in a configuration with more than five ICs, it depends on the
cost to collect granular information whether it is welfare improving for S to collect the full
set of information to reduce the uncertainty in the premium estimation. In a configuration
with less than five ICs, it is always more beneficial for S to use the PDM, regardless of the
cost function, to improve the welfare.

6 Conclusion

This paper contributes to the literature on opinion pooling, climate change impacts on losses,
insurability, and insurance supervision in the context of climate change. By introducing a
Pioneers Detection Method that pools expertise under radical uncertainty, the paper offers
a practical approach to assess the insurability of asset classes and enhance insurance market
supervision amid the challenges of climate change to anticipate changes in risk parameters.
It tests the policy recommendation for insurance supervisors to focus on-site inspections on
uncertainty in the insurance market and stabilize coverage. In the event of a sudden shock
or panic in the insurance market for a given asset class, a supervisor must determine as
quickly as possible whether the asset class is insurable to fulfill their mandate. The new tool
identifies experts who are quick at understanding the implications of climate change to tail
losses. I demonstrate that, compared to traditional opinion pooling methods, the Pioneers
Detection Method is the fastest and has an advantage when there are limited observations
available in the context of extreme events. By making forward-looking announcements and
influencing expert opinions, supervisors can reduce uncertainty and help avoid crises and
equilibrium shifts in insurance supply.

In terms of policy implications, a supervisor can use the Pioneers Detection Method to
monitor the insurability of asset classes and advise a regulator to design appropriate public or
private insurance schemes. Additionally, it promotes transparency and collaboration within
the insurance sector, contributing to a more resilient market in the face of climate change.

20



Further research into the behavior of insurance experts should follow, especially to test if
they have a tendency for optimism or pessimism bias due to the lack of extreme observations
in their private datasets or due to modelling choices. I recommend setting up experiments to
determine how actuaries would behave in this context, particularly to test if their approaches
are Bayesian or Frequentist. The paper also highlights the need for further research in the
area of insurance supervision and climate change, exploring topics such as the endogeneity
of market shares, demand sensitivity to premiums, and ruin gambles in the context of a
changing climate. Future studies could investigate the effectiveness of the proposed tool in
different regulatory environments and under varying degrees of climate uncertainty, refining
the tool and providing valuable insights for insurance supervisors and regulators worldwide.
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Fourier, Joseph. 1824. “Remarques générales sur les températures du globe terrestre et
des espaces planétaires.”
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TABLE 1
New supervision tool compared with combination methods

RMSE Constant Econometric ARIMA Expert
Expert 1.35
Econometric 1.22
Method C out-sample 1.00 -22.21 0.93 0.22 0.31
AR 1.00
Method A out-sample 0.79 0 -1.11 4.63 -2.62
Method B out-sample 0.69 0 -1.01 4.63 0.28
ARIMA 0.64
Median 0.64
Minimum MSE adaptive 0.61 0.32 0.41 0.27
Discounted MSFE 0.57 0.19 0.46 0.35
Minimum MSE adaptive, expert excluded 0.57 0.41 0.59
Correlation 0.56 0.30 0.35 0.36
Two forecast Simple average 0.55 0.50 0.50
GC 0.55 0.50 0.50 0.00
Minimum Variance, expert excluded 0.55 0.48 0.52
Three forecast Simple average 0.52 0.33 0.33 0.33
Minimum Variance 0.48 0.53 0.25 0.22
Method B 0.47 0 0.54 0.25 0.22
Method A 0.47 0 0.53 0.25 0.22
Method C 0.44 15.19 0.10 0.40 0.18
Pioneers 0.42 0.70 0.17 0.12

Note.—The data set is taken from Bessler and Brandt (1981). The reported weights are the average when
they are varying over time for the method. Simple averages, Minimum MSE adaptive and Minimum Vari-
ance are implemented as in Bessler and Brandt (1981). Methods A, B and C are from Granger and Ra-
manathan (1984), weights were computed on past performances for the out-sample. Discounted MSFE is
the first method in Bates and Granger (1969). Principal Component forecast combination was not added
as this is mainly to tackle situations with a large number of forecast. I add three novel methods, Granger
Causality (GC), (lagged) Correlation and the Pioneers Detection Method.
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TABLE 2
New supervision tool validation - full Bayesian

Pioneers Linear Median Pioneers distance-weighted Correlation GC
2 1.00 4.05 1.67 1.56 13.61 4.63
3 1.00 3.80 1.46 1.53 104.72 4.01
4 1.00 2.09 1.30 1.25 39.53 2.39
5 1.00 1.75 1.26 1.19 20.17 2.02
6 1.00 1.61 1.24 1.15 3.66 1.92
7 1.00 1.53 1.23 1.13 11.60 1.86
8 1.00 1.48 1.23 1.11 2.84 1.82
9 1.00 1.44 1.23 1.10 2.47 1.79

Note.—The tail parameter is taken from a Pareto type one distribution with α = 1.5. Five non-cooperative
bayesian experts are modeled with independent observations from the loss distribution. 105 Monte Carlo
simulations are run. The new Pioneers Detection Method outperform established opinion pooling methods
(linear and median) as well as alternative methods introduced in this paper: pioneer with weight based on
distance rather than angle, lagged correlation and Granger Causality.

TABLE 3
New supervision tool validation, robustness to scaling - full Bayesian

Pioneers Linear Median Pioneers distance-weighted Correlation GC
2 1.00 2.62 1.34 1.29 7.89 2.88
3 1.00 2.33 1.22 1.25 54.36 2.34
4 1.00 1.48 1.14 1.12 17.42 1.50
5 1.00 1.31 1.12 1.09 7.63 1.32
6 1.00 1.24 1.11 1.08 1.64 1.26
7 1.00 1.20 1.10 1.07 3.55 1.22
8 1.00 1.18 1.10 1.06 1.34 1.19
9 1.00 1.17 1.09 1.06 1.26 1.18

Note.—The tail parameter is taken from a Pareto type one distribution with α = 1.5. Five non-cooperative
Bayesian experts are modeled with independent observations from the loss distribution. 105 Monte Carlo
simulations are run. The estimates have been scaled by 100.

TABLE 4
New supervision tool validation, robustness to non-linear transformation - full Bayesian

Pioneers Linear Median Pioneers distance-weighted Correlation GC
2 1.00 1.68 1.49 1.34 5.38 1.88
3 1.00 1.16 1.05 0.94 20.32 1.38
4 1.00 0.74 0.80 0.80 390.63 1.05
5 1.00 0.60 0.73 0.79 12.75 0.90
6 1.00 0.59 0.72 0.80 3.47 0.82
7 1.00 0.61 0.72 0.81 8.30 0.79
8 1.00 0.63 0.74 0.82 2.22 0.77
9 1.00 0.65 0.74 0.84 1.85 0.77

Note.—The tail parameter is taken from a Pareto type one distribution with α = 1.5. Five non-cooperative
Bayesian experts are modeled with independent observations from the loss distribution. 105 Monte Carlo
simulations are run. The estimates have been transformed with a logarithm log(c + α) with c = 2 a constant
to avoid issues when α̂ are close to 0.
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TABLE 5
New supervision tool validation - full Bayesian

Pioneers Linear Median Pioneers distance-weighted Correlation GC
mean 1.00 2.74 1.40 1.34 33.65 3.10
median 1.00 1.69 1.25 1.17 15.53 1.98
std 1.00 5.06 1.77 1.73 96.71 5.60

Note.—The tail parameter α is fixed at 1.5 and a Monte Carlo simulation is run with 105 runs. Five non-
cooperative Bayesian experts are modeled with independent observations from the loss distribution. The
mean, median and standard deviation of the Root Mean Square Errors are reported over the first 10 esti-
mation period.

TABLE 6
New supervision tool validation, relevance in a Gaussian context

Pioneers Linear Median Pioneers distance-weighted Correlation GC
2 1.00 0.58 0.70 0.79 2.38 0.63
3 1.00 0.74 0.88 0.91 13.43 0.87
4 1.00 0.65 0.77 0.89 2.94 0.71
5 1.00 0.73 0.87 0.98 0.82 0.80
6 1.00 0.80 0.96 1.04 0.86 0.89
7 1.00 0.87 1.04 1.09 0.93 0.96
8 1.00 0.91 1.09 1.12 1.02 1.01
9 1.00 0.95 1.14 1.14 1.01 1.07

Note.—The loss samples are taken from a standard normal law. Five non-cooperative Bayesian experts are
modeled with independent observations from the loss distribution. 105 Monte Carlo simulations are run.

TABLE 7
New supervision tool robustness checks - full Bayesian

α experts Linear RMSE Median RMSE Pioneers RMSE
1.1 2 3.29 3.29 1.00
1.1 5 3.51 1.54 1.00
1.1 20 3.25 1.26 1.00
2.0 2 3.19 3.19 1.00
2.0 5 3.70 1.56 1.00
2.0 20 3.73 1.30 1.00
3.0 2 3.03 3.03 1.00
3.0 5 3.57 1.41 1.00
3.0 20 4.52 1.34 1.00

Note.—The tail parameter α and the number of Bayesian experts are varied. The last three columns re-
port the average Root Mean Square Errors for the competing opinion pooling tools over the three initial
estimation periods.
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TABLE 8
New supervision tool robustness checks - full Frequentist

α experts Linear RMSE Median RMSE Pioneers RMSE
1.1 2 2.32 2.32 1.00
1.1 5 1.48 0.85 1.00
1.1 20 0.99 0.21 1.00
2.0 2 2.60 2.60 1.00
2.0 5 1.62 0.73 1.00
2.0 20 0.91 0.11 1.00
3.0 2 2.88 2.88 1.00
3.0 5 2.01 0.72 1.00
3.0 20 1.23 0.06 1.00

Note.—The tail parameter α and the number of Frequentist experts are varied. The last three columns
report the average Root Mean Square Errors for the competing opinion pooling tools over the three initial
estimation periods.

TABLE 9
New supervision tool validation

x y z
Pioneers 0.60 0.22 0.19
Correlation 0.46 0.48 0.06
GC 0.62 0.38 0.00

Note.—The time series are random sample of length 10. b = d = e = .9 and a = c = .1. 105 Monte Carlo
simulations are run and the average of each weights are reported. The weights per method are expected to
be ranked such that on average wx > wy > wz.

TABLE 10
New supervision tool validation

x y z
Pioneers 0.31 0.21 0.48
Correlation 1.28 0.09 -0.37
GC 0.50 0.44 0.06

Note.—The time series are random sample of length 10. b = d = e = .1 and a = c = .9. 105 Monte Carlo
simulations are run and the average of each weights are reported. The weights per method are expected to
be ranked such that on average wx > wy > wz.
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I Appendix

Appendix A Climate change impact on losses distribution
I play the role of an insurance expert using a public data set, the Emergency Events Database
(EM-DAT) 27. Figure A.1 displays the information with total damage adjusted cost for each
disaster from 1990 to 2021.

FIGURE A.1
Disaster Total Cost Adjusted (M USD) - map
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Source: EM-DAT, CRED / UCLouvain, Brussels, Belgium – www.emdat.be ( D. Guha-Sapir). Total damages
in adjusted billion USD.

FIGURE A.2
Disaster Total Cost Adjusted (M USD) - histogram and Q-Q plot
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Source: EM-DAT, CRED / UCLouvain, Brussels, Belgium – www.emdat.be ( D. Guha-Sapir). Total damages
in adjusted billion USD. Author’s computation. The quantile-quantile plot is done against a Pareto type 1
distribution.

27EM-DAT: The Emergency Events Database - Université catholique de Louvain (UCL) - CRED, D.
Guha-Sapir - www.emdat.be, Brussels, Belgium.



FIGURE A.3
Heavy-tail shape parameter: the observation count trade-off
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Source: Author’s computation on EM-DAT.

To simulate a learning from an evolving environment, I apply a 80-year rolling-window
estimation exercise without the possibility to change the model calibration methods as the
window was rolled. Hence, I design a model and calibration approaches that I apply to
each 41 year from 1980 to 2021 on the natural disaster losses. Figure A.2 left panel, the
distribution of total damaged adjusted costs displays heavy-tail property, leading to use
EVT to model the distributions. Hence, it is current practice for insurance experts to test
extreme events quantiles against parametric heavy tail distributions quantiles. Figure A.2
right panel displays a quantile-quantile plot of the 95-th percentile of the damages against
a Pareto type I distribution, which can be accepted or rejected depending on the expert
experience for some more elaborated distributions. There is no one-size-fit-all approach in
EVT to define a threshold above which values can be considered as part of a tail 28, I face
the trade-off each expert is facing when dealing with fat tailed loss distributions. Figure A.3
illustrates for a simple Pareto type I law the trade off between limiting the fit on ”relatively”
few observations and the increase variance in the parameter estimates as the observations left
in the sample decrease. As the observations count kept to fit a Pareto distribution increases,
the value of the parameter estimated decreases toward one, which is not an indication of
increased risk but rather of including observations that do not belong to the tail. As the
observations increase, the parameter estimate variance improves. Hence, each expert faces
a trade-off between limiting the sample to extremes and improving his estimations variance
with more observations.

I report Figure A.4 the time series of estimated tail parameters (αt). I also project
Figure A.4 how the Pareto exponent estimates of climate change damages decrease over
time for the upcoming 20 years with a linear fit post Box-Cox transformation. Table 1 two
linear regressions, pre (1) and post (2) Box-Cox transformation, of the Pareto coefficient
over time are applied and a significant downward trend indicate that threshold of 1 could
be reached within the next century. Therefore, my model and this data set leads me to
conclude on an increase in the insurance losses over time attributed to climate change up to
becoming uninsurable for the considered natural catastrophes (unbounded expectation).

28Rolski et al. (1999) demonstrated the difficulty to verify the heavy-tail property statistically
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FIGURE A.4
Pareto estimates over time
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Source: Author’s experiment and computation.

TABLE 1
Pareto exponent evaluation

(1) (2)
Intercept 2.269∗∗∗ 0.386∗∗∗

(0.052) (0.006)
t -0.027∗∗∗ -0.005∗∗∗

(0.002) (0.000)
Observations 42 42
R2 0.794 0.888
Adjusted R2 0.789 0.885
Residual Std. Error 0.172(df = 40) 0.020(df = 40)
F Statistic 154.184∗∗∗ (df = 1.0; 40.0) 318.005∗∗∗ (df = 1.0; 40.0)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note.—The first column is estimated over α and the second after a Box-Cox transformation.

Appendix B Weighing convergence with distances or angles
In the last two steps of the PDM, the weights can be defined with angles or distances. Angles
are the preferred approach because they allow the supervisor to take into account the speed
of convergence between time series. If θ is the angle between vector u⃗ and v⃗, it can be
computed as

θ = cos−1

 uxvx + uyvy√
u2

x + u2
y

√
v2

x + v2
y


= cos−1

 s2 + uyvy√
s2 + u2

y

√
s2 + v2

y

 (8)
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the distance relevant to the measure are taken from the y-axis uy and vy and the weight
is computed as |vy |

|uy |+|vy | which do not include the x-axis ux = vx = s the step between two
observation points.

Appendix C Pioneers Detection Method and linearly related time series
I test the Pioneers Detection Method introduced in this paper to identify linearly related
time series.

I define three time series as the experts x, y and z in the spirit of (Granger and Newbold,
1974):

xt = xt−1 + ϵt

yt = ayt−1 + bxt−1 + νt

zt = czt−1 + dyt−1 + ext−1 + ξt

(9)

with ϵ, ν and ξ white noises, I set x0 = y0 = z0 = 0. The results are sensitive to the
coefficients, I set auto-regressive coefficients significantly lower than cross linear relationships
so the cross-relationships can be captured by the method. x is the main pioneer of the group
as the innovations x faces are passed on to other time series as x has a unit root. On the
contrary, y has an auto-regressive coefficient below unity and his innovations are transient.
The main aim of this test is to confirm that all methods can identify the pioneership of x and
measure to which extend the effect of y on z can be identified. Table 9 report the average
weight each of the three novel Pioneers Detection Method assigns to each time series. Table
10 reports the detection capacity when the coefficient has a less dampening effect on noise.

Appendix D Stopping condition for S depending on the tail parameter and
the time spent

The probability that at time t, α̂t
i > α∗ for an expert i is given by the cumulative distribution

function (cdf) of a Gamma distribution, this is the probability that expert i exit the insurance
market:

P

(
α̂t

i = t∑
t ln xt

i

≤ α∗
)

= 1
Γ(t)γ

(
t, α∗∑

t

ln xt
i

)
(10)

Taking the expectation
E
[
P
(
α̂t

i ≤ α∗
)]

= 1
Γ(t)γ

(
t,

tα∗

α

)
(11)

If at time T , α̂T
i < α∗ and α∗ is outside of the acceptable confidence region (e.g. 95%) of

the posterior density pi(αt|x), then there won’t be any time t such that t > T and α∗ will
move back inside the same confidence region criteria of the posterior density. So when this
is the case, the only rational decision for S is to advise insurance experts to stop providing
coverage. Now, looking at the claim level. Let’s imagine that ∃t, α̂t

i = t∑
t

ln xt
i

< α∗, then it is
worth covering the asset class if there is some non-zero probability that α̂t+1

i = t∑
t

ln xt+1
i

≥ α∗,
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this condition is equivalent to

xt+1
i ≤ exp

[
t + 1
α∗ −

∑
t

ln xt
i

]
= x̃ (12)

As with only one expert, S has only as much information as the expert, then both their
believes are

P
(
xt+1

i ≤ x̃
∣∣∣α̂t

i ≤ α∗
)

= 1 − (x̃)−α̂t
i ≤ 1 − (x̃)−α∗

(13)

As there is a lower bound on x, the process stops whenever

exp
[

t + 1
α∗ −

∑
t

ln xt
i

]
≤ 1 (14)

that is whenever ∑t ln xt
i ≥ t+1

α∗ . As ∑t ln xt
i follows an inverted Gamma distribution and

taking realist tail parameters, the process is likely to stop after 3 iterations, illustrated Figure
A.5.

P

(∑
t

ln xt
i >

t + 1
α∗

)
= 1 −

Γ
(
t, αα∗

t+1

)
Γ(t) (15)

FIGURE A.5
Stopping probability when there is a unique IC
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Source: Author’s computation, α = 1.5 and α∗ = 1.6.

In a multiple IC configuration, when at least one expert estimate the risk to be higher
than what policy holders are ready to pay (∃i, α̂t

i < α∗), the decision maker S might want to
intervene in case he has enough evidence to believe that the willingness to pay leave enough
room for an insurance market to exists, that is even after the tipping point the true risk is
insurable without any public intervention (α∗ < α). This writes

P
(
α∗ ≤ α̂t

S

∣∣∣α̂t
i ≤ α∗

)
(16)

S can form α̂t
S with the Pioneers Detection Method introduced in this paper, but for

which there is no closed form formula. Hence I test this method in a welfare consideration
framework Section 5.2.
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Appendix E Rate-of-return regulation for IC

I follow assumptions 2, 3 and 9 of Laffont and Tirole (1993), S can observe γi (I (xt)), but
need to invest to observe I (xt) hence the profit of the IC. The IC can refuse to provide
insurance cover for xt if its profit is strictly negative.The IC profit writes:

z
(
Π(xt), I(xt)

)
= Π(xt) − I(xt) − γi

(
I(xt)

)
(17)

I consider a regulator that can put some constraint on the rate of return of the IC, r. I
considering that the acquisition of IB is at a cost c1 of premium and normalize this cost to
one and the program becomes for the IC:maxΠ(I),I Π(I) − I − γi(I)

subject to Π(I) − γi(I) − rΠ(I) ≤ 0
(18)

The Lagrange function writes:

Λ = Π(I) − I − γi(I) − λ [Π(I) − γi(I) − rΠ(I)] (19)

The Kuhn-Tucker conditions are:

ΛΠ = 1 − λ(1 − r) ≤ 0 (20)

ΛI = Π′(I) − 1 − γ′
i(I) − λ [Π′(I) − rΠ′(I) − γ′

i(I)] ≤ 0 (21)

Λλ = Π(I) − γi(I) − rΠ(I) ≤ 0 (22)

We end up with a constraint on the cost function

γ′
i(I) ≥ 1 − r

r
(23)

Hence a condition on the premium becomes Π [I(x)] ≤
(
I(x) + 1−r

r
I(x)

)
= 1

r
I(x) which

is incompatible with the IC participation constraint as long as r < 1 and this regulatory
approach cannot alleviate IC pessimist bias embedded in a premium.

Appendix F Imperfect information and uncertain probability following Lee
(2017)

I follow Lee (2017), but rather consider that IB are optimist, meaning that they don’t
internalize the increased risk with climate change. I consider that IC are biased and pessimist,
meaning that they internalize the increased risk with climate change and overestimate this
risk. In this set up, I implicitly consider that the risk is still insurable.

The IB is subject to a loss x which used to have the probability of occurrence p. Now
with climate change, it can take two values each with probability of occurring 1

2 , p1 = p and
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p2 = p + δ, with δ ∈ (p, 1 − p).
The IC is pessimist and consider that the probability p2 is B with 1 > B > 1

2 . The IB
is optimist as he doesn’t internalize the increase in risk due to climate change and consider
that the probability stayed p. The expected utility of the optimist IB depends on his wealth
w, deductible D and premium Π, with the implicit assumption that the loss x > D (in this
simplified model, x is not a rv which also simplifies the expression of the premium equation
25):

EW = pU (w − Π(D) − D) + (1 − p)U (w − Π(D)) (24)

If I consider for simplicity that the cost is linear, then the premium for a risk-neutral
insurer in perfect competition is set to cover the expected loss and administrative costs and
profits, so λ is a constant.

Π(D) = Φ(x − D) (25)

where Φ = (1 + λ)(p + Bδ). Then the first-order condition to find the optimal deductible
that maximizes the IB’s expected utility yields:

∂W

∂D
= −p(1 − Φ)U ′

1 + (1 − p)ΦU ′
2 = 0 (26)

where in equation 26 subscript 1 denotes the state with the loss and 2 without the loss. The
second-order condition for the maximization problem is

∂2W

∂D2 = A = p(1 − Φ)2U ′′
1 + (1 − p)Φ2U ′′

2 < 0 (27)

I totally differentiate the first-order:

∂2W

∂D∂Φ = pU ′
1+(1−p)U ′

2−p(1−Φ)
[
−(x − D) + (Φ − 1)∂D

∂Φ

]
U ′′

1 +(1−p)Φ
[
−(x − D) + Φ∂D

∂Φ

]
U ′′

2

(28)
rearranging

∂D∗

∂Φ = − 1
A

[pU ′
1 + (1 − p)U ′

2 − (1 − p)(x − D)ΦU ′′
2 + p(1 − Φ)(x − D)U ′′

1 ] (29)

contrary to Lee (2017), the sign in equation 29 is ambiguous as the sign of p(1−Φ)(x−D)U ′′
1

is ambiguous, unless Φ > 1 which is equivalent to saying that the premium loading λ must
be above a minimum threshold such that (1 + λ) > (p + Bδ)−1. If this is the case, then the
utility-maximizing choice of deductible increases in the extent of actual risk and IC bias B.

Then the realized utility for the IB is

W̄ = (p + δ)U1 + (1 − p − δ)U2 (30)

then the sign of the utility variation of the IB with the increase in the risk uncertainty is
ambiguous:

∂W̄

∂δ
= −δ(1 + λ)B [(1 − Φ)U ′

1 + ϕU ′
2]

∂D∗

∂Φ (31)
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indeed, if Φ > 1 then the sign of ∂D∗

∂Φ is unambiguous but then the sign inside the bracket is
ambiguous. Under this circumstances, an increase in risk uncertainty is taken into account
by the IC and the effect on the IB welfare can be positive and the need for regulation is not
clear. The same can be said about an increase in IC pessimism, as long as the risk is deemed
insurable.

Appendix G Bayesian prior and posterior distribution of the Pareto exponent

In this paper, I consider that the insurance deductible (the Pareto threshold) is known 29.
Following Arnold and Press (1989), each Bayesian insurance expert’s natural conjugate prior
family for the tail parameter is a Gamma distribution. Each expert i receives nt

i observations
(claims) per year t. i updates his posterior shape parameter as st

i = st−1
i + nt

i and rate
parameter as rt

i = rt−1
i +∑nt

i
k=1 ln (xt

k). If I consider yearly claim aggregates, then ∀i, t, nt
i =

1, so the evolution of the shape parameter is deterministic, st = t, and the evolution of
the rate parameter is a random variable following an inverted gamma distribution rt

i ∼
invGamma (t, α).

I follow Meyers (1996), the prior for the α of the Pareto distribution follows a Gamma
distribution:

πA(α) = rs

Γ(s)αs−1e−rα (32)

The model pdf is denoted fX|A (x|α), with x a sample from X and α our parameter from
the parameter space A. For a Pareto distribution, this pdf is:

fX|A (x|α) = αn∏n
i=1 xα+1

i

(33)

The posterior distribution is the conditional probability distribution of the parameters
given the observed data. According to Bayes’ theorem it is:

πA|X (α|x) = fX|A (x|α) π(α)∫
fX|A (x|α) π(α)dα

(34)

which yields a Gamma distribution with shape n + s and rate r +∑
i ln (xi):

πA|X (α|x) = αn+s−1 exp [−α (∑i ln (xi) + r)]

(n + s − 1)!
(

1∑
i

ln(xi)+r

)n+s (35)

Furthermore, Equation 5 can be developed for each Bayesian expert as the mode can be
expressed with the Pareto distributed loss realizations.

πi(αt| ∪t xt
i) ∼ N

 t − 1∑t
k=1 ln xk

i

,
t − 1(∑t

k=1 ln xk
i

)2

 (36)

29Arnold and Press (1989) demonstrate that if this threshold is unknown, a modified Lwin prior should
be implemented.
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Following Meyers (1996), the Bayesian posterior will follow a normal distribution:

π(α|α̂) ∼ N
(

α̂,
α̂2

t

)
(37)
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