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Abstract

Using access to a unique bank loss data base, we show positive dependencies of default

resolution times (DRTs) of defaulted bank loan contracts and final loan loss rates (losses

given default, LGDs). Due to this interconnection, LGD predictions made at the time

of default and during resolution are subject to censoring. Pure (standard) LGD models

are not able to capture effects of censoring and entail parameter distortions and, thus,

an underestimation of average LGDs. In this paper, we develop a Bayesian hierarchical

modeling framework for DRTs and LGDs which enables adequate unconditional LGD

predictions and consistent LGD predictions conditional on the time in default in accordance

with recent regulatory guidelines within one modeling framework. The proposed method

is applicable to duration processes in general where the final outcomes depend on the

duration of the process and are affected by censoring. By this means, potential parameter

inconsistencies are overcome to ensure adequate predictions.
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1 Introduction

One of the most important tasks for financial institutions – such as banks and insurances

companies – is the estimation and prediction of probabilities of default (PDs) and losses given

default (LGDs) for loan contracts, whereby, the latter is a fraction of loss over the exposure

at default. While PD estimation has a long lasting history, LGD estimation is in the focus of

more recent research and regulation. In contrast to default itself, final losses of defaulted loan

contracts are not observable until the end of the resolution process. These processes might

continue for multiple years, thus, their duration (default resolution time, DRT) is subject to

censoring. In an LGD modeling context, neglecting censoring in the resolution time entails

parameter distortions and incorrect predictions. Due to positive dependencies of DRTs and

LGDs, effects of censoring are shifted to the loss side (see Section 2). These effects are not

captured in pure (standard) LGD models. The aim of this paper is to develop a joint modeling

framework for DRTs and LGDs to analyse the dependence structure among DRTs and LGDs and

diminish parameter distortions due to censoring and, thereby, enable adequate LGD predictions.

Furthermore, this framework enriches LGD predictions for defaulted exposures by additional

information in terms of the time that a loan contract has already spent in default (time in

default) and, thus, allows for consistent predictions conditional on this time period.

Just recently, the European Banking Authority (EBA) published Guidelines on PD estimation,

LGD estimation and the treatment of defaulted exposures (see European Banking Authority, 2017).

The main aim of these guidelines is to reduce unjustified variability of risk parameters – such

as PDs and LGDs. The EBA traces this variability back to deviations in the treatment of

defaulted exposures among financial institutions. Besides the LGD for non-defaulted exposures

(see Basel Committee on Banking Supervision, 2004), financial institutions are supposed to

estimate LGD-in-default and an expected loss best estimate (ELBE) for defaulted exposures.

LGD-in-default should reflect economic downturn conditions in accordance with downturn

LGDs for the non-defaulted exposures (see Basel Committee on Banking Supervision, 2004,

2005). In contrary, ELBE is a point-in-time estimate reflecting the current economic surrounding.

The guidelines demand consistent estimation methods regarding LGDs for non-defaulted and

defaulted exposures (see European Banking Authority, 2017, §100) and the inclusion of post-

default information – such as the time in default – for defaulted exposures (see European
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Banking Authority, 2017, §168).

In recent years, the literature regarding LGD modeling has widened considerably. Comparative

studies can be found in, e.g., Qi and Zhao (2011) and Loterman et al. (2012). However, literature

considering workout LGDs is still limited. Most of the publications refer to market-based LGDs,

whereby, the corresponding Recovery Rate (RR) is defined as ratio of the market price 90 days

after default over the outstanding amount. Hence, market-based LGDs are only available

for traded securities such as bonds. Workout LGDs are based on actual recovery payments

collected during the resolution process and, thus, usually applied for loans. The distribution of

workout LGDs is more extreme compared to market-based LGDs and, typically, high probability

masses at no loss (LGD = 0) and total loss (LGD = 1) arise (see, e.g., Krüger and Rösch, 2017;

Betz et al., 2018). Thus, the consideration of the distributional form is essential for workout

LGDs. Altman and Kalotay (2014) develop a Bayesian Finite Mixture Model (FMM) with a

probabilistic substructure in terms of an ordered logit (OL) model to estimate the probability

of the mixture components depending on explanatory variables. A frequentistic version of

this model is presented by Kalotay and Altman (2017). The model of Altman and Kalotay

(2014) and Kalotay and Altman (2017) is applied by Bijak and Thomas (2015) and extended by

Betz et al. (2018). Calabrese (2014) estimates a mixture of Beta distributions, whereas, Krüger

and Rösch (2017) apply quantile regression on the LGD distribution. The literature regarding

DRTs is more sparse and mainly refers to the duration of Chapter 7 and Chapter 11 resolutions

(see, e.g., Helwege, 1999; Partington et al., 2001; Bris et al., 2006; Denis and Rodgers, 2007;

Wong et al., 2007). Betz et al. (2016) and Betz et al. (2017) analyze DRTs of loan contracts and

descriptively find impacts of DRTs on LGDs. The interconnection of DRTs and LGDs is also

indicated in the related LGD literature. Dermine and Neto de Carvalho (2006) apply mortality

analysis on a data set of bank loans, whereas, Gürtler and Hibbeln (2013) inter alia focus on the

effects of censoring on LGD observations (see Section 2 for further information on effects of

censoring). They do not provide any methodical solution, but suggest to restrict the data set to

avoid biased estimates. However, LGD data is sparse so constraints might be unfavorable.

In this paper, we develop a hierarchical Bayesian modeling approach for joint estimation of

DRTs and LGDs combining a finite mixture model (FMM) – which is well suited to capture the

distributional features of workout LGDs (see Betz et al., 2018) – with a probabilistic substructure

for the LGD and an accelerated failure time (AFT) model for the DRT. The inclusion of survival
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modeling techniques – in terms of the AFT model – in the LGD modeling context enables

the consideration of censoring in LGDs. Thus, the hierarchical approach enables adequate

unconditional LGD predictions for non-defaulted exposures and consistent LGD predictions

conditional on the time in default for defaulted exposures within one modeling framework.

Furthermore, correlated random effects are implemented in the hierarchical approach to allow

for comovements of DRTs and LGDs in the time line. We apply the hierarchical approach to a

unique European data set provided by Global Credit Data (GCD). GCD is a non profit initiative

which aims to support banks to measure credit risk by collecting and analyzing historical

loss data (see http://www.globalcreditdata.org/ for further information). Furthermore, we

compare the hierarchical approach to a pure (standard) LGD model in terms of an FMM with

probabilistic substructure. By this means, we contribute to the literature in three ways. First,

we deeply examine the dependence structure of DRTs and LGDs allowing for a direct and an

indirect channel. We find positive impacts of DRTs on LGD distributions (direct channel) which

are even more pronounced in boom and crisis periods (indirect channel). In crisis periods,

this burdens financial market liquidity as more loan contracts are stuck in the resolution

process. On top of that, losses are even higher than indicated by the direct channel due to an

intensified dependence (indirect channel). Second, we illustrate consequences of neglecting

censoring in an LGD modeling context. A pure (standard) LGD model suffers from parameter

distortions which imply erroneous LGD predictions. Thus, LGDs are underestimated in an

unconditional perspective by up to 20 percentage points. Considering defaulted exposures, i.e.,

LGD-in-default and ELBE, this underestimation is intensified. Third, the hierarchical approach

diminishes parameter distortions and, thus, leads to adequate unconditional LGD predictions.

Furthermore, it offers an intuitive framework to generate LGD predictions conditional on the

time in default, i.e., LGD-in-default and ELBE, in accordance with the EBA guidelines (see

European Banking Authority, 2017). At first glance, the described application seems to be

rather specific in credit risk management. However, the proposed modeling framework is

applicable to duration processes in general where dependence between time and some outcome

at the end of the time horizon is present.

The remainder of this paper is structured as follows. Section 2 provides further information on

the effects of censoring on LGDs and, thus, reasoning for the introduction of the EBA guidelines.

Section 3 introduces the hierarchical modeling approach. Data and results are presented in
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Section 4. In Section 5, the model is validated on an in sample and out of sample perspective.

Section 6 concludes.

2 Background

As stated in Section 1, workout LGDs are characterized by time specific censoring, as they are

indirectly affected by the DRT. This section gives an impression of the effects of censoring

on LGDs and, thus, offers reasoning for the EBA guidelines with respect to the treatment of

defaulted exposures (see European Banking Authority, 2017).

The default resolution process of corporate loan contracts is rather complex as it depends on

local insolvency codes, common business practices, and individual decisions. The parameters

of the process, i.e., the DRT and the LGD, are affected by this complexity. Simpler – or more

efficient – default resolutions might be described by short DRTs and low LGDs, while higher

complexity results in longer resolutions with higher losses. Figure 1 illustrates the scheme of

resolution processes. The process starts with the default of a debtor, i.e., its loan contract, and

Figure 1: Structure of default resolution
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Note: The figure illustrates a schematic representation of the resolution process. The process is limited by its start
point (default) and its end point (default resolution) presented by gray rectangles. It can be characterized by its
parameters time (DRT) and result (LGD) presented by gray circles. The time is subject to censoring. The result
variable is measurable on metric scale. The gray double arrow between the parameters indicate dependence.

ends with default resolution. The duration of this process differs among contracts and is subject

to censoring. In particular, longer DRTs are not observable until the end of the observation
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period and are censored to the time in default. Due to the dependency between DRTs and

LGDs, effects of censoring can be remarkable on the LGD side. As the final DRTs of censored

observations are longer on average, final LGDs tend to be higher (but not observable). This

phenomenon is often refereed to as resolution bias.

Generally, neglecting censoring might result in biased parameter estimates. We illustrate this

by a simplified example in order to ease the understanding of censoring effects. For instance,

assume a Weibull distribution for DRTs (T ∼Weibull) and – for simplicity – a fixed censoring

time c. To ease transparency, we further assume that LGDs linearly depend on DRTs, thus,

following the linear model

Li = α + β ln(Ti) + ei , (1)

where Li is the LGD of loan i and ei ∼ N (0,σ2). We randomly generate 10,000 pairs of DRTs

and LGDs by Monte-Carlo simulation based on this model. We choose the true values of the

parameters to match location and scale of empirical DRTs and LGDs. The shape and scale of

the Weibull distribution are set to one and two to ensure an average DRT of round about two

years. In Equation (1), we set α = 0.2 and β = 0.3 resulting in an average LGD of round about

0.25. Please note that the choice of parameters is arbitrary as resulting effects are independent

of the specific values. Figure 2 illustrates the impact of censoring on the result variable LGD.

The light gray bars illustrate the simulation result for the true distributions (which are not

observable), whereas, the dark gray bars are the observable censored distributions. The lines

display the corresponding mean values, whereby, the dotted lines indicate absence of censoring.

In the upper panel, the distribution of the time is displayed. Censoring limits the distribution

to a certain value which implies a slight underestimation of the average value if censoring

is neglected. Due to the linear dependence between time and result as of Equation (1), this

phenomenon is transferred to the result variable (see lower left panel). Thus, average values are

underestimated assuming a positive dependence of time and result as the true mean marked by

a dotted line is above the mean in the presence of censoring. In the conditional perspective, only

censored cases are considered. Hereby, the effect of censoring and, thus, the underestimation, is

intensified (see lower right panel) as the difference between true mean and mean in the presence

of censoring increases. Neglecting censoring implies the same distribution for censored values

as for non-censored ones. However, the true distribution is shifted towards higher values

assuming a positive dependence, i.e., β > 0.

6



Figure 2: Impact of censoring on the result variable
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Note: The figure illustrates the impact of censoring in the time variable on the result variable. The upper panel
displays the distribution of time in the absence of censoring (light gray bars) and in the presence of censoring (dark
gray bars). The distribution in the absence of censoring might be interpreted as the true distribution. The lower left
panel illustrates the unconditional distribution of the result variable (dark gray indicates censoring, light gray no
censoring). The lower right panel restricts the presentation to the censored cases. Means of the distributions are
marked by lines, whereby, the dotted line indicates absence of censoring.

In the context of the EBA guidelines, the unconditional perspective corresponds to uncon-

ditional LGDs for the non-defaulted exposure, whereas, the conditional perspective reflects

LGDs conditional on the time in default for the defaulted exposure. Thus, the consideration of

post-default information – such as the time in default – is required. The hierarchical approach

we develop is a joint modeling approach for DRTs and LGDs. It considers censoring, depen-

dencies between DRTs and LGDs and, thus, allows for adequate unconditional and consistent

conditional LGD predictions within a single modeling framework.

At the first glance, the described setting seems to be a rather special case in credit risk manage-

ment. However, applications are diverse. Generally, duration processes are subject to censoring.

Whenever time dependent result variables on a metric scale are of main interest, censoring
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should be considered to avoid underestimation (or overestimation respectively, if negative

dependencies between time and result are present, i.e., β < 0). Examples might be found in

business where complex negotiations lead to outcomes on a metric scale, e.g., granting loans

(negotiation process vs. granted amount). Besides, applications in completely different fields

are conceivable, e.g., medicine and health science (healing process vs. resulting quality or

strength). The developed hierarchical approach might be adjusted to different applications

regarding the characteristics of the outcome variable. In this paper, we apply an FMM to model

the distribution of LGDs which is rather complex. In a setting where the result variable follows

a less extreme distribution, the FMM can be exchanged by a much simpler model.

3 Methods

This paper develops a hierarchical modeling approach for DRTs and LGDs and, thereby,

analyzes the dependence structure of DRTs and LGDs and reveals impacts of censoring in DRTs

on LGDs. We combine a pure (standard) LGD model with survival analysis techniques – in terms

of an accelerated failure time (AFT) model – in a hierarchical structure to consider censoring in

an LGD modeling context. As stated in Section 1, workout LGDs are characterized by a rather

extreme distributional form. The distribution is bimodal with high probability masses at no

and total loss. Furthermore, the two modes are characterized by bindings, i.e., values which are

exactly 0 or exactly 1. We, therefore, extend the Bayesian finite mixture model (FMM) with a

probabilistic substructure in terms of an ordered logit (OL) model developed by Altman and

Kalotay (2014) and further extended by Betz et al. (2018). This model seems to be well suited

to capture the characteristic features of LGD distributions. To investigate direct dependencies

of DRTs on LGDs, the DRT serves as an explanatory variable in the LGD model. Two correlated

random effects are included to study comovements of DRTs and LGDs in the time line (indirect

dependencies). In the following, we briefly review the LGD model of Altman and Kalotay

(2014) and Betz et al. (2018) and discuss the extensions in the context of the hierarchical model.

LGD Model

We apply a Normal FMM to model the distribution of LGDs. Generally, FMMs offer high

flexibility in modeling distributions of unknown shape (see McLachlan and Peel, 2000). The
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dependent variable L is assumed to be divided into a finite number of K latent classes. In

each class k, L follows a Normal distribution with parameters θk depending on the latent

class k. We assume normally distributed components to achieve computational transparency

(see McLachlan and Peel, 2000). Thus, the probability density function (PDF) of an FMM

g(L |θ1, . . . ,θK ) is the pk weighted sum of the component PDFs fk(L|θk):

g(L |θ1, . . . ,θK ) =
K∑
k=1

pk fk(L |θk) . (2)

To ensure the general properties of a PDF, i.e., g(l) ≥ 0 for all l ∈ R and
∫∞
−∞ g(l) = 1, pk ≥ 0 and∑

k pk = 1 must hold. Assuming conditional independence, the likelihood of a Normal FMM

φ(L1, ...,LN |µ,σ ,p) is the product of the individual likelihood contributions:

φ(L1, ...,LN |µ,σ ,p) =
1

(2π)
N
2

N∏
i=1

 K∑
k=1

pk
σk

exp

− (Li −µk)2

2σ2
k


 , (3)

where, µk and σk are the parameters of the latent class k and N is the number of observations.

To adapt data augmentation, the component weight pk is replaced by an indicator variable dik

which takes the value one if li is a random draw of component k and zero otherwise:

φ(L1, ...,LN |µ,σ ,d) =
1

(2π)
N
2

N∏
i=1

 K∑
k=1

dik
σk

exp

− (Li −µk)2

2σ2
k


 . (4)

To identify loan contracts with no and total loss, we fix the parameters of the two outer

components. The means are set to µ1 = 0 and µK = 1 with small standard deviations (σ1 = σK =

0.0001). Results are robust to different (reasonable) values for σ1 and σK .

To estimate the probability for loan i of belonging to the k-th component depending on covari-

ates, a probabilistic substructure in terms of an OL model is formulated. To rely on the classical

formulation of the OL model, we define the component affiliation yi :

yi = k if dik = 1 , (5)

where, dik is the indicator as of Equation (4). The component affiliation Yi is categorically

distributed and determined by the location of a metric latent variable Y ∗i to corresponding cut
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points ck (k ∈ {1, . . . ,K − 1}):

Yi =



1 if Y ∗i ≤ c1

2 if c1 < Y
∗
i ≤ c2

...

K if cK−1 < Y
∗
i .

(6)

The latent variable Y ∗i follows a linear model:

Y ∗i = ziζ +Ft(i) + ei , ei ∼ logistic , (7)

where, zi is a (1× J) vector of independent variables and ζ is the (J ×1) vector of coefficients. The

term ei describes the errors. A random effect Ft(i) is introduced into the modeling framework to

control for comovement in the time line. It originates from a Normal distribution with mean

zero and standard deviation σ :

Ft ∼N(0 , σ ) . (8)

The time stamp t(i) in Equation (7) indicates the default time t in quarters of loan i. Two loans

i and i′ which defaulted in the same quarter (t(i) = t(i′) = t) share the same realization of the

random effect (ft(i) = ft(i′) = ft). For ft > 0 (ft < 0), both loans exhibit higher (lower) values of y∗i

and, thus, higher (lower) probabilities of high component affiliations yi . Higher component

affiliations yi are accompanied with higher loss rates and vice versa. Thus, the random effect

displays the comovement in time line, i.e., higher or lower average loss rates in specific default

quarters which can not be explained by observable variables included in zi .

Betz et al. (2018) additionally consider an autoregressive process of order 1, i.e., AR(1), for

the random effect to allow for cyclical movements in the realizations of the random effect. In

this paper, we do not consider this specification due to simplicity as the specification of the

random effect seems to have negligible impact on its realizations. For conditional predictions

(LGDs-in-default, ELBE) in the hierarchical approach we apply the realized value of the random

effect in the corresponding time period, while we use the mean value 0 for unconditional

predictions.

Hierarchical Model
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In the hierarchical model, the pure (standard) LGD model of the previous paragraphs is

extended by an additional hierarchical level in terms of an AFT model for the DRT to consider

censoring and allow for LGD predictions conditional on the time in default. The logarithm of

the resolution time ln(Ti) can be expressed by a linear model:

ln(Ti) = β0 + xiβ +FTt(i) + s εi , εi ∼ negative Gumbel , (9)

where xi is a (1 × JT ) vector of independent variables, β is the (JT × 1) vector of coefficients,

and β0 is the intercept. We assume the errors εi to follow a negative Gumbel distribution and,

thus, the DRT to be Weibull distributed. Different distributional assumptions for the errors

are possible with the Normal, Logistic, Exponential and Weibull distribution being the most

common ones in the AFT model. Among these, the Weibull distribution seems to have the best

fit. The term s is the scale parameter. A random effect FTt(i) is introduced into the modeling

framework to control for comovement in the time line. Equation (9) applies to non censored,

i.e., final, observations. For censored observations, final realizations are estimated within the

Bayesian modeling framework. By this means, we are able to predict final DRTs for censored

data points, i.e., unresolved loans.

In the hierarchical approach, the AFT model for the DRT is simultaneously estimated with

FMM for the LGD (see previous paragraph). To develop an intuitive method to generate

LGD predictions conditional on the time in default, the logarithm of the DRT is included as

explanatory variable. This accounts for direct dependencies of DRTs and LGDs. Equation (7)

modifies to:

Y ∗i = ziγ + ln(Ti)γT +FLt(i) + εi , εi ∼ logistic , (10)

where zi is the (1× JL) vector of independent variables, γ is the (JL × 1) vector of coefficients,

and γT is the coefficient of the logarithm of the DRT. Again, a random effect FLt(i) is introduced

into the modeling framework to control for comovement in the time line. Equation (2), (3), (4),

(5), and (6) apply in analogy to Yi∗.

The random effects FTt(i) as of Equation (9) and FLt(i) as of Equation (10) originate from a bivariate

Normal distribution: F
T
t

FLt

 ∼N2 (02 , Σ ) , (11)
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where 02 is the two dimensional zero vector (0k = ( 0 0 )T ) and Σ is the (2 × 2) covariance

matrix. The latter is based on the individual standard deviations (σT and σL) and the (2× 2)

correlation matrix Ω:

Σ = diag(σT ,σL) Ω diag(σT ,σL)

=

 σ2
T σT σLωL,T

σT σLωT ,L σ2
L

 , (12)

where ωT ,L(=ωL,T ) is the correlation of FTt and FLt . By the inclusion of the random effects, we

control for joint comovements of loss rates and resolution times in the time line. Two loans i

and i′ which defaulted in the same quarter (t(i) = t(i′) = t) share the same realizations of the

random effects (f Tt(i) = f Tt(i′) = f Tt and f Lt(i) = f Lt(i′) = f Lt , however, f Tt , f
L
t in most of the cases). For

f Tt > 0 (f Tt < 0), average DRTs are higher (lower). Assuming a positive correlation between

the random effects and a positive parameter estimate of the logarithm of the DRT in the LGD

model (γT > 0), the corresponding LGDs are effected through two channels: Directly, as higher

(lower) DRTs are inserted in the LGD model. Indirectly, as positive (negative) realizations of f Tt

tend to imply positive (negative) realizations of f Lt due to the positive correlation. Thus, LGDs

are even higher. However, negative realizations of f Lt remain possible for a stochastic process

as of Equation (11) which might reduce LGDs. Both scenarios are conceivable. Confronted

with a tense economic surrounding, financial institutions might decide to follow a wait-and-see

strategy and relocate resolution efforts in the future. This might provide benefits and reduce

the LGD (f Lt < 0). However, LGDs might be further increased (f Lt > 0) if financial institutions

are forced to resolve defaulted loans at a certain point in time, e.g., if there is no further option

to wait.

Estimation

The parameters of the LGD model and the hierarchical model are estimated via Bayesian

inference. Following Bayes’ theorem, the posterior distribution of the parameters θ given the

data is

f (θ |data) =
f (data |θ) f (θ)

f (data)
, (13)

where f (θ |data) is the posterior distribution of the parameters, f (data |θ) the likelihood of

the data given the parameters θ, and f (θ) the prior distribution of the parameters. The
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denominator f (data) guarantees the properties of a density function and is calculated as

f (data) =
∫
f (data |θ) f (θ) dθ. In many cases, the integral in the denominator can not be solved

analytically. Markov Chain Monte Carlo (MCMC) methods might be used to sample from the

posterior distribution. Most commonly, Metropolis Hastings (MH) and Gibbs (as special case of

MH) algorithm are applied. Confronted with hierarchical models and, thus, highly correlated

posterior distributions, both algorithms suffer from an inappropriate high number of iterations

to reach the equilibrium distribution. Therefore, we apply the Hamiltonian Monte Carlo (HMC)

algorithm. The HMC algorithm is efficiently implemented in Stan (see Stan Development Team,

2016, for further information on the implementation) and combines a Hamiltonian evolution

with a Metropolis proposal to reduce the correlation in the chains. The parameters of the

proposal distribution and the Hamiltonian evolution are tuned during the adaption phase. The

LGD model and the hierarchical model are sampled with two HMC chains. Burn-in is set to 500.

Posterior samples contain 25,000 iterations per chain with a thinning of 5. Metric dependent

variables are standardized to ease convergence. Most of the model parameters are provided

with weakly informative prior distributions. See Section 1 of the online companion for this

paper for detailed information on the Bayesian model specifications. Common convergence

diagnostics can be found in Section 2 of the online companion.

The uncertainty in the parameter estimates expressed by the dispersion in the posterior distri-

butions f (θ |data) should be reflected in predictive distributions. Given a new data point ã the

posterior predicted distribution is

f (ã |data) =
∫
Θ

f (ã |θ,data) f (θ |data) dθ , (14)

where f (ã |θ,data) is the predictive distribution for ã given one single parameter estimate θ and

f (θ |data) is the posterior distribution of that parameter. The quantity Θ (with θ ∈Θ) denotes

the parameter space. Inserting each iteration of θ from f (θ |data) based on the HMC algorithm

into the modeling framework corresponds to sampling from f (ã |data).
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4 Data and results

4.1 Data

We use access to the unique loss data base of Global Credit Data (GCD). The data base includes

detailed loss information on transaction basis of 53 member banks all around the world. In the

data base, the LGD is determined by Li = 1−RRi , whereby, Li is the loss rate of loan i and RRi

is the corresponding recovery rate (RR). The RR is calculated as the sum over the present values

of all relevant transactions divided by the outstanding amount (see Betz et al., 2016, 2018).

We follow Höcht and Zagst (2010) and Höcht et al. (2011) and develop two selection criteria

to eliminate loans with extraordinary payment structures. Both criteria relate all relevant

transactions including charge-offs (which are not included in the LGD calculation) to the

outstanding amount. The first criterion, to which we refer as pre-resolution criterion, relates

transactions arising pre-resolution to the outstanding amount at default. We set the barriers of

the pre-resolution criterion to [90%,110%] for resolved and [−50%,400%] for unresolved loans.

In the second criterion, i.e., post-resolution criterion, transactions occurring post resolution are

related to a fictional outstanding amount at resolution. The barriers are set to [−10%,110%]

for the post-resolution criterion. The post-resolution criterion applies for resolved loans only.

Subsequently, loans with abnormal low and high LGDs (< −25% and > 125%) are eliminated.

Overall, 0.50% of resolved loans are eliminated due to the pre-resolution criterion and 0.19%

due to the post-resolution criterion, whereas, 0.23% of unresolved loans are eliminated based

on the pre-resolution criterion. Subsequently, 0.13% are sorted out due to abnormal low and

high LGD values. We consider a subsample of defaulted European term loans and lines to small

and medium sized enterprises (SMEs). The twelve most common European countries in the

data base – i.e., Great Britain, Germany, Denmark, Portugal, Ireland, France, Finland, Sweden,

Norway, Latvia, Estonia, and Poland – are included. We further exclude loans which defaulted

before 2004 and after 2016 (10.02% of subsample data). A subsample of 38,165 loans remains.

Figure 3 illustrates the interconnection of the two parameters of the resolution process, i.e., the

DRT and the LGD. Therefore, the data set is divided into DRT buckets based on realized DRTs.

The first bucket includes all loans with DRTs ∈ [0,0.5] years. The second bucket contains all

14



loans with DRTs ∈ (0.5,1.0] years, and so on (see x-axis of left panel and legend of right panel).

In the left panel, box plots of LGDs divided by DRT buckets are displayed. The thick black lines

Figure 3: Relation of DRT and LGD

LG
D

1 2 3 4 5

0.
0

0.
5

1.
0

[0.0,0.5] (0.5,1.0] (1.0,2.0] (2.0,3.0] (3.0,...)

DRT bucket

median
mean

de
ns

ity

0.0 0.5 1.0

0
10

20

LGD

DRT bucket 1 [0.0,0.5]
DRT bucket 2 (0.5,1.0]
DRT bucket 3 (1.0,2.0]
DRT bucket 4 (2.0,3.0]
DRT bucket 5 (3.0, ... )

Note: The figure illustrates the relation of DRTs and LGDs. The data is divided into DRT buckets based on the
realized DRTs. Thus, the first bucket includes all loans with DRTs ∈ [0,0.5] years. The second bucket contains all
loans with DRTs ∈ (0.5,1.0] years, and so on (see x-axis of left panel and legend of right panel). In the left panel, box
plots of LGDs for the DRT buckets are displayed. Outliers are hidden. The thick black lines mark the medians,
whereas, the thick gray lines are the means. In the right panel, kernel density estimates of LGDs for the DRT buckets
are illustrated. The band width is fixed to 0.015 to ensure comparability.

mark the medians, whereas, the thick gray lines are the means. Considering the latter, average

LGDs seem to linearly increase in the DRT buckets. To examine the origin of this increase, the

right panel displays kernel density estimates for the DRT buckets. The LGD distribution of

higher DRT buckets is shifted towards higher LGD values, i.e., probability masses of lower LGD

values decrease and probability masses of higher LGD values increase. Thus, average values

increase.

Table 1 summarizes the descriptive statistics of the dependent and explanatory variables.

Figures are stated for all loans (resolved, i.e., non censored, and unresolved, i.e., censored,

cases) and for resolved and unresolved loans separately. The upper panel of the table includes

descriptive statistics for the LGD and the DRT. For unresolved cases, incurred LGDs are

applied. Incurred LGDs are computed as the sum over the present values of all relevant

transactions, which occurred up to the end of the observation period (end of 2016), divided

by the outstanding amount. As the resolution process is not terminated, incurred LGDs are

higher than final LGDs. DRTs for unresolved cases are censored to the end of the observation

period (end of 2016), e.g., for unresolved loans defaulted at the end of 2015, a censored DRT

of one year is assigned. Censored DRTs are lower than final DRTs as the resolution process
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Table 1: Descriptive statistics

all resolved unresolved

n 38,165 35,272 2,893

dependent variables

LGD mean 0.2534 0.2099 0.7839
median 0.0133 0.0082 0.9780
standard deviation 0.3810 0.3531 0.3017

DRT mean 1.9882 1.7342 5.0839
median 1.2621 1.1335 4.9090
standard deviation 2.0756 1.7509 3.0147

loan specific (metric)

EAD mean 533,118.89 516,582.05 734,739.20
median 102,987.29 100,237.48 155,097.53
standard deviation 3,624,711.52 3,610,978.60 3,782,983.43

loan specific (categoric)

Facility term loan 62.00% 60.39% 81.68%
line 38.00% 39.61% 18.32%

Protection no 25.61% 26.03% 20.46%
yes 74.39% 73.97% 79.54%

Industry non FIRE 83.13% 82.13% 95.30%
FIRE 16.87% 17.87% 4.70%

macro variables

∆ HPI mean -1.6966 -1.7765 -0.7229
median 0.1662 0.1662 0.8360
standard deviation 6.0221 5.9928 6.2878

VIX mean 24.4762 24.3681 25.7947
median 22.9249 22.6771 23.3451
standard deviation 9.4105 9.4699 8.5465

Note: The table summarizes descriptive statistics for dependent and independent variables in the data set. For
metric variables, means, medians, and standard deviations are stated. Proportions are presented for variables of
categoric nature. The sample size is denoted by n. The abbreviation FIRE means Finance, Insurance, Real Estate and
denotes corporations of this industries. The macro variable ∆ HPI is the is the yoy percentage chance of the House
Price Index, whereas, the VIX is the Volatility Index.
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is not terminated. In the table, average values of LGDs and DRTs for unresolved cases are

higher compared to resolved cases as unresolved cases are shaped by rather bad loans, i.e.,

loans exhibiting high DRTs and high LGDs. In the middle panels of the table, descriptive

statistics of loan specific independent variables are stated. We use the EAD to control for the

size of the loan. It is further distinguished between term loans and lines, whether a loan is

protected by collateral or guarantee or not, and whether the debtor has Finance, Insurance, Real

Estate (FIRE) industry affiliation. Reference categories in the subsequent models are printed

italic in the table. The lower panel of the table contains descriptive statistics of the applied

macroeconomic variables. The year-on-year (yoy) percentage change of weighted average real

residential prices (∆ HPI) is employed as explanatory variable for the LGD, whereas, we use

the VSTOXX Volatility Index (VIX) for the DRT. We tested further macro variables, e.g, the yoy

percentage change of weighted average seasonally adjusted GDPs and the quarterly average yoy

percentage change of weighted average equity indices. However, ∆ HPI and VIX exhibit the

highest statistical evidence.

Figure 4 illustrates the time patterns of average DRTs in the left panel and average LGDs in the

right panel for resolved loans (thick black line) and all loans (resolved and unresolved loans,

thin gray line). Regarding the latter, values for unresolved loans, i.e., censored observations,

have to be calculated. Thus, DRTs are censored to the end of the observation period (end of

2016) and incurrent LGDs are considered for unresolved cases. Incurrent LGDs are computed

as sum over the present values of all relevant transactions, which occurred up to the end of the

observation period (end of 2016), divided by the outstanding amount. The relation of DRTs

and LGDs (see Figure 3) might partly be driven by analogous time patterns. Both dependent

variables sharply increase prior to the Global Financial Crisis (GFC, 2007 Q2) and reach the

maximum during the climax of the GFC. The rebound in the aftermath of the crisis seems

gradual. There are only minor deviations between resolved loans and all loans considering the

average DRTs. The graph for all loans is slightly shifted upwards by the censored observations.

Regarding average LGDs, this spread is severe particularly in the most recent time periods.

This is mainly due to incurrent LGDs, i.e., LGDs based on transactions which occur up to the

end of the observation period, in the averaging. Final LGDs will be lower. However, final LGDs

of all loans will still lie above the black line (final LGDs of resolved loans). Due to the effects of

censoring, final LGDs are only observable for defaults with short DRTs in the more recent time
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Figure 4: Time patterns of average DRTs and average LGDs
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Note: The figure illustrates time patterns of average DRTs in the left panel and average LGDs in the right panel. The
black lines display the average values for resolved loans, whereas, the gray lines are average values for all loans,
i.e., resolved and unresolved cases. Thus, the latter include censored values. Means over the entire time period are
illustrated by dotted lines.

periods (see Section 2). Due to the interconnection of DRTs and LGDs, these tend to be lower

implying an underestimation of LGDs in the more recent time periods.

In this paper, we analyze the effects of censoring on unconditional and conditional LGD

predictions on an in-sample and out-of-sample perspective. Therefore, we divide the data set as

of Table 1 into subsamples. The first subsample serves as estimation sample. It includes all loans

defaulted between 2004 Q1 and 2010 Q4. Thus, it comprises times of rather sound economic

surrounding, the GFC, and parts of the rebound phase. We treat loans which are not resolved

until 2010 Q4 as censored observations, i.e., unresolved loans. The second subsample, to which

we refer to as validation sample I, includes the final observations to the censored observations as

of the estimation sample. We apply validation sample I to perform an out-of-sample validation

of LGDs. The third sample, i.e., validation sample II, includes all loans defaulted between

2011 Q1 and 2016 Q4. It is used to perform an out-of-sample out-of-time validation of LGDs.

Table 2 summarizes the estimation sample and the validation samples. In the upper panel,

the sample sizes are stated. Validation sample I consists of the 10,171 loans which are treated

as unresolved cases in the estimation sample, i.e, are unresolved until the end of 2010. Some

of these loans (1,724) are still unresolved at the end of 2016. However, the proportion of

unresolved loans is lower in validation sample I compared to the estimation sample. In the

lower panel, average values of LGDs and DRTs are stated. These are rather similar comparing

the estimation sample and validation sample II, however, considerably higher in validation
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Table 2: Estimation sample and validation samples

estimation sample validation sample I validation sample II
(out-of-sample) (out-of-sample out-of-time)

n all 31,988 10,171 6,177
resolved 21,817 8,447 5,008
unresolved 10,171 1,724 1,169

dependent variables

average LGD all 0.2586 0.4270 0.2267
resolved 0.1801 0.3511 0.1017
unresolved 0.4270 0.7987 0.7622

average DRT all 1.5763 4.2566 1.0495
resolved 1.1964 3.6851 0.7869
unresolved 2.3911 7.0568 2.1743

Note: The table summarizes the applied samples. The number n, the average LGD, and the average DRT of all loans,
resolved loans, and unresolved loans are presented for the estimation sample and the two validation samples. The
models are estimated based on the estimation sample. This sample includes all loans defaulted between 2004 Q1
and 2010 Q4. Loans which are not resolved until 2010 Q4 are treated as censored observations, i.e., unresolved
cases, in the estimation. Validation sample I contains the final observations of these unresolved cases. However,
observations exist which are still censored at the end of 2016 (unresolved cases in validation sample I). In validation
sample II, loans which defaulted between 2011 Q1 and 2016 Q4 are included. Thus, validation sample I is applied
for the out-of-sample validation, whereas, the out-of-sample out-of-time validation is performed on validation sample
II.

sample I. This is due to the fact that validation sample I contains final observations to censored

cases in the estimation sample, thus, observations with higher DRTs and higher LGDs.

4.2 Results

In Bayesian inference, posterior distributions of parameters are assumed to be continuous. Thus,

a single value of the posterior distribution has a probability of zero. On the contrary, one single

parameter estimate is assigned in frequentistic terms. A null hypothesis is set up to reach a

yes-or-no decision, e.g., whether the parameter is positive or not. Under the Bayesian approach,

estimates are provided by posterior distributions which offer an intuitive consideration of

parameter uncertainty (uncertainty refers to the range of possible parameter values and their

probabilistic substructure, not to Knightian uncertainty according to which no probabilities

can be assigned to parameter values). Thus, other concepts are indicated to quantify if results

are in favor of an impact, i.e., if an impact is statistical evident. We apply two of them – credible

intervals and Bayes factors.

Credible intervals, e.g., Highest Probability Density Intervals (HPDIs), specify intervals in the

domain of the posterior distribution in which the unobservable parameter lies with a certain
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probability. The HPDI denotes the narrowest credible interval. If 0 < HPDI, the domain of

the posterior distribution is located in the positive (negative) value range indicating statistical

evidence of the positive (negative) sign. Besides credible intervals, we apply Bayes factors to

evaluate statistical evidence. Bayes factors are the relation of posterior odds to prior odds.

Posterior odds are defined as the ratio of posterior probability masses under the null hypotheses

and the alternative hypothesis. As we are interested in the evidence of the signs, posterior odds

are derived as the ratio of posterior mass favoring the sign of the posterior mean to posterior

mass of the opposite sign:

posterior oddsE[θ]<0 =
P(θ < 0 | data)
P(θ ≥ 0 | data)

posterior oddsE[θ]>0 =
P(θ > 0 | data)
P(θ ≤ 0 | data)

,

whereby, θ denotes an arbitrary parameter. Assuming a positive posterior mean (E[θ] > 0),

posterior oddsE[θ]>0 = 3 indicates that a positive impact is three times as likely as a negative

impact. Prior odds are the corresponding ratio of the prior distribution. Assuming a symmetric

prior distribution around zero, posterior odds are equivalent to the Bayes factor. A Bayes factor

exceeding 3.2 is deemed as substantial evidence. Values above 10 are assigned with strong

evidence, whereas, values above 100 are related to decisive evidence (see Kass and Raftery,

1995).

LGD Model

The LGD model is estimated based on the estimation sample (see Table 2). However, it offers no

possibility to include censored observations, i.e., unresolved loans, in the estimation process.

Thus, the 21,817 resolved cases are included, whereas, 10,171 unresolved defaults are neglected.

As these unresolved loans tend to exhibit higher LGDs due to the resolution bias, parameter

estimates might be distorted.

Table 3 summarizes the results of the LGD model. Parameters are stated in the first column,

whereas, the second column presents posterior means. In the FMM within the LGD model,

parameters of the outer components (µ1 and σ1 for the first component, µ5 and σ5 for the fifth

component) are fixed to identify loans with no (LGD = 0) and total (LGD = 1) loss. The second

and third component are located nearby the first component (µ2 = 0.0067 and µ3 = 0.0290)
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Table 3: Results of the LGD model

posterior
HPDI (95%)

posterior naive time series
mean odds standard error standard error

LGD model

µ1 0.0000 not estimated
µ2 0.0067 0.0064 0.0070 ∞ 0.0000 0.0000
µ3 0.0290 0.0277 0.0303 ∞ 0.0000 0.0000
µ4 0.5114 0.5004 0.5229 ∞ 0.0000 0.0000
µ5 1.0000 not estimated

σ1 0.0010 not estimated
σ2 0.0045 0.0042 0.0048 ∞ 0.0000 0.0000
σ3 0.0249 0.0237 0.0261 ∞ 0.0000 0.0000
σ4 0.3364 0.3295 0.3436 ∞ 0.0000 0.0000
σ5 0.0010 not estimated

c1 -0.6959 -0.9773 -0.4082 ∞ 0.0006 0.0012
c2 -0.0349 -0.3203 0.2510 1.4857 0.0006 0.0012
c3 0.8952 0.6087 1.1777 ∞ 0.0006 0.0012
c4 2.7509 2.4649 3.0421 ∞ 0.0007 0.0012

ζEAD -0.1099 -0.1357 -0.0824 ∞ 0.0001 0.0001
ζFacility 0.2038 0.1495 0.2584 ∞ 0.0001 0.0001
ζProtection -0.4147 -0.4751 -0.3559 ∞ 0.0001 0.0001
ζIndustry -0.2355 -0.3000 -0.1683 ∞ 0.0002 0.0002
ζHPI 0.0590 -0.2183 0.3311 2.0243 0.0006 0.0010

random effect

σ 0.8191 0.6200 1.0329 ∞ 0.0005 0.0005

Note: The table summarizes the results of the LGD model. Parameters are stated in the first column. Categorical
variables are included via dummy coding. The reference categories are term loan for facility, no for protection, and
non FIRE for industry. The second column presents the posterior means. In the third and fourth column, lower and
upper bounds of the corresponding HPDIs to a credibility level of 95% are displayed. The fifth column contains the
posterior odds. Naive and time series standard errors are shown in the last two columns. Time series standard errors
are calculated based on the effective chain length (N ∗MCMC) instead of the actual chain length (NMCMC), whereby,
N ∗MCMC < NMCMC holds for autocorrelated chains.

and have rather small standard deviations (σ2 = 0.0045 and σ3 = 0.0249), whereas, the forth

component seems to cover the range in between the extremes of no and total loss (µ4 = 0.5114

and σ4 = 0.3364). The posterior distributions of the cut points (ck for k ∈ {1,2,3,4}) are not

directly interpretable as they depend on the range of the latent variable (Y ∗).

Component probabilities are derived based on the OL model within the LGD model. The param-

eter of the EAD (ζEAD) exhibits a negative posterior mean indicating a lower value of the latent

variable (Y ∗) for higher EADs and, thus, lower LGDs. This impact is characterized by decisive ev-

idence as the posterior odds are tending to infinity (posterior oddsE[ζEAD]<0→∞) and the HPDI

(HPDIζEAD
= [−0.14,−0.08]) excludes zero. Reasons for the negative impact of the EAD might

be found in higher resolution efforts and, thus, lower loss rates, for loans of major size. The

posterior mean of lines (ζFacility) is positive. Thus, lines are characterized by higher LGDs com-
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pared to term loans. This positive influence is decisively evident (posterior oddsE[ζFacility]>0→∞

and 0 < HPDIζFacility
= [0.15,0.26]). Protection (ζProtection) exhibits a negative posterior mean

with decisive evidence (posterior oddsE[ζProtection]<0→∞ and 0 <HPDIζProtection
= [−0.48,−0.36]).

This indicates lower loss rates for protected loans which corresponds to the economic intu-

ition. According to the negative sign of the industry FIRE (ζIndustry), LGDs for loans of this

industry affiliation are lower compared to other industries. This impact is decisively evi-

dent (posterior oddsE[ζIndustry]<0→∞ and 0 <HPDIζIndustry
= [−0.30,−0.17]). The applied macro

variable, i.e., the HPI (ζHPI), exhibits a positive sign indicating higher LGDs for higher val-

ues of the HPI. This contradicts the economic intuition as a sound economic surrounding

should be accompanied with lower loss rates. However, the positive sign is not statistical

evident (posterior oddsE[ζHPI]>0 = 2.02 < 3.2 and 0 ∈HPDIζHPI
= [−0.22,0.33]). The last row of

the table summarizes the posterior distribution of the random effect parameter.

Figure 5 illustrates the realizations of the random effect ft in the LGD model. Higher realizations

of the random effect (ft > 0) indicate higher values of the latent variable Y ∗ for all loans defaulted

in t and, thus, higher average LGDs in this quarter. The left panel of the figure presents the time

Figure 5: Random effect of the LGD model
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Note: The figure illustrates the course of the random effect in the LGD model over time. In the left panel, the
posterior means (thick line) and the HPDI (95%, thin lines) of the random effect realizations, i.e., ft , are displayed.
In the right panel, the random effect (black line) is contrasted with the time patterns of average LGDs for all loans
(dark gray line) and for resolved loans (light gray line). Final and incurrent LGDs as of validation sample I are
included in the averaging. The dotted lines mark zero and serves as a reference line.

patterns of ft. The path of ft seems to be related to the economic cycle. While the realizations of

the random effect scatter around zero prior to the crisis, increased values occur since 2007 Q2.

In the climax of the GFC, ft reaches its maximum. The rebound in the aftermath of the crisis

instates gradually. The right panel of the figure contrasts these time patterns of ft to average
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LGDs in the time line as of Figure 4. The latter include observations which are not considered

in the estimation, i.e., final LGDs of unresolved loans as of validation sample I. Up to the

more recent time periods, the random effect seems to mimic the path of average LGDs. The

time series disperse afterwards, whereby, the spread further increases in the time line. This

deviation might be attributed to the neglection of censored observations. The final realizations

of censored observations tend to have higher LGDs. This distorts the estimated realizations of

the random effect in the more recent time periods. The effect of censoring and the associated

distortion worsen in the time line, i.e., the distortion of ft enlarges for higher t. Furthermore, a

distortion of the random effect parameter σ has to be considered as the downward distortions

in the random effect realizations might erroneously increase the underlying standard deviation

of the random effect. We will come back to this later on (see subsequent paragraph).

Hierarchical Model

In analogy to the LGD model, the hierarchical approach is estimated based on the estimation

sample (see Table 2). Due to DRT model in the hierarchical approach, it is possible to include

censored observations, i.e., unresolved loans, in the estimation process. By this means, we are

able to generate posterior predictive distributions for the DRT of unresolved cases and, thus,

posterior predictive distributions for the LGD of unresolved loans. Furthermore, effects of the

resolution bias as in the pure LGD model (see Figure 5) might be diminished.

Table 4 summarizes the results of the hierarchical model. Parameters are stated in the first

column, whereas, the second column presents posterior means. Posterior distributions for

the estimated component parameters (µk and σk for k ∈ {2,3,4}) and loan specific covariate

parameters of the LGD model in the hierarchical approach (γEAD, γFacility, γProtection, and

γIndustry) are similar to their counterparts in the pure LGD model (see Table 3, µk and σk for k ∈

{2,3,4} and ζEAD, ζFacility, ζProtection, and ζIndustry). A deviation arises for the parameter of the

HPI (γHPI). In comparison the corresponding parameter in the pure LGD model (ζHPI) it exhibits

an intuitively negative sign, thus, indicating lower LGDs in sound economic surroundings

which is displayed by an increasing HPI. However, the parameter of the macro variable is

still characterized by a lack of statistical evidence (posterior oddsE[γHPI]<0 = 1.18 < 3.2 and

0 ∈ HPDIγHPI
= [−0.13,0.12]). The sign switch of γHPI compared to ζHPI might be due to the

inclusion of the logarithmized DRT as explanatory variable in the LGD model of the hierarchical
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Table 4: Results of the hierarchical model

posterior
HPDI (95%)

posterior naive time series
mean odds standard error standard error

LGD model in the hierarchical approach

µ1 0.0000 not estimated
µ2 0.0064 0.0062 0.0067 ∞ 0.0000 0.0000
µ3 0.0279 0.0268 0.0290 ∞ 0.0000 0.0000
µ4 0.5033 0.4923 0.5144 ∞ 0.0000 0.0000
µ5 1.0000 not estimated

σ1 0.0010 not estimated
σ2 0.0043 0.0040 0.0045 ∞ 0.0000 0.0000
σ3 0.0234 0.0223 0.0244 ∞ 0.0000 0.0000
σ4 0.3384 0.3314 0.3453 ∞ 0.0000 0.0000
σ5 0.0010 not estimated

c1 -1.4391 -1.5803 -1.3004 ∞ 0.0003 0.0005
c2 -0.5848 -0.7242 -0.4422 ∞ 0.0003 0.0006
c3 0.5728 0.4306 0.7090 ∞ 0.0003 0.0005
c4 2.6716 2.5262 2.8169 ∞ 0.0003 0.0005

γEAD -0.1952 -0.2233 -0.1667 ∞ 0.0001 0.0001
γFacility 0.3259 0.2700 0.3840 ∞ 0.0001 0.0001
γProtection -0.6291 -0.6932 -0.5676 ∞ 0.0001 0.0002
γIndustry -0.2736 -0.3437 -0.2036 ∞ 0.0002 0.0002
γHPI -0.0061 -0.1287 0.1170 1.1847 0.0003 0.0005

γT 0.9996 0.9711 1.0280 ∞ 0.0001 0.0001

DRT model in the hierarchical approach

β0 0.7341 0.6112 0.8521 ∞ 0.0003 0.0006
βEAD 0.0512 0.0343 0.0678 ∞ 0.0000 0.0000
βFacility -0.0903 -0.1238 -0.0555 ∞ 0.0001 0.0001
βProtection 0.1345 0.0981 0.1718 ∞ 0.0001 0.0001
βIndustry -0.1555 -0.1954 -0.1141 ∞ 0.0001 0.0001
βVIX 0.2731 0.1514 0.3946 7141.8571 0.0003 0.0004

s 0.8488 0.8395 0.8583 ∞ 0.0000 0.0000

random effect

σT 0.3424 0.2627 0.4327 ∞ 0.0002 0.0002
σL 0.3615 0.2696 0.4634 ∞ 0.0002 0.0003
ωT ,L 0.1863 -0.1398 0.5031 6.3057 0.0007 0.0008

Note: The table summarizes the results of the hierarchical model. Parameters are stated in the first column.
Categorical variables are included via dummy coding. The reference categories are term loan for facility, no for
protection, and non FIRE for industry. The second column presents the posterior means. In the third and fourth
column, lower and upper bounds of the corresponding HPDIs to a credibility level of 95% are displayed. The fifth
column contains the posterior odds. Naive and time series standard errors are shown in the last two columns. Time
series standard errors are calculated based on the effective chain length (N ∗MCMC) instead of the actual chain length
(NMCMC), whereby, N ∗MCMC < NMCMC holds for autocorrelated chains.
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approach (γT ) as further systematic variables, i.e., the VIX and the random effect of the DRT

model, enter the LGD model through the DRT. The posterior mean of γT has a positive sign

indicating higher LGDs for loans with higher DRTs. In Section 4.1 (see Figure 3), we determined

this relation descriptively. The impact of the DRT is decisively evident (posterior oddsE[γT ]>0→

∞ and 0 <HPDIγT = [0.97,1.03]).

In the DRT model of the hierarchical approach, loan specific covariates and a macro variable,

i.e., the VIX, are included. The posterior mean of the EAD (βEAD) exhibits a positive sign. Thus,

loans of major size are accompanied with longer DRTs. This supports the thesis we stated in the

previous paragraph. Financial institutions might undertake higher resolution efforts for loans

of major size. This might increase the DRTs and simultaneously lower LGDs. Decisive evidence

can be stated for the positive impact of the EAD in the DRT model (posterior oddsE[βEAD]>0→∞

and 0 < HPDIβEAD
= [0.03,0.07]). According to the negative posterior mean of lines (βFacility),

this facility type is accompanied with shorter DRTs compared to term loans. This impact

is decisively evident (posterior oddsE[βFacility]<0 → ∞ and 0 < HPDIβFacility
= [−0.12,−0.06]). In

analogy to the EAD, the impact of facility is opposite in the LGD and DRT model of the

hierarchical approach. While lines are characterized by shorter DRTs, they result in higher

LGDs. Reasons may be found in divergent resolution efforts related to the size of the loan

and its protection. The posterior mean of protection (βProtection) exhibits a positive, decisively

evident (posterior oddsE[βProtection]<0→∞ and 0 <HPDIβProtection
= [−0.69,−0.57]), sign indicating

longer DRTs for protected loans. The impact of protection is divergent among the models in

the hierarchical approach (γProtection < 0 and βProtection > 0). This might be due to the nature of

protection itself. If loans are secured either by collateral or guarantees, efforts have to be taken to

realize the protection value. This might extent DRTs, however, reduce LGDs when the protection

value is realized. The industry affiliation FIRE (βIndustry) reveals a negative posterior mean, thus,

it is connected to shorter DRTs. The sign is decisively evident (posterior oddsE[βIndustry]<0→∞

and 0 < HPDIβIndustry
= [−0.69,−0.57]) and corresponds to the sign of the LGD model in the

hierarchical approach (γIndustry < 0 and βIndustry < 0). Resolution prospects in the FIRE industry

might be limited compared to other industries due to less tangible assets. Thus, DRTs are short

and LGDs low. To control for the impact of the macro economy, the VIX (βVIX) is included

in the DRT model of the hierarchical approach. Its posterior mean is positive and decisively

evident (posterior oddsE[βVIX]>0 = 7,141.86 > 100 and 0 <HPDIβVIX
= [0.15,0.39]). This entails
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longer DRTs in bad economic surroundings which corresponds to the economic intuition.

The parameters of the multivariate random effect as of Equation (11) are stated in the lower

panel of Table 4. As the DRT is included in the LGD model of the hierarchical approach, the

random effect of the DRT model (FTt ) enters the LGD model. Thus, the aggregated systematic

impact of the random effects on LGDs (Ft) is the linear combination of γT F
T
t and FLt :

Ft = γT F
T
t +FLt (15)

σ2
F = γ2

T σ
2
T + σ2

L + 2γT σT σLωT ,L,

whereby, σ2
F is the variance of the aggregated systematic effect. Considering the results of

Table 4, the standard deviation σF of Ft amounts to 0.54. This standard deviation is considerably

smaller compared to the standard deviation of the random effect in the pure LGD model (see

Table 3, σ = 0.82). As suspected in the previous paragraph, the estimated standard deviation

of the random effect in the pure LGD model seems to be distorted due to the resolution bias.

Neglecting censored observations, i.e., unresolved loans, leads to distorted realizations of the

random effect (ft) and, thus, subsequently to distorted parameters (σ ).

Figure 6 illustrates the realizations of the random effects of the DRT model f Tt (upper left panel)

and the LGD model f Lt (lower left panel) in the hierarchical approach. Higher realizations

of the random effect in the DRT model (f Tt > 0) imply higher DRT for all loans defaulted in

t, whereas, higher realizations of the random effect in the LGD model (f Lt > 0) lead to higher

values of the latent variable Y ∗ for all loans defaulted in t and, thus, to higher average LGDs

in this quarter. Hence, DRTs impact LGDs through two channels (see Section 3). Directly, as

higher DRTs are inserted in the LGD model. Indirectly, as positive realizations of f Tt tend to

imply positive realizations of f Lt due to the positive correlation (ωT ,L). However, the indirect

channel might also weaken the impact of DRTs on LGDs as negative realizations of f Lt are still

possible. Considering the time patterns of the random effects as of Figure 6, four settings of the

indirect channel are apparent. In the first setting prior to the GFC, f Tt < 0 and f Lt > 0 are valid.

Thus, average DRTs of loans defaulted in t are shorter. The positive realization of f Lt , however,

increases average LGDs. Resolutions of these loans at least partly take place during the crisis.

This might depress recovery payments at the end of the resolution process and, thus, increases

LGDs. The second setting in the climax of the GFC is characterized by positive realizations of
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Figure 6: Random effect of the hierarchical model
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Note: Note: The figure illustrates the course of the random effects in the hierarchical model over time. In the
left panels, the posterior means (thick lines) and the HPDI (95%, thin lines) of the random effect realizations, i.e.,
f Tt (DRT) and f Lt (LGD), are displayed. In the right panel, the combined systematic effect on the LGDs according to
the random effects of the hierarchical model (γT f

T
t + f Lt , black line) is contrasted with the time patterns of average

LGDs for all loans (dark gray line) and for resolved loans (light gray line). Final and incurrent LGDs as of validation
sample I are included in the averaging. The dotted lines mark zero and serves as a reference line.

both random effects (f Tt > 0 and f Lt > 0) indicating longer DRT and simultaneously higher LGDs

of loans defaulted in t. In the third setting in the aftermath of the GFC, signs of the random

effects are contrary (f Tt > 0 and f Lt < 0). Hence, average DRTs of loans defaulted in t are longer,

whereas, average LGDs are lower. This might be due to the time delay as of the first setting.

Analogously, parts of the recovery payments take place during the rebound period which favors

recovery collection and decreases LGDs. The fourth setting is located in the most recent time

period. The realizations of both random effects exhibit negative signs (f Tt < 0 and f Lt < 0)

indicating shorter DRTs and simultaneously lower LGDs for loans defaulted in t. These settings

illustrate the impacts of systematic effects in the resolution process. The positive correlation of

the random effects (ωT ,L) seems to be driven by extreme economic surroundings as synchronism

appears in crises and boom periods. Furthermore, reasoning for the gradual rebound in the
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aftermath of the GFC can be provided (see Figure 4). While the random effect of the LGD model

f Lt indicates the rebound in the aftermath of the crisis (third setting), the random effect of the

DRT model f Tt remains on its high level. This might be due to the high stock of non-performing

loans in the aftermath of the GFC which decelerated resolution proceedings. Average LGDs

increase due to the direct channel.

The right panel of Figure 6 contrasts the aggregated systematic impact of the random effects (Ft)

to average LGDs in the time line. The latter include observations which are not considered

in the estimation. The aggregated systematic effect seems to mimic the path of average LGDs.

However, slight dispersions are apparent in the more recent time periods. Reasons might be

found in a less accurate estimation of the random effect realizations of the LGD model (f Lt ) in

the more recent time periods. Although censored observations are included through the DRT

model, unresolved loans do not directly enter the LGD model in the hierarchical approach.

Comparing the dispersions of the hierarchical model with the pure LGD model (see Figure 5),

improvements are apparent. While the spread extremely increases in the time line for the pure

LGD model, the deviation is considerably less pronounced in the hierarchical approach. Thus,

the hierarchical approach succeeds in reducing distortions regarding the random effect.

5 Validation

As stated in Section 4.1 (see Table 2), the models are estimated based on the estimation sample.

In the in sample validation, the posterior predictive distributions based on the estimation sample

are compared to the empirical distributions of completely resolved loans in the estimation

sample. The out of sample validation examines the distributional fit for censored observations,

i.e., loans which have defaulted till the end of the estimation period but are still unresolved.

Thus, Posterior predictive distributions based on validation sample I are compared to the

corresponding empirical distribution. The posterior predictive distributions are generated

based on the estimated realizations of the random effect. In the out of sample out of time

validation, loans which defaulted after the end of the estimation period are considered. As no

random effect realizations are available for those loans, posterior predictive distributions are

generated on the means of the random effects, i.e., zero, and compared to the corresponding

empirical distribution.
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We adapt two graphical tools to evaluate the distributional fit of the models. First, kernel density

estimates of the posterior predictive distributions are compared to kernel density estimates

of the empirical data. The bandwidth is fixed to 0.015 to ensure graphical comparability. So

heights of the kernel density estimates are comparable despite ties. Second, quantile-quantile

plots are applied. Hereby, the quantiles of the posterior predictive distributions are contrasted

to the quantiles of the empirical distribution. In the case of optimality, i.e., if the distributions

correspond to each other, the points of the quantile-quantile plot are on the bisector line.

If the probability of low loss components is overestimated and the probability of high loss

components is underestimated, the points are below the bisector line as the the quantiles of the

posterior predictive distributions are smaller than the quantiles of the empirical distribution.

This corresponds to an underestimation of average LGDs.

In sample

Figure 7 illustrates the in sample validation of the LGD model and the hierarchical model.

In the left panel, kernel density estimates of the empirical distribution (thin black line), the

posterior predictive distribution of the LGD model (thick gray line), and the posterior predictive

distribution of the hierarchical model (thick black line) are presented. However, lines lie

directly on top of each other, thus, the black line of the posterior predictive distribution of the

hierarchical model overlays the remaining two. To get a more detailed impression, the right

panel of the figure illustrates quantile-quantile plots, whereby, the quantiles of the posterior

predictive distributions are contrasted to the quantiles of the empirical distribution. The gray

dots mark the LGD model, whereas, the hierarchical model is represented by black dots. The

dots are near the optimality, i.e., bisector, line for both models. Thus, the in sample fit of

the posterior predictive distributions is quite good with respect to the LGD model and the

hierarchical model. This indicates that the applied FMM with five mixture components and

two fixed components seems to deliver satisfactory results regarding the distributional fit.

Out of sample

Figure 8 illustrates the out of sample validation for the LGD model and the hierarchical model.

The presentation corresponds to Figure 7 (in sample validation). The posterior predictive

distribution of the LGD model (gray) seems to overestimate the probability mass of the low loss

components, whereas, it underestimates the probability mass of the high loss components. In
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Figure 7: Validation (in sample)
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Note: The figure illustrates the in sample validation of the LGD model and the hierarchical model. In the left panel,
the kernel density estimates of the empirical distribution (resolved loans as of estimation sample, thin black line),
the posterior predictive distribution of the LGD model (thick gray line), and the posterior predictive distribution of
the hierarchical model (thick black line) are displayed. The band width is fixed to 0.015 to ensure comparability.
The kernel density estimates lie directly on top of each other. Thus, differences are not identifiable. In the right
panel, the corresponding quantile-quantile plots are presented. The quantiles of the empirical distribution (x-axis)
are plotted against the quantiles of the posterior predictive distributions (y-axis). The gray (black) dots mark the
quantiles of the empirical distribution vs. the quantiles of the posterior predictive distribution of the LGD model
(hierarchical model). The black line represents optimality.

the left panel, its kernel density estimate lies above the kernel density estimate of the empirical

distribution for no loss (LGD = 0) and below for total loss (LGD = 1). This appears even clearer

considering the quantile-quantile plots in the right panel. The dots are considerably below

the optimality line indicating an underestimation of average LGDs. The underestimation is

caused by the parameter distortion of the random effect due to the neglection of censored

observations. The random effect realizations ft are characterized by a downward bias, thus,

leading to downward biased estimates for Yi and downward biased loss rates (see Section 4.2). In

contrast, the distributional fit of the hierarchical model is good on an out of sample perspective.

This is due to two reasons. First, the parameter distortions are diminished (see Section 4.2).

Second, the additional information of the time in default is utilized to improve predictions on

an out of sample perspective. Final DRTs for censored observations, i.e., unresolved cases, are

estimated within the hierarchical approach. These can be applied to generate predictions of

final LGDs for unresolved loans.

Out of sample out of time

Figure 9 illustrates the out of sample out of time validation of the LGD model and the hierarchi-

cal model. The presentation corresponds to Figure 7. In analogy to the out of sample validation,
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Figure 8: Validation (out of sample)
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Note: The figure illustrates the out of sample validation of the LGD model and the hierarchical model. In the left
panel, the kernel density estimates of the empirical distribution (resolved loans as of validation sample I, thin black
line), the posterior predictive distribution of the LGD model (for resolved loans, thick gray line), and the posterior
predictive distribution of the hierarchical model (for resolved loans, thick black line) are displayed. The band width
is fixed to 0.015 to ensure comparability. In the right panel, the corresponding quantile-quantile plots are presented.
The quantiles of the empirical distribution (x-axis) are plotted against the quantiles of the posterior predictive
distributions (y-axis). The gray (black) dots mark the quantiles of the empirical distribution vs. the quantiles of the
posterior predictive distribution of the LGD model (hierarchical model). The black line represents optimality.

an overestimation of low loss components and an underestimation of high loss components

arises for the LGD model. However, it is not as striking as in the out of sample validation

(see Figure 8). This might be due to the use of the random effect in average terms – instead

of the individual realizations ft as in the out of sample validation – to generate the posterior

predictive distribution. However, the poor distributional fit of the LGD model on the out

of sample out of time perspective suggests that there are additional distortions beyond the

realizations of the random effect and its standard deviation. These might be found in the cut

points which represent the intercepts in an OL model. The cut points of the LGD model and

the hierarchical model are not directly comparable as the logarithm of the DRT is included as

additional variable. By this means, the mean of the latent variable Y ∗ and, thereby, the level of

the cut points are shifted. In contrast to the LGD model, the distributional fit of the hierarchical

model is quite good on an out of sample out of time perspective.

Validation in the time line

Thus far, the distributional fit of the LGD model and the hierarchical model are analyzed for the

estimation sample and the validation samples. Figure 10 illustrates the time patterns of average

LGD predictions based on the posterior predictive distributions for specific default quarters.

The upper left panel contrast average LGDs (thin black line) to average LGD predictions based
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Figure 9: Validation (out of sample out of time)
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Note: The figure illustrates the out of sample out of time validation of the LGD model and the hierarchical model.
In the left panel, the kernel density estimates of the empirical distribution (all loans as of validation sample II
with incurrent LGDs, thin black line), the posterior predictive distribution of the LGD model (thick gray line), and
the posterior predictive distribution of the hierarchical model (thick black line) are displayed. The band width is
fixed to 0.015 to ensure comparability. In the right panel, the corresponding quantile-quantile plots are presented.
The quantiles of the empirical distribution (x-axis) are plotted against the quantiles of the posterior predictive
distributions (y-axis). The gray (black) dots mark the quantiles of the empirical distribution vs. the quantiles of the
posterior predictive distribution of the LGD model (hierarchical model). The black line represents optimality.

on the LGD model (thick gray line) and the hierarchical model (thick black line) on an in

sample perspective. In analogy to Figure 7, a good in sample fit for both models can be stated.

The lower left panel illustrates the time patterns of average LGDs and LGD predictions on an

out of sample perspective. Although the relative progressions of the LGD predictions based

on the LGD model and the hierarchical model are similar, the predictions based on the LGD

model are downward biased. Thus, average LGDs are underestimated by the LGD model in

almost all quarters in validation sample I. This is not the case considering the predictions of

the hierarchical model. The noisy behavior of average LGDs at the beginning of the time period

is due to a lack of data as most loans defaulted in these quarters are resolved by the end of

2010 and, thus, not included in validation sample I. The lower right panel illustrates the time

patterns of average LGDs and LGD predictions on an out of sample out of time perspective.

The predictions based on the LGD model seem to be constant through time as the random effect

is set to its mean, i.e., zero, and the macro variable is the only remaining systematic factor.

However, the latter is not statistically evident (see Table 3). Furthermore, LGD predictions

based on the LGD model seem to be systematically too low. LGD predictions based on the

hierarchical model better fit average LGDs. Deviations at the end of the time period might

be attributed to the inclusion of incurrent LGDs for unresolved cases (see Figure 4). Final

LGDs will be lower and adjust the line downwards. In addition, LGD predictions based on the
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Figure 10: Validation in the time line
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Note: The figure illustrates the validation in the time line. The means of the empirical distribution are displayed by
a thin black line, whereas, the means of the posterior predictive distributions are marked by a thick gray line for
the LGD model and a thick black line for the hierarchical model, respectively. In the upper panel, the in sample
validation in the time line is presented (empirical means of resolved loans in estimation sample). The lower panels
show the out of sample (empirical means of resolved loans in validation sample I) and out of sample out of time
validation (empirical means of all loans in validation sample II with incurrent LGDs) in the time line.

hierarchal model display systematic movement as the statistically evident macro variable of the

DRT model is enclosed in the LGD model of the hierarchical approach (see Table 4).

6 Conclusion

In this paper, we deeply examine the dependence structure of DRTs and LGDs using a hierar-

chical modeling framework. We find direct and indirect dependencies among the credit risk

parameters. First, LGDs seem to be directly impacted by DRTs, i.e., longer resolution processes

are accompanied with higher losses. Second, the parameters are characterized by common

time patterns as correlation of the random effects in the individual models is positive. Due to
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the random nature of these effects, the dependence of DRTs and LGDs might be intensified or

weakened in certain time periods. We find similar signs of the random effect realizations during

the GFC and deviating signs pre and post crisis. Due to the consideration of direct dependency

structures, we are able to generate intuitive LGD predictions for censored cases. These are

of high practical relevance in the light of the recent EBA guidelines (see European Banking

Authority, 2017). Besides LGD predictions for the non-defaulted exposure (unconditional

predictions), financial institutions are demanded to predict LGDs for the defaulted exposure

conditional on post-default information – such as the time in default. The hierarchical approach

diminishes parameter distortions due to the neglection of censored observations in a pure

(standard) LGD model and, thus, enables adequate unconditional LGD predictions for the

non-defaulted exposure and consistent conditional LGD predictions for the defaulted exposure

within one modeling framework.

In a conditional perspective (LGD predictions for defaulted exposure), a pure LGD model gen-

erates average LGD predictions underestimating actual average LGDs by up to 25 percentage

points for loans defaulted during the GFC (2008 Q1 to 2009 Q3). The hierarchical approach de-

livers sufficiently conservative predictions for loans defaulted in the crisis (up to 16 percentage

points above actual average LGDs). Assuming ten loans with an EAD of 500,000 EUR defaulted

in 2008 Q4, a pure LGD model underestimates losses due to these loans by round about 1,05

million EUR. In a unconditional perspective (LGD predictions for non-defaulted exposure),

these effects are less pronounced, however, still remarkable. A pure LGD model constantly

underestimates actual average LGDs in the time period from 2013 Q1 to 2015 Q4 by up to 20

percentage points, while the hierarchical approach delivers slightly conservative predictions in

most time periods (between 3 percentage points below and 8 percentage points above actual

LGDs). Subsequent time periods are hard to interpret due to incurrent LGDs. Assuming ten

loans with an EAD of 500,000 EUR defaulted in 2015 Q4, a pure LGD model underestimates

losses due to these loans by round about 600,000 EUR.

Concluding, the consideration of censored observations is essential to generate suitable LGD

predictions. The presented hierarchical model prevents the need of additional data constraints

and provides fruitful insights into the dependence structure of DRTs and LGDs.
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