How does currency diversification explain bank leverage procyclicality?*

Justine Pedrono

Authorité de Contrôle Prudentiel et de Résolution (ACPR), DEAR (066-2770),
4 Place de Budapest,
75009 Paris, France.

November 2018

ABSTRACT:

The amplitude of leverage procyclicality is heterogeneous across banks and across countries. This paper introduces international diversification of bank balance sheet as a factor of this observed heterogeneity, with a special emphasis on currency diversification. Theoretically, the impact of international diversification on leverage procyclicality depends on the relative performance of economies, the global business cycle and the exchange rate regime. Using granular data on banks located in France, I show that the pre-crisis international diversification of banks increased leverage procyclicality during the 2008-2009 crisis. Focusing on the foreign exchange rate impact, namely the valuation effect of currency diversification, my results suggest that it had a negative effect on leverage procyclicality during this period. These findings draw attention to the specific role of balance sheet currency diversification in financial stability risk.

Keywords: global bank, procyclical leverage, international portfolio, diversification, valuation effect.

JEL classification: F36, G15, G21, G32

*This paper builds on a previous working paper, which circulated under the title: "Banking leverage procyclicality: a theoretical model introducing currency diversification". I am very grateful to Mohamed Belhaj, Agnès Bénassy Quéré, Benjamin Carton, Nicolas Coeurdacier, Olivier De Bandt, Reint Gropp, Dirk Krueger, Patrick Pintus, Hyun Song Shin, Hélène Rey as well as participants at the ECB’s Sintra forum (2015), and seminar participants at the Aix Marseille School of Economics and the Paris School of Economics for very helpful comments. I am also indebted to the Aix Marseille School of Economics for financial and technical support provided during my PhD. The views expressed here are those of the author and do not necessarily represent those of the Banque de France ACPR.

†E-mail address: justine.pedrono@acpr.banque-france.fr
1 Introduction

The procyclicality of bank leverage has been a subject of keen interest, especially in the wake of the Global Financial Crisis (GFC). Following Shin [2012] and Adrian and Shin [2014], leverage procyclicality refers to the cyclical variations of leverage according to the financial cycle. Extending their leverage during booms, banks strengthen the value of assets and create an endogenous mechanism similar to the financial accelerator ([Danielsson et al., 2012]). It implies an amplification of financial booms and busts and a major source of economic instability.

The empirical literature on bank leverage procyclicality shows that procyclicality is not homogeneous across banks. For US, European and Canadian banks, it is subject to heterogeneity as banks located in different geographic areas show different levels of leverage procyclicality. Especially when comparing US and European banks, Kalemli-Ozcan et al. [2012] show that European banks exhibit less procyclical leverage than their American counterpart, leaving the source of this heterogeneity unexplained.

In this paper, I introduce bank internationalization as a determinant of leverage procyclicality. I defined internationalization as the international diversification of bank’s balance sheet. It leads to a diversification of risks and a foreign exchange rate exposure. As it changes bank sensitivity to financial shocks, it could explain the observed heterogeneity in leverage procyclicality. In fact, international financial integration and banking involvement in international activities already explain the heterogeneous macroeconomic impact of the GFC across countries ([Milesi-Ferretti et al., 2011]). Considering that European banks are particularly involved in international financial markets ([Baba et al., 2009], Cerutti et al., 2017), internationalization is expected to impact leverage pro-

See Adrian and Shin [2008], Kalemli-Ozcan et al. [2012], Bagliioni et al. [2013], Damar et al. [2013] for more details.
cyclicality for these banks.

The ambiguity in the analysis of leverage procyclicality and internationalization is twofold. First, the introduction of risk diversification is subject to several conditions, including conditions on the variance covariance matrix of asset returns. The analysis then needs to pay attention to the fact that not all foreign exposures are alike. Second, the valuation effect associated to floating exchange rate and currency diversification depends on the characteristics of each specific currency. As for international exposures, not all foreign currencies are alike (Krogstrup and Tille [2016]).

To address this challenge and assess the impact of international diversification on leverage procyclicality, I first develop a contract model a la Holmström and Tirole [1997] between the bank and its creditor where I introduce international assets and liabilities. Knowing the return distribution of bank portfolio, the bank and its creditor make a contract that specifies the expected reimbursement and the initial funds collected by the bank. It introduces a Value-at-Risk (VaR) rule with a constant probability of failure of the bank. The composition of the portfolio and the definition of each asset are then determinant for bank leverage. In this paper, the portfolio consists of a domestic asset and a foreign asset in foreign currency. Returns of each asset depend on the state of nature of its related economy, and the foreign exchange rate is a function of the relative economic performance between the domestic and the foreign economy. As bank leverage is driven by the total return of bank portfolio, the definition of leverage procyclicality then covers the specific characteristics of assets and foreign exchange rate. It allows a clear distinction between the risk diversification and the valuation effect due to currency diversification. All in all, this paper offers a global framework to assess the impact of international diversification on leverage procyclicality, where the characteristics of foreign exposures and foreign exchange rate are considered.
Furthermore, I use granular data on banks located in France to test the theoretical predictions of the model. Focusing on the 2008-2009 crisis, I make use of the cross-section heterogeneity to see whether the pre-crisis international diversification conditions the adjustment of bank leverage during the GFC. It implies a one-time event analysis and eases the identification of the different channels through which international diversification impacts leverage procyclicality. Especially, specific measures of international diversification - including the currency diversification of bank balance sheet - allows me to capture the valuation effect of international diversification.

Valuation effect aside, the generalized conclusions of the model support previous results from Kwok and Reeb [2000] which visit the upstream downstream hypothesis of internationalization. Leverage is then more procyclical with international diversification than without it when the foreign economy is more volatile than the domestic one, that is when the foreign economy outperforms the domestic economy during booms but falls behind it during busts. Especially during busts, international diversification shifts the portfolio distribution to the left and increases the tail risk of bank portfolio. Debt capacity is then reduced compared to the debt capacity based on domestic portfolio: leverage procyclicality is increased by international diversification. Introducing a floating exchange rate where the domestic currency appreciates when the domestic return rises with respect to the foreign one, the valuation effect shifts the portfolio distribution to the right and decreases the tail risk: the fund-raising capacity of the bank is increased by the valuation effect. During busts, currency diversification then reduces leverage procyclicality. These theoretical predictions are confirmed empirically. International diversification - including both the diversification of risks and the valuation effect - increases leverage procyclicality during the GFC while the valuation effect due to US dollar exposure decreases it.
This paper is related to several strands of the literature but with key differences. First, it is connected to the portfolio theory introduced by Markowitz [1952]. Especially, it considers the correlation of returns emphasized in Solnik [1974], the asymmetric impacts identified by Loging and Solnik [1995] of international diversification on risk diversification depending on the financial cycle, and the relative volatility between the home and the target market stressed by Kwok and Reeb [2000] as determinant conditions of portfolio risk. By specifying conditions relative to the foreign exchange rate, it contributes to this literature where the foreign exchange rate risk is usually not specified. Second, this paper belongs to the literature which links leverage procyclicality to the VaR rule. Using a contract model between the bank and its creditor, Adrian and Shin [2014] micro-found the VaR rule and reproduce the procyclicality of leverage with a domestic portfolio. Acknowledging the global architecture of international banking, Bruno and Shin [2015] apply the VaR rule in a general framework with a global and a regional representative bank. While this framework provides a first insight on the role of international banking by capturing the aggregate leverage procyclicality as a function of a common risk factor, it does not explain the observed heterogeneity mentioned in Kalemli-Ozcan et al. [2012] either. Heterogeneity in leverage procyclicality is studied in Coimbra and Rey [2017]; however, they introduce heterogeneous VaR thresholds to explain heterogeneous banking participation in credit. They do not consider the international diversification of banks. Third, this paper is close to the recent empirical literature that introduces balance sheet heterogeneity as an additional variable to explain the adjustments of banking activity. Using aggregate data on European banks, Krogstrup and Tille [2017] use bank currency mismatch in net wholesale funding to explain the heterogeneous responses to global risk factor. With more granular data than Krogstrup and Tille [2017], Baskaya et al. [2017] focus on emerging markets and show that heterogeneity in the source of funding - domestic versus foreign - is the main driver
of aggregate credit growth. By using granular data on the international diversification of bank balance sheet, my paper contributes to this recent literature by identifying the two channels of international diversification (i.e. the diversification of counterparties and the valuation effect). Finally and considering that international diversification is one dimension of complexity, this paper is part of the growing literature on banking complexity and bank risk including [Buch et al. 2013, Berger et al. 2017].

The rest of the paper is organized as follows. Section 2 introduces the theoretical model while section 3 develops the empirical analysis using innovative micro-data. Section 4 concludes.

2 Model

2.1 Setting

The model is based on a representative bank balance sheet. The bank invests in assets and raises funds from its creditor. There are two currency denominations for assets and debts, corresponding to two different countries (domestic and foreign). The economic state of nature corresponding to each economy is known publicly.

The representative bank is domestic in the sense that its equity and its balance sheet are in domestic currency. The bank is risk neutral and equity E is exogenous. The second agent is the creditor of the bank, generally a Money Market Fund or another investment bank. The creditor lends money to the bank in both currencies (domestic and foreign). The creditor is also risk neutral. The exchange rate S is defined as the number of domestic units per unit of foreign currency.

\footnote{An exogenous equity is in line with the theory of procyclical leverage put forward by Shin.}
There are two periods. At $T=0$, the bank raises funds backed by collateral in domestic and foreign currency (A and A^*, respectively). Total assets expressed in domestic currency are equal to $A + SA^*$. I denote by a the share of assets in domestic currency and $(1-a)$ the share of assets in foreign currency. Funds are in domestic and in foreign currency (D and D^*, respectively) and total funding expressed in domestic currency is equal to $D + SD^*$. This debt is defaultable, implying that the creditor receives a defaultable debt claim at $T=0$.

At $T=1$, the bank receives a total expected return from its investments $a(1 + \bar{r}) + (1-a)(1 + \bar{r}^*)$, where \bar{r} and \bar{r}^* are the expected returns from the domestic and the foreign asset, respectively. Returns depend on parameters that capture the state of nature specific to each currency area, θ and θ^*, respectively. θ and θ^* are the location parameters of return distributions. They are known and do not change between the two periods, implying that there is no macroeconomic risk. At $T=1$, the bank also reimburses its domestic and foreign debts, \bar{D} and SD^* respectively. It is assumed that $\bar{D} > D$ and $SD^* > SD^*$ to remunerate the creditor for the default risk.

Hypothesis 1 The location parameters of return distributions, θ and θ^*, are known and do not change for $T=\{0,1\}$.

The bank balance sheets at each period are given in Table 1 where four debt ratios are defined relative to each funding currency and each period. The debt ratios at $T=0$ are:

$$d = \frac{D}{A + SA^*} \quad \text{and} \quad d^* = \frac{SD^*}{A + SA^*}$$

Alternatively, the corresponding ratios of notional values of debt at $T=1$ to total

3Where a will vary depending on S. In this section, I consider S as fixed. Section 2.4 covers the case of a flexible exchange rate regime.
\begin{tabular}{|c|c|}
\hline
T=0, at market value: & T=1, at notional value: \\
\hline
\text{Assets} & \text{Liabilities} \\
\hline
A & (1 + \bar{r})A \\
SA^* & (1 + \bar{r}^*)SA^* \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline
\text{Assets} & \text{Liabilities} \\
\hline
\bar{E} & \bar{E} \\
D & \bar{D} \\
SD^* & SD^* \\
\hline
\end{tabular}

Table 1: Bank balance sheet at T=0 and T=1

assets at the market value are:

\[\bar{d} = \frac{\bar{D}}{A + SA^*} \quad \text{and} \quad \bar{d}^* = \frac{SD^*}{A + SA^*} \]
(2)

\[\bar{E} \] is the equity at the notional value that sets the two sides of the balance sheet equal.

The bank is expected to make profits such that \(E < \bar{E} \) and \(a(1 + \bar{r}) + (1 - a)(1 + \bar{r}^*) > (\bar{d} + \bar{d}^*) \).

The leverage \(\lambda \) is defined as the ratio of total assets to equity, at market value. It is a positive function of total debt ratios at the market value.

\[\lambda = \frac{A + SA^*}{E} = \frac{A + SA^*}{(A + SA^*) - (D + SD^*)} = \frac{1}{1 - (d + d^*)} \]
(3)

2.2 Investment strategy

The contract model a la Holmström and Tirole [1997] implies an investment choice made by the bank between two types of portfolio. The first portfolio \(\{H, H^*\} \) is a "good" portfolio with a total expected return of \([ar_H + (1 - a)r_{H^*}] \). \(r_H \) and \(r_{H^*} \) denote the expected return of the good domestic asset and the good foreign asset, respectively. The second portfolio \(\{L, L^*\} \) is not as good as \(\{H, H^*\} \). Its total expected return \([ar_L + (1 - a)r_{L^*}] \) is reduced through a parameter \(k \) \((k > 0)\) and its volatility is increased by a parameter \(m \) \((m > 1)\). Domestic returns follow a General Extreme Value (GEV) distribution with a location parameter \(\theta \). It captures the state of nature of the domestic country. Similarly, foreign returns follow a GEV distribution with a location parameter \(\theta^* \).
I use a mixture of GEV distributions to define the Cumulative Distribution Function (CDF) of portfolio return. The total portfolio expected return then depends on θ and θ^*. When the bank invests in the good portfolio, the CDF is defined such that:

$$F_{H,H^*}(z) = a F_H(z) + (1 - a) F_{H^*}(z)$$

$$= a \exp\left\{ - \left(1 + \xi \left(\frac{z - \theta}{\sigma}\right)\right)^{-\frac{1}{\xi}} \right\} + (1 - a) \exp\left\{ - \left(1 + \xi \left(\frac{z - \theta^*}{\sigma}\right)\right)^{-\frac{1}{\xi}} \right\}$$

(4)

The CDF defines the probability of default α when the bank invests in the good portfolio. Default appears if the realized total return falls below the total debt ratio at the notional value ($(\bar{d} + \bar{d}^*) \geq z$). Thus, the probability of default α is defined such that:

$$\alpha(\bar{d} + \bar{d}^*) = F_{H,H^*}(\bar{d} + \bar{d}^*)$$

$$= a \exp\left\{ - \left(1 + \xi \left(\frac{\bar{d} + \bar{d}^* - \theta}{\sigma}\right)\right)^{-\frac{1}{\xi}} \right\} + (1 - a) \exp\left\{ - \left(1 + \xi \left(\frac{\bar{d} + \bar{d}^* - \theta^*}{\sigma}\right)\right)^{-\frac{1}{\xi}} \right\}$$

(5)

Since the creditor is uninsured, he/she holds a defaultable debt claim with respect

\footnote{Where: $F_H(z) = \exp\left\{ - \left(1 + \xi \left(\frac{z - \theta}{\sigma}\right)\right)^{-\frac{1}{\xi}} \right\}$, $F_{H^*}(z) = \exp\left\{ - \left(1 + \xi \left(\frac{z - \theta^*}{\sigma}\right)\right)^{-\frac{1}{\xi}} \right\}$, $F_L(z) = \exp\left\{ - \left(1 + \xi \left(\frac{z - (\theta - k)}{\sigma_m}\right)\right)^{-\frac{1}{\xi}} \right\}$, and $F_{L^*}(z) = \exp\left\{ - \left(1 + \xi \left(\frac{z - (\theta^* - k)}{\sigma_m}\right)\right)^{-\frac{1}{\xi}} \right\}$.

Where θ, σ and ξ are respectively the location parameter, the scale parameter and the shape parameter. Note that this framework using a mixture distribution is still compatible with a Second Order Stochastic Dominance, as in the reference model.

See Reiss and Thomas [2007] for more details on GEV distributions.

\footnote{Alternatively, the probability of default when the bank invests in the "less good" portfolio can be defined through $F_{L,L^*}(\bar{d} + \bar{d}^*)$. However, I focus on the good portfolio since the contract between the bank and its creditor leads to this portfolio.}
to the funds lent to the bank at \(T=0 \). Following Merton [1974], the value of this defaultable debt claim with strike price \((\bar{D} + S\bar{D}^*) \) can be divided into two components: cash \((\bar{D} + S\bar{D}^*) \) and a short position on a put option \(\pi_{H,H^*} \) or \(\pi_{L,L^*} \), depending on the investment choice.

2.3 Value at Risk rule

The definition of \((d + d^*) \) and leverage come from the maximization of the net expected payoff of the bank and the creditor. It introduces two constraints that solve the contract model from Holmström and Tirole [1997]. Knowing the states of nature and the portfolio distribution, the bank and the creditor identify at \(T=0 \) the potential reimbursement at \(T=1 \) which satisfies the VaR Rule. This potential reimbursement \((\bar{d} + \bar{d}^*) \) is part of the participation constraint of the creditor. It defines the investment strategy, the total debt the creditor is willing to lend to the bank at \(T=0 \) and bank leverage.

Assuming that \(\xi = -1 \) and \(m \rightarrow 1 \), VaR rule is such that:

\[
\alpha = F_{H,H^*}(\bar{d} + \bar{d}^*) = \frac{r_H - r_L}{(e^{\beta/\sigma} - 1)\sigma} \quad (6)
\]

As the rhs of (6) does not depend on \(\theta \) or \(\theta^* \), the probability of default \(\alpha \) is constant for any state of nature and any level of diversification. To satisfy equation (6), the bank adjusts the notional value of its debt ratio \((\bar{d} + \bar{d}^*) \). Note that the VaR rule focuses on the tail of the distribution. If the tail is thickened by a change in the states of nature, the bank has to decrease its total debt ratio in order to keep a constant \(\alpha \).

Proposition 1 *Currency diversification does not affect the VaR rule.* The bank adjusts

\(^6 \)See the appendix for more details.

\(^7 \)\(\xi = -1 \) implies that the \(F_{H,H^*}(z) \) distribution has an upper bound: the support of the distribution is \((-\infty, -\sigma \ln(a \exp\{- (\frac{\theta^*}{\sigma})\} + (1-a) \exp\{- (\frac{\theta}{\sigma})\}) \). As the VaR rule focuses on the left side of the distribution, this assumption is not a problem. \(m \rightarrow 1 \) makes the volatility between the good and the bad asset comparable. It allows an approximation of a closed form solution.
its balance sheet to the state of nature in both currency areas: \((\bar{d} + \bar{d}^*)\) adjusts to \(\theta\) and \(\theta^*\) in order to satisfy a constant \(\alpha\).

Developing the VaR rule, I obtain:

\[
\alpha = \exp\left\{\frac{(\bar{d} + \bar{d}^*) - \theta}{\sigma} - 1\right\}\left[a + (1 - a)\exp\left\{\frac{\theta - \theta^*}{\sigma}\right\}\right] = \frac{r_H - r_L}{(e^{k/\sigma} - 1)\sigma} \tag{7}
\]

The VaR rule defines bank debt ratio \((\bar{d} + \bar{d}^*)\) and its adjustment to the states of nature. Without diversification \(a = 1\) or with similar economies \(\theta = \theta^*\), the left hand side of the VaR is reduced to the Baseline component and the bank debt ratio \((\bar{d} + \bar{d}^*)\) follows the domestic state of nature as in Adrian and Shin [2014]. As the probability of default is constant, an increase in \(\theta\) leads to a similar increase in the national value of bank debt. When diversification is introduced and \(\theta \neq \theta^*\), the VaR rule includes a factor \(\Omega\) to the Baseline component. \(\Omega\) measures the impact of currency diversification on the tail of the distribution. When \(\theta > \theta^*\), \(\Omega > 1\) and diversification implies a thickening of the tail of the distribution: the diversified portfolio becomes riskier than the baseline portfolio. In return, when \(\theta < \theta^*\), \(\Omega < 1\) and the tail of the distribution becomes thinner than the tail of the baseline distribution. An international portfolio is safer than the baseline portfolio.

Proposition 2 Under a fixed exchange rate, currency diversification increases the tail risk of banks \((\Omega > 1)\) when the domestic economic condition outperforms the foreign one \((\theta > \theta^*)\), while it decreases it \((\Omega < 1)\) when the foreign economic condition becomes better than the domestic one \((\theta < \theta^*)\).

The adjustment of the bank debt ratio \((\bar{d} + \bar{d}^*)\) to the states of nature \(\{\theta, \theta^*\}\) is such

Where \(F_{H^} = F_H \cdot \exp\left\{\frac{\theta - \theta^*}{\sigma}\right\}\)

10
that:

\[
(\bar{d} + \bar{d}^*) = \theta + \sigma + \sigma \ln \left(\frac{r_H - r_L}{(e^{k/\sigma} - 1)\sigma} \right) - \sigma \ln \left(\frac{\alpha + (1 - \alpha) \exp \left\{ \frac{\theta - \theta^*}{\sigma} \right\}}{\Omega} \right)
\]

(8)

When \(\theta = \theta^* \), \(\Omega = 1 \) implying an unchanged tail risk: during booms the baseline \((\bar{d} + \bar{d}^*)\) increases while it decreases during bust. It defines the baseline leverage procyclicality.

When \(\theta > \theta^* \), \(\Omega > 1 \) and the tail risk increases: the increase in bank debt ratio is then less pronounced during booms than the baseline framework would predict. \((\bar{d} + \bar{d}^*)\) is less procyclical than in the baseline. On the contrary during bust, the decrease in \((\bar{d} + \bar{d}^*)\) is more pronounced than the baseline framework would predict: procyclicality increases. When \(\theta^* > \theta \), \(\Omega < 1 \) and the tail risk decreases: during booms, currency diversification increases the procyclicality of \((\bar{d} + \bar{d}^*)\), but it decreases it during bust.

Proposition 3 Valuation effect aside, leverage is more procyclical with currency diversification than without when the foreign economic condition is more volatile than the domestic one. When the foreign state of nature becomes less volatile than the domestic one, leverage procyclicality then decreases.

The participation compatibility constraint derived form the maximization of utilities implies that \((d + d^*)\) is a positive function of \((\bar{d} + \bar{d}^*)\). Therefore, previous conclusions on \((\bar{d} + \bar{d}^*)\) are applied to leverage procyclicality given that:

\[
\lambda = \frac{1}{1 - (d + d^*)}
\]

(9)

When the foreign economy outperforms the domestic economy, leverage procyclicality is increased by currency diversification during booms but decreased by it during busts. When the domestic economy outperforms the foreign economy, leverage procyclicality is then decreased by currency diversification during booms but increased by currency
diversification during busts. Valuation effect aside, leverage is then more procyclical with currency diversification than without when the foreign economic condition is more volatile than the domestic one, that is when it outperforms the domestic economic condition during booms but falls behind it during busts. Conversely, leverage procyclicality decreases when the foreign state of nature is less volatile than the domestic one. Those generalized conclusions support previous results from Kwok and Reeb [2000] which visit the upstream downstream hypothesis of internationalization.

2.4 Introducing a floating exchange rate

In previous sections, the foreign exchange rate is assumed to be fixed. Floating exchange rate regime affects the weight of assets in the bank portfolio since \(a = \frac{A}{A+S_A} \). Depending on the correlation between the exchange rate and asset returns, a floating exchange rate will impact the portfolio distribution and leverage adjustments.

The extensive empirical literature on the relationship between foreign exchange rates and the state of nature of the economy or between foreign exchange rates and interest rates suggests that domestic macroeconomic performances or relative domestic return performances are associated with domestic currency appreciation.\(^9\)

Hypothesis 2 *The domestic currency appreciates when the domestic return rises with respect to the foreign one.*

As \(\theta \) and \(\theta^* \) are known for both periods \(T=\{0,1\} \), the exchange rate \(S \) does not change between \(T=0 \) and \(T=1 \). The process of \(S \) relative to good portfolios is given by

\(^9\)Using high frequency data and macroeconomic announcements in the U.S or in Germany in the 1990s, [Andersen et al. 2003, 2007, Faust et al. 2007] show that the foreign exchange rate is linked to macroeconomic fundamentals: a stronger than expected release appreciates the domestic currency. Regarding interest rates, [Engel 1996] shows that the currency with the higher interest rate typically appreciates. Using structural VAR with daily data from 1988 to 2004, [Ehrmann et al. 2011] show that the euro is also positively affected by shocks on short rates where a rise in euro area short rates leads to a euro appreciation. Finally, [Itskhoki and Mukhin 2017] define a theoretical model reproducing the different foreign exchange rate puzzles identified in the literature, including the [Engel 1996] result.
equation (10) where returns depend on the state of nature of both economies and on a function of the shape parameter $H(\xi)$:

$$S = 1 + \frac{r^* - r}{1 + r}$$

(10)

Where:

$$r^* = \theta + \sigma H(\xi)$$

$$r = \theta + \sigma H(\xi)$$

$$\lim_{r \to \infty} S(r) = 0$$

and $S = 1 \leftrightarrow r = r^*$.

As θ and θ^* are known for both periods, the exchange rate does not change between $T=0$ and $T=1$. Implicitly, I assume that the bank does not change the composition of its portfolio, notwithstanding small changes in states of nature. When the domestic currency appreciates, the converted value of the foreign asset declines, which leads to a larger share of domestic assets relative to total assets: a goes up at $T=\{0,1\}$. Consequently, changes in a and $(1-a)$ only reflect the exchange rate effect on converted value, so called the valuation effect of currency diversification. This makes it possible to identify the impact of currency diversification on leverage.

Hypothesis 3 Changes in a only reflect valuation effects due to variations in the exchange rate, that is $\frac{da(S)}{dS} < 0$.

10This implicit assumption seems to be reasonable regardless of the time horizon because of both the transaction costs and the international dimension of the foreign currency. [Odean 1998, Liu and Strong 2008] justify the “buy and hold” strategy for short term horizon because of the transaction costs implied in rebalancing strategies. Following [Liu and Strong 2008], a monthly rebalancing strategy is then unrealistic. In addition, the foreign currency included in the model is considered as an international currency. Because of the international involvement of global banks, there is an incompressible share of assets and liabilities denominated in foreign currency. A complete re-allocation from one currency to another would then imply a complete change in the bank business model, going from global to national and vice-versa, or a complete change in the definition of the international monetary system. It seems reasonable to think that such adjustments are rare and sluggish.
One can rewrite equation (8) where a is a function of S such that:

$$
(\bar{d} + \bar{d}^*) = \theta + \sigma + \sigma \ln \left(\frac{r_H - r_L}{(e^{k/\sigma} - 1)\sigma} \right) - \sigma \ln \left(a(S) + (1 - a(S)) \exp \left\{ \frac{\theta - \theta^*}{\sigma} \right\} \right) \\
\Omega_S
$$

(11)

With $\frac{da(S)}{dS} < 0$

Because a floating exchange rate always promotes the asset which offers a better return in the portfolio, S directly affects the tail of the portfolio distribution through Ω_S. Compared to a fixed exchange rate regime, the introduction of S always decreases the thickness of the distribution tail. As the bank still follows the VaR rule, the floating exchange rate regime increases its capacity to raise funds compared to its debt capacity in a fixed exchange rate regime.

Proposition 4 Introducing a floating exchange rate, the valuation effect decreases the tail risk of banks and increases their fund-raising capacity as long as the two economies are different, that is $\frac{d(\bar{d} + \bar{d}^*)}{dS} > 0$ when $\theta^* > \theta$ or $\frac{d(\bar{d} + \bar{d}^*)}{dS} < 0$ when $\theta^* < \theta$.

The valuation effect is observed through the derivative of $(\bar{d} + \bar{d}^*)$ relative to S when θ and θ^* are constant:

$$
\frac{d(\bar{d} + \bar{d}^*)}{dS} \big|_{\theta, \theta^*} = -\sigma \left(\frac{\frac{da(S, \theta, \theta^*)}{dS}}{a(S) + (1 - a(S)) \exp \left\{ \frac{\theta - \theta^*}{\sigma} \right\}} \right) (1 - \exp \left\{ \frac{\theta - \theta^*}{\sigma} \right\}) \\
$$

(12)

S does not affect $(\bar{d} + \bar{d}^*)$ when $\theta = \theta^*$. However, an appreciation of the foreign currency (i.e S increases) leads to an increase in $(\bar{d} + \bar{d}^*)$ when:

$$
\left(\frac{da(S, \theta, \theta^*)}{dS} \big|_{\theta, \theta^*} \right) (1 - \exp \left\{ \frac{\theta - \theta^*}{\sigma} \right\}) < 0
$$

(13)

Because $\left(\frac{da(S, \theta, \theta^*)}{dS} \big|_{\theta, \theta^*} \right) < 0$, then the condition becomes $\theta^* > \theta$. Foreign currency
appreciates when the foreign economy outperforms the domestic one, leading to an increase in the fund raising capacity. Alternatively, an appreciation of the domestic currency leads to an increase in \((\bar{d} + \bar{d}^*)\) when \(\theta > \theta^*\). The conditions allowing an increase in fund raising capacities depend on the definitions of the model. The difference in the states of nature defines the exchange rate adjustment while \(\left(\frac{da\left(S, \theta, \theta^*\right)}{dS} \mid \theta, \theta^*\right) < 0\) defines the portfolio adjustment relative to the exchange rate. In this framework, a floating exchange rate regime always increases the bank fund raising capacity compared to a fixed exchange rate regime when \(\theta \neq \theta^*\).

Combining both the diversification and the valuation effects introduces conditions for leverage counter-cyclicality. When the domestic economy outperforms the foreign one during a bust, \(\theta > \theta^*\), leverage procyclicality is increased by the diversification effect but decreased by the valuation effect. Similarly, when the foreign economy outperforms the domestic one during a bust, \(\theta^* > \theta\), leverage procyclicality is decreased by both the diversification and the valuation effect. If the valuation effect is strong enough during economic busts, leverage may then become counter-cyclical under specific conditions.\(^{11}\) When \(\theta > \theta^*\), the condition for a counter-cyclical leverage relative to the foreign economic condition is such that:

\[
(1 - a) \left(\frac{da\left(S, \theta, \theta^*\right)}{d\theta^*} \mid \theta\right)^{-1} < \sigma \left(\frac{1}{e^{\frac{\theta - \theta^*}{\sigma}}} - 1\right) \tag{14}
\]

The counter-cyclical condition in equation (14) compares the portfolio adjustment due to the valuation effect to the relative economic performance going from \(\theta = \theta^*\) to \(\theta > \theta^*\). As \(\left(\frac{da\left(S, \theta, \theta^*\right)}{d\theta^*} \mid \theta\right) < 0\), the higher the initial share of foreign asset, the more the bank benefits from the valuation effect and the more validated the condition would be. Because the foreign economy is busting, the domestic currency appreciates and the valuation

\(^{11}\)See the appendix for more details.
effect promotes the domestic asset in bank portfolio: the valuation effect decreases the tail risk and offsets the economic bust.

When the domestic economy contracts ($\theta < \theta^*$), a counter-cyclical leverage relative to the domestic economic condition is observed when the valuation effect is larger than the decline in economic condition. With \(\left(\frac{d\alpha(S,\theta,\theta^*)}{d\theta} \right) | \theta^* > 0 \), the condition becomes:

\[
a \left(\frac{d\alpha(S,\theta,\theta^*)}{d\theta} \right) | \theta^* \cdot \frac{1}{\sigma} \left(1 - \exp \left\{ \frac{\theta - \theta^*}{\sigma} \right\} \right) < \Delta \text{Economic condition}
\]

(15)

The lower the initial share of domestic asset in the bank portfolio, the more beneficial the valuation effect is and the more validated the condition would be.

Table 2 summarizes the theoretical predictions from the model. The impact of currency diversification on leverage procyclicality then depends on the relative performance of the two economies, the business cycle, and the exchange rate regime.

2.5 Discussion

The previous theoretical conclusions identify the states of nature and the foreign exchange rate regime as the two driving forces of leverage fluctuation. The composition of bank debt is not determinant to the definition of leverage procyclicality. In other terms, currency mismatch does not affect leverage procyclicality. There is a threefold explanation for this phenomenon.

First, the contracting problem introduces a participation constraint and an incentive constraint that micro-found the VaR rule. The only source of adjustment of banking leverage comes from the asset side: total converted debt adjusts to changes in total converted asset. In this framework, introducing an exogenous debt interest rate would
Table 2: **Impact of currency diversification on leverage procyclicality.** The comparative is the baseline leverage procyclicality (i.e. without diversification), or the leverage procyclicality under the fixed exchange rate regime for the impact of floating exchange rate regime.

<table>
<thead>
<tr>
<th>Generalized conclusions with fixed FX and positive correlation between θ and θ^*:</th>
<th>During booms:</th>
<th>During busts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\theta^*} < \sigma_{\theta}$: Less procyclical</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>$\sigma_{\theta^*} > \sigma_{\theta}$: More procyclical</td>
<td>Procyclicality ↑</td>
<td>Procyclicality ↓ (Potentially counter-cyclical)</td>
</tr>
<tr>
<td>$\sigma_{\theta^*} = \sigma_{\theta}$: Unchanged</td>
<td>Procyclicality ↓</td>
<td>Procyclicality ↑ (Potentially counter-cyclical)</td>
</tr>
</tbody>
</table>

During booms:
- Fixed FX
- Introducing floating FX: $\theta^* = \theta$

During busts:
- Foreign economy outperforms: $\theta^* > \theta$
- Domestic economy outperforms: $\theta > \theta^*$

change the definition of the two constraints that defined the VaR rule. Similarly, a risk-free interest rate removes the contracting model and fails to micro-found the VaR rule. Considering a potential monetary policy interest rate, the framework defined in this paper is still compatible as long as the interest rate defined by the contracting model stays above the monetary policy interest rate.\(^{12}\)

Second, the bank supports foreign exchange rate fluctuations only through its total portfolio returns. The impact of foreign exchange rate fluctuations on bank debt is sup-

\(^{12}\)In [Bruno and Shin 2015, Coimbra and Rey 2017], the VaR rule is directly implemented to constrain bank leverage. The interest rate on deposits is then riskfree or exogenous, introducing a second source of adjustment for banking leverage on the liability side: the monetary policy. However, this framework does not enable the microfoundations of the VaR rule as in [Adrian and Shin 2014].
ported by the creditor of the bank. Assuming that the bank only invests in domestic asset while it raises debt in foreign currency. An improvement of the foreign economic condition does not change the portfolio distribution. According to the VaR rule, the bank leverage is unchanged, implying similar total converted debt and reimbursement. Implicitly, it means that the appreciation of the foreign currency is internalized by the bank creditor. Total converted debt and reimbursement stay unchanged, but total debt and reimbursement in foreign currency decrease.

Third, as the states of nature are known for the two periods, S is fixed for $T = 0, 1$, removing the traditional risk implied by currency mismatch. For each state of nature, a new contract is defined where the foreign exchange rate is known.

3 Empirical analysis

Focusing on the 2008-2009 crisis, the theoretical model predicts that banks with exposures to the US and the US dollar are supposed to show different leverage procyclicality. Considering banks in France and the major economic and financial negative shock coming from the US during the 2008-2009 crisis, currency diversification is expected to increase leverage procyclicality during this period. Focusing on the valuation effect of currency diversification, however; one can expect that it has a negative impact on leverage procyclicality. This section is devoted to the quantitative analysis of the theoretical predictions using micro-data on banks located in France during the 2008-2009 crisis.

3.1 Data

I use a unique micro-data from the French banking supervision authority ACPR. It consists of foreign and French banks located in France and it provides yearly information on consolidated bank balance sheet and derivatives relative to foreign exchange rate
operations, and on a proxy of the currency diversification of assets. Additionally, it provides information on bank characteristics such as the nationality of banks and the sub-category the banks are attached to (banks, cooperative banks, financial and investment firms).

Focusing on the 2008-2009 crisis, the sample consists of 26 banks composed of 18 and 8 French and foreign banks, respectively. Table 3 provides descriptive statistics on all banks focusing on bank size defined as the logarithm of total assets, leverage defined as the ratio of total assets to equity, US dollar diversification defined as the share of assets denominated in US dollar FX_{2007}, US dollar diversification with euro area counterparties $FX(EA)_{2007}$ and derivatives relative to foreign exchange operations defined as the ratio of those derivatives to total assets $Deriv_{2007}$. The general decrease in leverage and total assets between 2008 and 2009 is confirmed, where leverage and total assets decreased by 15% and 8% on average, respectively.

Following table 3, banks had an average US dollar diversification of 12% of total assets in 2007, while the FX derivative ratio reached 0.54 on average for the same year. Focusing on standard deviations, minimum and maximums, heterogeneity is observed in all variables reported in table 3. Tables 4 and 5 provide additional descriptive statistics focusing on French or foreign banks. Comparing the two tables, foreign banks are more diversified in 2007 than French banks. They also manifest stronger decline in leverage and size during the financial crisis than their French counterparts.

13 See the appendix for more details on data.
3.2 Empirical model

I focus on the impact of currency diversification on leverage procyclicality during the 2008-2009 crisis. Especially, I want to test whether the pre-crisis currency diversification of assets, i.e in 2007, affects the large adjustment of bank balance sheet during the crisis, i.e between 2008 and 2009. My quantitative analysis is thus based on cross-section heterogeneity between banks.

I follow previous empirical strategies used in Adrian and Shin [2008], Kalemli-Ozcan et al. [2012], Baglioni et al. [2013], Damar et al. [2013] where the growth rate of leverage between 2008 and 2009 is the dependent variable and the value of leverage in 2008 and the growth rate of assets between 2008 and 2009 are the main explanatory variables. Leverage procyclicality is then measured with the coefficient β_2 in equation (16). I extend the specification by introducing an interaction term between the growth rate of assets between 2008 and 2009 and the level of currency diversification in 2007 $FX_{i,2007}$. The coefficient β_3 then measures the effect of currency diversification on leverage procyclicality. I add the level of currency diversification and the FX derivative ratio in 2007 $Deriv_{i,2007}$ as control variables. Finally, to control for unobserved heterogeneity between banks I introduce several dummy variables δ_i including a French nationality dummy variable and dummy variables capturing the category of banks. Banking categories cover general banks, cooperative banks, specialized banks (i.e ECS) and specialized financial institutions (i.e IFS). ECS are specialized in specific financial activities including consumer loans and mortgage financial leases, while IFS are credit institu-

14 Δ stands for the first-difference of the logarithm.

15 I believe that the risk of reverse causality between the crisis leverage adjustment and the pre-crisis currency diversification is limited because of the unexpected nature of the financial crisis. The idea of reverse causality implies that the choice of currency diversification is determined by future leverage adjustment (or targeted leverage adjustment). Applying this hypothesis to the financial crisis, it would mean that banks have chosen their pre-crisis currency diversification in order to achieve their crisis leverage adjustment. As financial crisis are by definition unexpected, then the risk of reverse causality seems to be reduced.
tions with a specific mandate defined by public authorities. I believe that these dummy variables for bank category and nationality may then avoid issues related to omitted factors that potentially co-determine both the choice of currency diversification prior the financial crisis as well as the movement of leverage afterward.

\[\Delta \text{Leverage}_{i,2008-09} = \alpha + \beta_1 \ln(\text{Leverage}_{i,2008}) + \beta_2 \Delta \text{Asset}_{i,2008-09} \]

\[+ \beta_3 (\Delta \text{Asset}_{i,2008-09} \times \text{FX}_{i,2007}) + \beta_4 \text{FX}_{i,2007} \]

\[+ \beta_5 \text{Deriv}_{i,2007} + \sum_{j=6}^{10} \beta_j \delta_{j,i} + u_i \]

(16)

The variable \(\text{FX}_{2007} \) captures both the diversification and the valuation effects. In order to capture the valuation effect of currency diversification I extend the analysis by replacing the share of assets denominated in US dollar by the share of assets denominated in US dollar with euro area counterparties \(\text{FX}(\text{EA}) \). Considering the euro area counterparty as a resident counterparty, this new measure of currency diversification only captures the valuation effect of diversification. An alternative to test the robustness of my results might be to replace the currency diversification measure by the FX derivative measure as it focuses on derivatives relative to foreign exchange operations only. This last specification implies to introduce the currency diversification measure as a control variable.

\[^{16}\text{Because of their specific activities, then ECS and IFS are not expected to show either large currency diversification or large leverage procyclicality compared to general banks. Similarly, foreign banks located in France are expected to have more currency diversification than French banks; but they are also expected to be more procyclical than French banks as they are the first adjustment variable for foreign global banks during financial crisis.}^{17}\]

\[^{17}\text{The share of assets denominated in euro with US counterparties or with non-euro area counterparties may capture the pure diversification effect. However, that information is not available in the current database.}^{17}\]
3.3 Quantitative results

Table 6 reports results from the different specifications of (16). For all specifications, results confirm previous conclusions from the literature: leverage is a mean reverting process and it is procyclical. However, my results also show that leverage procyclicality depends on currency diversification.

{ Insert Table 6 here }

Focusing on currency diversification with all counterparties FX_{2007}, the results show that currency diversification had increased leverage procyclicality during the crisis. This first conclusion is robust even when the pre-crisis currency diversification is defined in 2006 instead of 2007. However, the measure of currency diversification FX captures the two effects of currency diversification. Because of the floating exchange rate regime, the theoretical model predicts a decrease in leverage procyclicality due to the valuation effect. Therefore, results reported in column (1) and (3) suggest that the diversification effect dominates the valuation effect. To capture the valuation effect, I introduce the variable $FX(\text{EA})$ in column (2) and (5). The results confirm this prediction where currency diversification relative to euro area $FX(\text{EA})$ captures this valuation effect: valuation effect reduces leverage pro-cyclicality. Using the ratio of the FX derivative Deriv as an alternative measure of the valuation effect supports my conclusions at least when the measure is taken in 2007. Comparing the different results between column (1) and (2), my results suggest that the diversification effect, apart from the valuation effect, increases leverage procyclicality. They also support the implicit assumption that banks do not change their portfolio allocation at each period.\(^{18}\)

\(^{18}\)If banks re-allocate their portfolio at each period, then the number of lags used for currency diversification would be determinant to capture the effect of pre-crisis currency diversification on leverage procyclicality during the crisis.
Figure 2 illustrates the previous results and reports the predicted leverage procyclicality for different levels of 2007 pre-crisis currency diversification. The total currency diversification effect increases leverage procyclicality when currency diversification goes from 0 to the average value (i.e. 0.12). When the maximum pre-crisis currency diversification is assumed (i.e. 0.71), the slope of the line is even more stronger than previously, translating the large sensitivity to foreign economic shock.

Focusing on the valuation effect, we observed that the predicted leverage pro-cyclicality is lower for average value of pre-crisis currency diversification (i.e. 0.03) than for 0 currency diversification, even if this average pre-crisis currency diversification is quite low. Interestingly, our results also supports the theoretical prediction which suggests a counter-cyclical leverage due to the valuation effect and a significant pre-crisis currency diversification.

4 Conclusion

This paper provides an adjusted framework to European banks with two currency denominations for assets and debts, corresponding to two different countries. It implies a diversification of risks between the two countries and a valuation effect from floating exchange rate.

The international dimension of banking activities associated to the Value-at-Risk rule offers a new framework to explain the heterogeneous procyclicality of leverage. The international diversification of balance sheet plays a key role, especially if currency diversification is considered. When the foreign economy outperforms the domestic economy, a international diversification reduces risk in bank portfolio. International diversification then increases leverage procyclicality during booms but decreases it during busts.
as it expands the bank capacity to raise funds. Inversely, risk in bank portfolio gets larger with international diversification when the domestic economy outperforms the foreign one: international diversification decreases leverage procyclicality during booms but increases it during busts. More broadly, international diversification increases leverage procyclicality when it implies a foreign economic condition that is more volatile than the domestic economic condition. Introducing a floating exchange rate then expands the bank capacity to raise funds, since currency appreciates when its associated economy outperforms others. Bank leverage procyclicality then depends on the relative performance of countries, the business cycle, the level of currency diversification and the exchange rate regime.

This new international framework allows me to make use of cross-sectional data on bank balance sheet. Focusing on banks located in France during the 2008-2009 crisis, my results show that leverage procyclicality positively depends on bank pre-crisis international diversification. The higher the international diversification before the crisis, the stronger the leverage response to assets variations during the 2008-2009 crisis. Focusing on the valuation effect of currency diversification, my results show that it reduces leverage procyclicality during the crisis. Therefore, the empirical results yield supporting evidence to the theoretical predictions where the domestic economy outperforms the foreign economy during a bust.

This paper underlines the specific role of currency diversification in financial stability risk and economic stability. As not all foreign currencies and foreign economies are alike, this paper shows that the impact of currency diversification would differ according to which currency denomination is included. Therefore, policy recommendations on international banking activities need to be identified in respect to the characteristics of foreign exchange rates and the relative economic and financial performances.
This paper offers a large range of potential extensions. First, a major advantage of this model is its flexibility, especially regarding the definition of exchange rate and the portfolio rebalancing behavior. Changing the bank strategy from a "buy and hold" strategy to an active rebalancing strategy can be described simply by changing the assumption on the portfolio adjustments to economic conditions. Then, this paper suggests that the amplification of economic booms and busts due to leverage cyclical variations depends on the extent of international banking activities. Applying this model to a general equilibrium model may then provide an interesting framework for future research. Finally, this paper raises the question of asymmetries between booms and bust, especially if the volatility of the economic conditions is time varying. Extending the quantitative analysis to both a panel data analysis and a broader currency portfolio is a subject of keen interest.

References

Appendix

A The model

A.1 Participation and incentive constraints

The definition of \((d + d^*)\) and leverage come from the maximization of the utility of the bank and the creditor. The creditor of the bank is risk neutral. He maximizes his utility \(U^C\) defined as his total net expected payoff. His net expected payoff is the difference between the value of his defaultable debt claim and the total funds provided to the bank. If the bank invests in the good portfolio, the net expected payoff is given by:

\[
U^C_{H,H^*}(A + SA^*) = (A + SA^*) \left[(\bar{d} + \bar{d}^*) - \pi_{H,H^*}(\bar{d} + \bar{d}^*) - (d + d^*) \right]
\]

The requirement that utility is equal to or higher than 0 provides the first Participation Compatibility (PC) constraint of the creditor. This constraint binds in the optimal contract:

\[
0 \leq (\bar{d} + \bar{d}^*) - \pi_{H,H^*}(\bar{d} + \bar{d}^*) - (d + d^*)
\]

\[
(d + d^*) = (\bar{d} + \bar{d}^*) - \pi_{H,H^*}(\bar{d} + \bar{d}^*)
\]

Similarly for an investment in the bad portfolio:

\[
(d + d^*) = (\bar{d} + \bar{d}^*) - \pi_{L,L^*}(\bar{d} + \bar{d}^*) \quad \text{(PC)}
\]

The PC constraint defines the total debt ratio at market value relative to the total debt ratio at notional value. The latter should be large enough to form an incentive for the creditor to participate. The higher the reimbursement offered by the bank, the more the creditor is tempted to lend money at \(T=0\).

The bank is risk neutral and maximizes its expected utility \(U^B\) defined as its total net expected payoff. The net expected payoff when the bank invests in the good portfolio is equal to:

\[
U^B_{H,H^*} = (A + SA^*) \left[a.r_H + (1 - a)r_{H^*} + (d + d^*) - (\bar{d} + \bar{d}^*) + \pi_{H,H^*}(\bar{d} + \bar{d}^*) \right]
\]
When the bank invests in the bad portfolio the net expected payoff is equal to:

\[U_{B,L,L}^{B} = (A + SA^\ast) \left[a r_L + (1 - a) r_{L^\ast} + (d + d^\ast) - (\bar{d} + \bar{d}^\ast) + \pi_{L,L^\ast} (\bar{d} + \bar{d}^\ast) \right] \]

Assuming that \(U_{B,H,H}^{B} \geq U_{B,L,L}^{B} \), the Incentive Compatibility (IC) constraint is given by:

\[r_H - r_L \geq \Delta \pi(\bar{d} + \bar{d}^\ast) \]

Where: \(\Delta \pi(\bar{d} + \bar{d}^\ast) = \pi_{L,L^\ast} (\bar{d} + \bar{d}^\ast) - \pi_{H,H^\ast} (\bar{d} + \bar{d}^\ast) \)

The IC constraint stipulates that there is a solution \((\bar{d} + \bar{d}^\ast)\) that satisfies this inequality. The unique solution illustrated in figure [1] comes from the Second Order Stochastic Dominance (SOSD) between the two mixture distributions and the differential in volatility. The surface area \(\Delta \pi(z) \) increases until \(F_{H,H^\ast}(z) = F_{L,L^\ast}(z) \) and decreases after the junction. As shareholders receive returns, \((\bar{d} + \bar{d}^\ast) < a(1 + \bar{r}) + (1 - a)(1 + \bar{r}^\ast)\), there is a unique solution \(\bar{z} = (\bar{d} + \bar{d}^\ast) \) which satisfies the IC constraint.

\[r_H - r_L = \Delta \pi(\bar{d} + \bar{d}^\ast) \]

The IC constraint also represents the moral hazard trade-off from \cite{Holmstrom1997}. The lhs of IC represents the bank private benefit from investing in the good portfolio while the right hand side (rhs) is equal to the private benefit from investing in the bad portfolio (e.g. low effort in the moral hazard model of \cite{Holmstrom1997}). With the added PC constraint from the creditor, the bank necessarily invests in the good portfolio where the put option induces lower prices.

\[r_H - r_L = \theta + \sigma H(\xi) - (\theta - k) - m \sigma H(\xi) \]

Where:

\[= k - \sigma (m - 1) H(\xi) \]

\[r_{H^\ast} - r_{L^\ast} = \theta^\ast + \sigma H(\xi) - (\theta^\ast - k) - m \sigma H(\xi) \]

\[= k - \sigma (m - 1) H(\xi) \]

\[^{19} \text{Where:} \]

\[r_H - r_L = \theta + \sigma H(\xi) - (\theta - k) - m \sigma H(\xi) \]

\[= k - \sigma (m - 1) H(\xi) \]

\[r_{H^\ast} - r_{L^\ast} = \theta^\ast + \sigma H(\xi) - (\theta^\ast - k) - m \sigma H(\xi) \]

\[= k - \sigma (m - 1) H(\xi) \]
Figure 1: The incentive compatibility constraint from the bank expected payoff: a unique solution \bar{z}. This chart plots the distribution functions F_{H,H^*} and F_{L,L^*} for $\xi = 0.1$, $\theta = \theta^* = 0.5$, $\sigma = 0.1$, $k = 0.05$, and $m = 1.4$. The dark line indicates F_{H,H^*} and the dash line indicates F_{L,L^*}.

The unique solution is such that:

\begin{align*}
(r_H - r_L) &= \Delta \pi (\bar{d} + \bar{d}^*) \\
&= \int_{\bar{d} + \bar{d}^*}^{\bar{d}^*} F_{L,L^*} \, dz - \int_{\bar{d} + \bar{d}^*}^{\bar{d}^*} F_{H,H^*} \, dz \\
&= e^k \int_{0}^{\bar{d} + \bar{d}^*} F_{H,H^*} \, dz - \int_{0}^{\bar{d} + \bar{d}^*} F_{H,H^*} \, dz \\
&= (e^k - 1) \int_{0}^{\bar{d} + \bar{d}^*} F_{H,H^*} \, dz \\
&= (e^k - 1) \sigma F_{H,H^*}(\bar{d} + \bar{d}^*)
\end{align*}
A.2 Combining valuation and diversification effects

When both the diversification and the valuation effects are included, the total ratio of notional values of debt \((\bar{d} + d^*)\) is defined by:

\[
(\bar{d} + d^*) = \theta + \sigma + \sigma \ln \left(\frac{r_H - r_L}{(e^{k/\sigma} - 1)\sigma} \right) - \sigma \ln \left(a_{(S,\theta,\theta^*)} + (1 - a_{(S,\theta,\theta^*)}) \exp \left\{ \frac{\theta - \theta^*}{\sigma} \right\} \right)
\]

Assuming that \(\theta\) is constant, the adjustment of \((\bar{d} + d^*)\) relative to a change in \(\theta^*\) is derived such that:

\[
\frac{d(\bar{d} + d^*)}{d\theta^*} = 1 - \frac{a}{a + (1 - a)\exp \left\{ \frac{\theta - \theta^*}{\sigma} \right\}} - \sigma \left(\frac{\frac{d a_{(S,\theta,\theta^*)}}{d\theta^*}}{a + (1 - a)\exp \left\{ \frac{\theta - \theta^*}{\sigma} \right\}} \right) \tag{A.2}
\]

The derivative is composed of two effects: the diversification effect and the valuation effect. When the exchange rate is fixed (i.e. \(\frac{d a_{(S,\theta,\theta^*)}}{d\theta^*} = 0\)), the derivative is limited to the diversification effect. It is equal to 0, 1 and \((1 - a)\) when \(a = 1\), \(a = 0\) and \(\theta = \theta^*\), respectively. When the states of nature become different \(\theta \neq \theta^*\) with \(\theta\) being fixed, a currency diversification such that \(a > 0\) reduces the procyclicality of \((\bar{d} + d^*)\) relative to \(\theta^*\): the stability of the domestic state of nature anchors the tail risk of asset portfolio.

A floating exchange rate introduces a valuation effect as long as \(\theta \neq \theta^*\). Its impact on the adjustment of \((\bar{d} + d^*)\) relative to a change in \(\theta^*\) depends on the adjustments of the foreign state of nature. When the foreign economy is booming \((\theta^* > \theta)\), the valuation effect is positive and increases the procyclicality of \((\bar{d} + d^*)\) relative to \(\theta^*\). The foreign economic condition implies a depreciation of the domestic currency and a decrease in the share of the domestic asset in the bank portfolio: the tail risk is reduced. Similarly, when the foreign economy is busting, \(\theta^* < \theta\), the valuation effect is negative and reduces the procyclicality of \((\bar{d} + d^*)\) relative to \(\theta^*\). The floating exchange rate promotes the domestic asset which performs relatively better than the foreign one because of domestic currency appreciation. In both cases, a floating exchange rate increases the fund raising capacity of banks. However, the adjustment of \((\bar{d} + d^*)\) relative to \(\theta^*\) may become counter-cyclical if the valuation effect is large enough to compensate the diversification effect when the foreign economy is busting. A counter-cyclical \((\bar{d} + d^*)\) is observed when
\[\theta^* < \theta \text{ and:} \]

\[
(1 - a) \left(\frac{da_{(S, \theta, \theta^*)}}{d\theta^*} \big| \theta \right)^{-1} < \sigma \left(\frac{1}{\exp \left\{ \frac{\theta - \theta^*}{\sigma} \right\}} - 1 \right) \]

The counter-cyclical condition in equation compares the portfolio adjustment due to the valuation effect to the relative economic growth starting from \(\theta = \theta^* \). Because \(\left(\frac{da_{(S, \theta, \theta^*)}}{d\theta^*} \big| \theta \right) < 0 \), the higher the initial share of foreign asset, the more validated the condition.

Inversely when \(\theta^* \) is constant, the adjustment of \((\dd + \dd^*) \) relative to a change in \(\theta \) can be derived such that:

\[
\frac{d(\dd + \dd^*)}{d\theta} \big| \theta^* = \frac{a}{a + (1 - a) \exp \left\{ \frac{\theta - \theta^*}{\sigma} \right\}} \left(\frac{\sigma \left(\frac{da_{(S, \theta, \theta^*)}}{d\theta} \big| \theta^* \right) \left(1 - \exp \left\{ \frac{\theta - \theta^*}{\sigma} \right\} \right)}{a + (1 - a) \exp \left\{ \frac{\theta - \theta^*}{\sigma} \right\}} \right) \]

The derivative is equal to 0, 1 and \(a \) if \(a = 0 \), \(a = 1 \) and \(\theta = \theta^* \), respectively. The procyclicality of \((\dd + \dd^*) \) relative to a change in \(\theta \) decreases when \(\theta \neq \theta^* \) with \(\theta^* \) and \(S \) being fixed, and \((1 - a) > 0 \): the stability of the foreign state of nature anchors the tail risk of asset portfolio. A floating exchange rate with \(\theta \neq \theta^* \) introduces a valuation effect which depends on economic conditions. When \(\theta > \theta^* \), the domestic economy outperforms the foreign one and the domestic currency appreciates, implying that \(\left(\frac{da_{(S, \theta, \theta^*)}}{d\theta} \big| \theta^* \right) > 0 \). The share of the domestic asset in bank portfolio raises and the bank fund raising capacity increases: the valuation effect increases the procyclicality of \((\dd + \dd^*) \) relative to \(\theta \). Inversely, when \(\theta < \theta^* \), bank fund raising capacity decreases the procyclicality of \((\dd + \dd^*) \) relative to \(\theta \). When the valuation effect is strong enough to compensate the domestic bust, the adjustment of \((\dd + \dd^*) \) relative to \(\theta \) is counter-cyclical if:

\[
\frac{a}{a + (1 - a) \exp \left\{ \frac{\theta - \theta^*}{\sigma} \right\}} \left(\frac{\sigma \left(\frac{da_{(S, \theta, \theta^*)}}{d\theta} \big| \theta^* \right) \left(1 - \exp \left\{ \frac{\theta - \theta^*}{\sigma} \right\} \right)}{a + (1 - a) \exp \left\{ \frac{\theta - \theta^*}{\sigma} \right\}} \right) < \sigma \left(\frac{\theta - \theta^*}{\sigma} \right) \]

The lower the initial share of domestic asset in the bank portfolio, the more the bank benefits from the valuation effect and the more validated the condition would be.
B Quantitative analysis

The final database I use is a combination different databases collected by the French banking supervision authority (ACPR) including the following eSurfi tables: {SITUATION, BILACONS, F_01.00, F_11.01, DEVI_SITU}. Accounting data total assets, leverage and derivatives are collected at the book value for the highest level of consolidation. For large international banks, data are consolidated using the IFRS accounting standard and collected in Finrep tables \{F_01.00, F_11.01\}. Smaller parent banks provide consolidated data using the French accounting standards (FRGAAP) in \{BILACONS\}, while stand-alone banks provide unconsolidated data reported in the \{SITUATION\} table. Data on currency exposures (from DEVI_SITU) are collected at the book value and at an individual level for all banks (unconsolidated data). The proxy of asset currency diversification adds up currency exposures of all affiliates in the same banking group. Currency diversification is then an aggregate measure of the currency exposure at the banking group level.

Table 3 provides descriptive statistics on banks focusing on bank size defined as the logarithm of total assets, leverage defined as the ratio of total assets to equity, US dollar diversification \(FX\) defined as the share of total assets denominated in US dollar, US dollar diversification with euro area counterparties \(FX(EA)\) defined as the share of total assets denominated in US dollar and including a euro area counterparty and, derivatives relative to foreign exchange operations defined as the ratio of those derivatives to total assets.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Max.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leverage(_{2008})</td>
<td>14.82</td>
<td>11.79</td>
<td>1.16</td>
<td>50.88</td>
<td>26</td>
</tr>
<tr>
<td>ln(Asset)(_{2008})</td>
<td>9</td>
<td>2.72</td>
<td>5.64</td>
<td>14.5</td>
<td>26</td>
</tr>
<tr>
<td>(\Delta \ln(\text{Leverage})_{2008-2009})</td>
<td>-0.15</td>
<td>0.24</td>
<td>-0.89</td>
<td>0.21</td>
<td>26</td>
</tr>
<tr>
<td>(\Delta \ln(\text{Asset})_{2008-2009})</td>
<td>-0.08</td>
<td>0.21</td>
<td>-0.47</td>
<td>0.42</td>
<td>26</td>
</tr>
<tr>
<td>FX(_{2007})</td>
<td>0.12</td>
<td>0.18</td>
<td>0</td>
<td>0.71</td>
<td>26</td>
</tr>
<tr>
<td>FX(EA)(_{2007})</td>
<td>0.03</td>
<td>0.04</td>
<td>0</td>
<td>0.14</td>
<td>26</td>
</tr>
<tr>
<td>Deriv(_{2007})</td>
<td>0.54</td>
<td>1.26</td>
<td>0</td>
<td>5.74</td>
<td>26</td>
</tr>
</tbody>
</table>

\(\Delta\) stands for the first difference of variable between \(t\) and \(t-1\).
Table 4: Summary statistics: French banks

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Max.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leverage(2008)</td>
<td>13.91</td>
<td>10.23</td>
<td>1.16</td>
<td>37.01</td>
<td>18</td>
</tr>
<tr>
<td>(\ln(\text{Asset}))(2008)</td>
<td>9.49</td>
<td>2.9</td>
<td>5.64</td>
<td>14.5</td>
<td>18</td>
</tr>
<tr>
<td>(\Delta \ln(\text{Leverage}))(2008-2009)</td>
<td>-0.11</td>
<td>0.19</td>
<td>-0.46</td>
<td>0.21</td>
<td>18</td>
</tr>
<tr>
<td>(\Delta \ln(\text{Asset}))(2008-2009)</td>
<td>-0.02</td>
<td>0.2</td>
<td>-0.47</td>
<td>0.42</td>
<td>18</td>
</tr>
<tr>
<td>(\text{FX}_{2007})</td>
<td>0.05</td>
<td>0.07</td>
<td>0</td>
<td>0.27</td>
<td>18</td>
</tr>
<tr>
<td>(\text{FX(EA)}_{2007})</td>
<td>0.03</td>
<td>0.04</td>
<td>0</td>
<td>0.14</td>
<td>18</td>
</tr>
<tr>
<td>(\text{Deriv}_{2007})</td>
<td>0.73</td>
<td>1.47</td>
<td>0</td>
<td>5.74</td>
<td>18</td>
</tr>
</tbody>
</table>

\(\Delta\) stands for the first difference of variable between \(t\) and \(t-1\).

Table 5: Summary statistics: foreign banks

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Max.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leverage(2008)</td>
<td>16.89</td>
<td>15.34</td>
<td>5.66</td>
<td>50.88</td>
<td>8</td>
</tr>
<tr>
<td>(\ln(\text{Asset}))(2008)</td>
<td>7.89</td>
<td>2.01</td>
<td>6.24</td>
<td>12.49</td>
<td>8</td>
</tr>
<tr>
<td>(\Delta \ln(\text{Leverage}))(2008-2009)</td>
<td>-0.25</td>
<td>0.33</td>
<td>-0.89</td>
<td>0.09</td>
<td>8</td>
</tr>
<tr>
<td>(\Delta \ln(\text{Asset}))(2008-2009)</td>
<td>-0.19</td>
<td>0.2</td>
<td>-0.47</td>
<td>0.04</td>
<td>8</td>
</tr>
<tr>
<td>(\text{FX}_{2007})</td>
<td>0.28</td>
<td>0.25</td>
<td>0.02</td>
<td>0.71</td>
<td>8</td>
</tr>
<tr>
<td>(\text{FX(EA)}_{2007})</td>
<td>0.05</td>
<td>0.04</td>
<td>0</td>
<td>0.11</td>
<td>8</td>
</tr>
<tr>
<td>(\text{Deriv}_{2007})</td>
<td>0.1</td>
<td>0.2</td>
<td>0</td>
<td>0.55</td>
<td>8</td>
</tr>
</tbody>
</table>

\(\Delta\) stands for the first difference of variable between \(t\) and \(t-1\).

Figure 2: Predicted leverage procyclicality and currency diversification: pre-crisis currency diversification is measured in 2007 based on our sample data detailed in table 3.

(a) Total diversification: \(FX\)
(b) Valuation effect: \(FX(EA)\)
Table 6: Leverage procyclicality with pre-crisis currency diversification

Dependent variable: $\Delta L_{everage}^{2008-09}$

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln(L_{everage}^{2008})$</td>
<td>-0.06*</td>
<td>-0.05**</td>
<td>-0.07**</td>
<td>-0.07*</td>
<td>-0.06**</td>
<td>-0.08*</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td>(0.01)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>$\Delta Asset_{2008-09}$</td>
<td>0.88**</td>
<td>1.13***</td>
<td>1.15***</td>
<td>0.84**</td>
<td>1.03***</td>
<td>1.09***</td>
</tr>
<tr>
<td></td>
<td>(0.17)</td>
<td>(0.06)</td>
<td>(0.08)</td>
<td>(0.18)</td>
<td>(0.07)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>$\Delta Asset_{2008-09} \times FX_{2007}$</td>
<td>2.25*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.86)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta Asset_{2008-09} \times FX(EA)_{2007}$</td>
<td></td>
<td>-13.07**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.93)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta Asset_{2008-09} \times Deriv_{2007}$</td>
<td></td>
<td>-0.16**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta Asset_{2008-09} \times FX_{2006}$</td>
<td></td>
<td>1.83*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.58)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta Asset_{2008-09} \times FX(EA)_{2006}$</td>
<td></td>
<td>-10.09**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.93)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta Asset_{2008-09} \times Deriv_{2006}$</td>
<td></td>
<td>-0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FX_{2007}</td>
<td>-0.08</td>
<td></td>
<td>-0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td></td>
<td>(0.13)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$FX(EA)_{2007}$</td>
<td></td>
<td>0.96**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Deriv_{2007}$</td>
<td>0.01</td>
<td>0.04***</td>
<td>-0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.00)</td>
<td>(0.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FX_{2006}</td>
<td>-0.12</td>
<td></td>
<td>-0.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.19)</td>
<td></td>
<td>(0.19)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$FX(EA)_{2006}$</td>
<td></td>
<td></td>
<td></td>
<td>0.75**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Deriv_{2006}$</td>
<td>0.01</td>
<td>0.01**</td>
<td>-0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.00)</td>
<td>(0.04)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.15</td>
<td>-0.02</td>
<td>0.16</td>
<td>0.18</td>
<td>0.00</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.06)</td>
<td>(0.11)</td>
<td>(0.20)</td>
<td>(0.07)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>Observations</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.78</td>
<td>0.76</td>
<td>0.72</td>
<td>0.79</td>
<td>0.74</td>
<td>0.73</td>
</tr>
</tbody>
</table>

† p < 0.11; * p < 0.1; ** p < 0.05; *** p < 0.01

Standard errors are clustered at the sub-category level. Control variables including the dummy variable for bank nationality or the sub-category dummy are reported in this table.