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some frequency. Indeed, for this frequency, the limit law degenerates, and traditional
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esis, which exploit the asymptotic behavior of the periodogram for some well-chosen
sequence of frequencies. In particular, statistics free from nuisance parameters are
derived, and conditional heteroskedasticity of unknown form is allowed. As an appli-
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RESUME: L’estimation de la densité spectrale d’'un processus stationnaire univarié
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en un point. Pour une fréquence 0 fixée, le papier introduit plusieurs tests non-
paramétriques de ’hypothése de nullité du spectre en 6 fondé sur le périodogramme
pris en un point voisin de §. Ces tests se distinguent les uns des autres par la vitesse
a laquelle cette fréquence converge vers 6. Nous dérivons ces résultats pour un pro-
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I’hypothése de stationnarité contre ’alternative de racine unitaire saisonniére illustre
ces résultats.
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1 Introduction

Let (X¢),.5 be a stationary process with autocovariance function y(h) and spectral
density f(w) = % ;g‘joo v(k)e ", We suppose a sample of size n is available
to the econometrician. In the semi-parametric framework defined by the family of
densities f(w) = f(w; ¢) where ¢ € O is a finite unknown parameter, it is well known
(see Davies (1983) for a survey) that standard inference procedures are valid only if
the following condition is satisfied "V (w, ¢) € [—7, 7] x O, f(w;¢) > 0”. In the time
domain, maximum likelihood estimation for ARM A models display ”good” properties
(asymptotic normality at rate y/n) only if the model is invertible, which means that
f(w) > 0 for all w. When aroot lies in the spectrum, classical estimators are therefore
no longer asymptotically normal, and inference can’t be carried out through standard
arguments, like student statistics and so on. Note that the same trouble occurs for
non parametric estimators of the spectral density which use prewithening of the data
as a prior treatment. For such a procedure to be valid, the spectrum must be bounded
away from above by a positive constant. Hence, it appears of primary importance to
decide whether or not a root lies in the spectrum of the process before the application
of any econometric procedure.

Such situations are not only of theoretical interest. Indeed, they may occur quite
often in applied econometric works, when some variables are deliberately over dif-
ferenced. A leading example of such misspecification is the use of annual differences
of variables, which may imply in some cases for quarterly data, that the spectrum
vanishes at both seasonal frequency 7 and 7. Another example is provided by sea-
sonal adjustment procedure. More precisely, the widely used seasonal adjustment
program, Census-X11, may be approximated as a linear filter, which can be factor-
ized as C'(B) X (B)! (Laroque (1977)), where X (B) is a bilateral filter without roots

on the unit circle, and:

C(B)=(1+B)’(1+B?)’

In other words, when we apply this filter to a non stationary SARIMA process X
such as:

(1-B)" (14 B)" (1+ B2 X, = 7 (1)
with do,dr,dz integers and Z; a stationary SARMA process with strictly positive

spectrum at frequency w € {0, 5 7T}, the seasonally adjusted series, Y;, also admits
a SARIMA representation, but its spectrum vanishes at 7 if d% < 2, and at 7 if
dr < 2. It is generally acknowledged that raw series built upon constant price indexes
are generally integrated of order one or stationary, whereas data built upon current
price indexes may be integrated of order two. In the former case, we may expect
the seasonal adjusted series to be over-differenced, a phenomenon which may be also
associated to the over seasonal correction of the procedure?. Moreover, it seems that
this drawback is sometimes still present after individual seasonally adjusted series
have been aggregated: with US data, Maravall (1995) found evidences that large lags

LB is the usual backshift operator.
2Model based methods which use data dependent Wiener-Kolmogorov filter may also induce
moving average unit roots at seasonal frequencies (see Maravall (1995)).



are significant in autoregressive models. One practical consequence of such findings
is that VAR models using such variables are misspecified.

The test of the null hypothesis f (f) = 0 appears to be non standard. Indeed,
classical non-parametric estimators obtained by smoothing the periodogram are not
useful, because of the form of their asymptotic variance: it is proportional to f2(6)
(e.g. Priestley (1988)), thus the limit law is degenerate when f(0) = 0. Specific
procedures must be developed. In the parametric framework, such tests are already
available: thus, for the model

Xt =&t — Qst,l,st iid N <0, U2>

it is possible to perform the locally most powerful and invariant test of the hypothesis
Hy:0=1 (ie. f(0)=0) against H, : |0] <1 (ie. f(0) > 0) (see Tanaka (1996)).
Further developments in this framework have been carried out by Tam and Reinsel
(1997) in order to allow for seasonal moving average unit roots and autoregressive
components.

For a given fixed frequency 6 € [0, 7], this article develops a new test of the
hypothesis f(6) = 0 which exploits the behavior of the periodogram for frequencies
close (but not equal) to . Heteroskedasticity of the innovation of X, is allowed.
Such an approach is classical in the statistical analysis of long memory processes. In
this framework and for § = 0, Lobato and Robinson (1998) have recently proposed a
test of stationary hypotheses against fractionally alternatives. Their test uses values
of the periodogram in a band of frequency centered around 6 which degenerates
asymptotically. Akdi and Dickey (1998) have also studied the behavior of [ (2’“7”) for
fixed k and n — oo when X; is an ARIMA process (I (.) is the periodogram). Our
approach implies the use of only one frequency 6, which converges to 6 at a rate
lower than n~!. The intuition behind this approach is the following: if f (0) = 0,
then the periodogram is a consistent estimator of f (0) (see e.g. Brockwell and Davis
(1986), theorem 10-3-2). Thus, we hope that this interesting property is still valid
in an asymptotically degenerate neighborhood of #. Moreover, the test is built upon
local properties of the spectrum, thus it is possible to accommodate for irregularities
in other areas of [—m, 7| e.g. divergence to infinity in case of long memory dynamic
at some frequency 0 # 0: this topic will be studied in a subsequent paper.

As it is well-known, the problem under consideration is closely related to unit root
tests. Indeed consider X; defined by:

(1 —=2cosAB+ N\’B?) X; = &,
with e, stationary process with f. (6) > 0 and 0 < A < 1. Define:
Y, = (1 — 2cosbB —I—BQ> Xy
Let f. and fy be the spectral density of ¢; and Y; respectively. We have:

If A =1 (unit-root hypothesis), fy () >0
If A < 1 (stationary alternative), fy (6) =0

Note however, that the null and alternative hypotheses are reversed.
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The paper is organized as follows. We begin with the possible representations
of a stationary process with zeros in its spectrum. It is seen that the conclusions
crucially depend on the local smoothness of the spectral density. Section 3 is devoted
to a functional central limit theorem which provides the grounds for the first test
statistics developed in section 4. Unfortunately, these statistics depend upon nuisance
parameters which must be estimated. Section 5 develops an alternative approach
which avoids this step. Section 6 discusses non-zero mean processes and then suggests
a new test for the presence of seasonal unit roots. Lastly, we provide some elements
for the case where we do not have prior knowledge of 8. Technical details are brought
together in an appendix.

Now, we review the notations used throughout the paper.

We assume that a finite sample of data is available {X;,1 < k < n}, extracted
from a purely non-deterministic stationary process (PND, in short) (X¢)iez with
expectation zero (the case F (X;) # 0 is deferred to the end of the paper). Its Wold
representation takes the form:

Xp=> We (2)
5=0

(2t)tez 1s the innovation process of Xy ¥y = 1, Z;‘io \Iig < oo. We define the
complex function associated with the Wold expansion of X; as Cx(z) = Z;‘io U,z
for |z] < 1. The spectral density of X is then expressed as f (w) = % |Cx (eﬂl“’)]2
with 0% = E (7).

For any complex stationary process (Zy),.,, and m € Z, we denote by Hy (m) =
{Z:,t < m} the complex Hilbert space spanned by (Zy),.,,, with Hy = Hy (+00).

Let A, (u) = EZ;S e** be the Dirichlet kernel,; it satisfies f:r A, (a:)]Qdat =n
and:

|zA,, (z)] < 2for 0 < |z| <7 (3)

The symbol ”=" will always refer to convergence in law when n goes to infinity.
C'|a, b] is the space of continuous functions defined on [a, b] , equipped with the supre-
mum norm. C,C',C", ... are constant independent from integer or real variables n
and t € [0,1], w € [0, 7] used throughout the paper. These constants will take differ-

ent values for each new occurrence. For p > 1, | X|| p = (BE|X? )1/ P for any complex
stochastic variable X with finite moments up to order p. Lastly, |x| is the integer
part of x.

2 Regularity and nullity of the spectrum

2.1 Local regularity

In the ARMA framework, it is easy to see that when ®(B)X, = ©(B)s, and
f(0) = 0, then ©(B) can be factorized as: © (B) = (1 —2cos QB—I—BQ)d(:)(B)
d integer > 1. Such a factorization is in fact possible under much more general
conditions that we recall in the following result:
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Lemma 1 If 3C,a > 0 and V (0) neighborhood of 0 such as f(w) < Clw — 0]
for w € V (0), then there exists a unique real stationary process uy such as:

i) X¢ = (1 —2cosOB + B*)uy if 0 ¢ {0,7}, Xy = (1 — cosOB) uy otherwise.

i)Vt € Z, u € Hx (t)

Proof: see the appendix .l

Note that the assumptions of this lemma imply the continuity and the derivability
of f at @ with f (0) = 0 and (necessarily) f (6) = 0. When f is C? in a neighborhood
of 0, the assumption f (f) = 0 implies automatically that the assumptions of the
lemma are fulfilled with o = 1.
We now define A (B,0) =1—2cosB+ B*if0 # 0 and § # 7w, A(B,0) =1—cos B

otherwise.

Remark 1 The unicity of u; breaks down if we just impose the condiltion “u; sta-
tionary”. Indeed, u; = ug+ Acos (0t) + Bsin (0t) with A and B real random variables
€ Hy, such as E (AB) =0, E(A%) = E(B?) =&, is a solution.

The spectral density of u, takes the form (when 6 ¢ {0,7}): )
fu (w) = m' If f (w) ~w—0 C ’w o 8’1+a7 then fu (w) ~w—0 ¢ ’w o g’lJrOé
with & = o — 2. f,, admits a singularity at 8 if & < 0, and is continuous at 8 if & = 0.

When & > 0, one can apply the lemma 1 to u;, and then we obtain by recurrence:

Corollary 2 If3C > 0,0 > 1 such as f (w) < Clw —0|" for w € V (0), then there

exists one and only one stalionary process uy € Hx (1) such as, if d = — [PTO‘} :

Xt = A (B,@)dut

It is worth noting that a process may admit factorizations with indefinitely large d:

consider for example a PND process X; with spectral density f (w) = exp <— \/1—9>

for w € [0, 7], and then extended to R by parity and 27-periodicity (note that log f is
integrable, as it should be). f is indefinitely differentiable at w = 0, its derivatives all
taking the value zero at this point. Hence, Vm > 1, 3C,,, > 0 and V},, (#) neighborhood
of § such as f (w) < Cp, |w — 0] for all w € V;, (0). It follows that X; can be written
X; = (1—2cos0B + B?)” ugp) for each p > 1, with ugp) stationary.

The process u; which appear in the course of lemma 1 can be explicited with the
Wold expansion of X; if we assume that f is globaly regular. This point is made
precise in the following section.

2.2 Global regularity
Let Hy denote the following hypothesis:

+oo
dd > 0 such as : Zjd [T, < 00”
0

X is then said to be linearly regular, since when d € N, and Hy is satisfied, then f
is C% on the real line. It is in fact easy to give a reciprocal property
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Lemma 3 If f is CP, p > 2, with f® piecewise C, and if f doesn’t vanish, then f
satisfies Hy for alld < p — 1.

As a direct consequence, we have:

Lemma 4 Let f be C?, p > 2, with f® piecewise C'. Suppose that f > 0 except
maybe on a finite set of values O, k =1,... p, where f (w) ~u_s, Ck |lw — 05", dy
integer > 0. Then f satisfies Hy ford < p—1.

Proof: From the corollary 2 applied to each frequency 0y verifying dj, > 1, there
exists a stationary process u; such as, if we write dy = dy for 6, ¢ {0,7}, and
dy = dy, /2 for 0, € {0, 7}:

Xe =]] (1—2cosbyB+ BQ)dk uy with f, > 0 and verifying the assumptions of
dp>1
lemma 3. Once applied to wuy, the conclusions of the lemma are preserved after

application of the finite moving average polynomial I1 (1—-2cosb,B+ B 2)dk
1<k<p,dp>1
[ |

Now, we expand the function Cx(z) around Cx (e ?). Indeed, for p > 2 and any
0, this lemma says that H is satisfied for some d > 1 and:

Cx(2) — Cx(e ™) = Z\IJj (77 —e ™) =—(1—2¢") Cx(0,2)

with Cx (0,2) = 2577 g™ (Z;‘ikﬂ lIJjeiijé’) 2

Cx (0, z) is continuous in the unit disk |z| < 1 since, from lemma 4 with d > 1
DD =D+ <o
k=0 j=k+1 j=1
We denote by a (k,0) the coefficients of the expansion Cx (6, z) in power of z :
a(k,0) =™’ ( Z \Iljem) (4)
J=k+1

Under the hypotheses of lemma 4, suppose that § = 6, with d; > 1. If 8 # 7, the
function Cx(z) admits the conjugate root €?, and:

Cx(2) == (1—2¢") Cx(0,2) = (1 — 2¢”) (1 — ze ™) D(0, 2)

The coeflicients of D (6, z) are then easily obtained:
D(0,2) =2 e [z;‘;kﬂ a(j,0) eiﬂ =S b(k,0) 2F, or:

1 . Rl .
b (k‘, 8) — s Im [ez(k+1)9 Z \Puez@u] (5>

u=k+2



D(0, z) is continuous in the unit disk since [b(k,0)] < C Y~ ., |¥,|. If we suppose
p > 3, then the preceding argument yields:

Zk;ybk:e ZZkyq:y<sm )Z(”_Q)z(“_l)yqzuy<oo

k=1 u=k+42 u=0

:and f, satisfies Hy with d = 1.

We collect these results in:

Lemma 5 Under the hypotheses of lemma (4) with p > 2, if 6 = 0, ¢ {0,7} and
di > 1, Xy can be expressed as:

Xi = (1 —2cos8 + B*) uy withu, =D (6, B) e

The Wold function of uy is given by (5); fu is C? on [—m, 7] \{0}, and continuous at
0. If p> 3, f, is C in a neighborhood of 0.

Lastly, we remark that Cx(0,2) = — (1 — ze”ﬂ) D(6,z2) for all z # e ¥ and then
for = € by continuity.

Hence, Cx (0, ) = — (1 —e ™) D(0,e ) and:

o |Cx (0,6 )| = 2sin 61/27 f.(0) (6)

When 0 =7, Xy = (1+ B)uy, f, (0) = % |Cx (8,e’i9>‘2 and:

o ’CX (7T7 _1)’ = 27Tfu(7r) (7>

These results will be used later. From now on, we will work with the hypothesis
H, for d large enough. The preceding discussion showed that it is, in a certain sense
equivalent to assume that f is smooth everywhere. This very strong assumption
will permit us to easily derive results related to the the asymptotic properties of the
periodogram of X in some neighborhood of 6.

3 A functional central limit theorem

3.1 Case 1: the innovation

We suppose throughout the paper that (s;),., is a martingale difference sequence
adapted to some filtration (F;). The basic assumptions which we need to make are
as follows:
(515 ’ Ft 1) O_tv (5 )
Ut—‘7+2k on (58 p — ) D ket len| < o0
Y et £ 1L 2| <1
sup E (g}) < oo
¢

These hypotheses allow for ARCH or GARCH dynamic for £, and are now common
for the analysis of financial time series, such as interest rates or inflation which are

7



typical applications we have in mind. Seo (1999) consider similar hypotheses for unit
root tests with conditional heteroskedasticity. Note however that we do not suppose
that the sequence uy = - is L.i.d. For example, consider the following GARCII(1,1)
model:

02 = o+ el |+ 507 |, ap> 0,0, >0,3, >0

If oy 4+ B, < 1, & is square integrable, and:

ot =ag(1—0) "+ 3, ﬂ?lg?ﬁk
o?=E(E) =a(1—ar—3)

If moreover 3a? + 20,3, + 42 < 1, then moments up to order four of £; are finite

(Bollerslev (1986)) and E(gﬁ) = (%, With a somewhat different control of hetero-

geneity of g; (i.e 02 = 02, sup E(e7™® | F; 1) < oo for some a > 0), we have the
t

following result (see Chan and Wei (1988)):

/
Theorem 6 If 0 ¢ {0,7} and S,(t,0) = \/% (Zgﬂ cos(k0)zy, Egﬁl sin(k‘@)gk) for
t € 10,1], then the following convergence holds in D |0,1], the space of real cadlag
functions defined on |0, 1] equipped with the Prokhorov metric:

Sult, 0) = Wi (t)

Wa(t) is a standard 2-dimensional Brownian motion.
When 6 € {0,7}, S,(t,0) = \/% (Egﬁl cos(k:@)gk) = oW, (1), W.(t) standard real

Brownian motion.

It is interesting to put this result in complex notation. When 6 ¢ {0, 7}:

5 [nt] .
\/;Z e M = oW.(t) (8)
k=1

W, (1) is a standard complex Brownian motion: Re(W,.(?)) and Im(W,()) are two
independent standard Brownian motions. Now, we extend this result for a sequence
0, converging to 6. For the sake of simplicity, we will express our result in the space
C'[0,1]: this is the reason why additional terms appear in the statistics introduced
below; of course, all these terms vanish asymptotically.

Remark 2 For two frequencies 01 and 0y € |0, 7[, 01 # 0y, we have the stronger
result:
2 [ Y e ey, Wi(t)
— . =0 s 9
\/; ( Zgi]l e th02¢, W2(t) (9)
The two Brownian motions W' are W? independent.

The main tool used in the paper is:



Theorem 7 Let 0,, € |0, 7| be a sequence converging to 0, and such as n(6, —0) —
—o0 if 0 =7, nb, — +oo if = 0. We define

[nt] [nt]
2
Sn(t,0,) = \/; > cos(kly)ex, Y sin(kO, )y

k=1 k=1

Let T,.(t,0,) denote the continuous function defined on [0,1], by linear interpola-
tion of [Sp(k/n,0,)),_o - Then under He, T,,(t,0,) = oW(t),W(t) standard

.....

2-dimensional Browman motion.

Proof: see the appendix.ll

Note that this result do not suppose that 6,, converges rapidly to #,and that the
limiting distribution is the same as in the case 8,, = 6 for all n. In complex notation,
this result takes the form:

[nt]
\[ Z “kOng = oW,(t) (10)

We omit the asymptotically negligible term \/% <€7ik9[nt]+1€[nt]+1> (nt — [nt]), as we
will do for the presentation of similar results in the sequel.
The case § = m being quite similar to 8 = 0, we suppose from now on, that

6 €)0,7].

3.2 Case 2: X,

Let H denote the joined hypotheses [H.,Hy,d > 1]. We now introduce the finite
Fourier transform of the observations (X;), <hn'

[n?]

1
Z e "X, fort €10,1] and w € [0,7]

f

Jx (w,1)

We omit the dependance upon n of Jx (w,t) in order to shorten the notations. We
also abbreviate Jx (w) = Jx (w,1) and Ix (w,t) = |Jx (w,t)]Q where Iy (w) is the
standard periodogram, Iy (w) = |Jx (w)]Q.

Following Phillips and Solo (1992), we have:

X, =Cx(B)sy = Cx (e ™) e — (1 — € B) Cx(w, B)g; thus:

Jx (w,t) =Cx(e ™). (w,t) — \/Lﬁ M (1 — e B) Cy(w, B)e ks,
=Cy (efiw)l]:[s (w7t) — % [ *W[m]C)(( ,B)ai[mg] CX(CU,B)é?o}
= Cx (e ™) J. (w,t) + Ry, (w,t)

with Rn (w,t) =L [e’i“’[”t]C’X(w, B)g[nt] - CX(W,B>€0}

n

Define ¢ (w,t) = Cx(w, B)epy = X277, Y 7 (Zi:}) elkwg[nt]fk) = Y5 e

9



Since uznlls = 71,° 0%, ||z (w, )5 < 0 3250, V7 [¥5] < oo, we obtain:
E (]5 (w, t)]2> =0 (%) uniformly in w and ¢. The second term in R,, (w,t) verifies the
same property, then: & (]Rn (w, t)]2> =0 (%) uniformly in w and t. It yields that:

E |Ly (6,,1) — Q—ZL (0n,1) f (6)

g

1
=0 <7ﬁ> uniformly in ¢ (11)
For t = 1, this is the classical result which can be found in Priestley (1988).
Moreover, unless (g;) is a white noise, the bound O (nfl/ 2) is the best possible in
(11).
We now adopt the notation 8, = 6 + e ! (n) with |e(n)| — +o0

Theorem 8 Under H:
i) If f(0) =0 and e(n) = o (n'/?) then, for each ty €0,1] :

ioC (0,e7%
G(H)JX (Qn, to) = %Wc(to) (12>
If moreover e(n) = o (n'/*) then
i0C (9, e’i(g) ,
it) If f(0) #0 and e(n) = o(n) for @ =m:
oC (e’w) )
JIx (0,,1) = Twc(t) in C'0,1] (14)
Proof:
If f(0) =0, then Vz € [0,7], C (e ™) = — (1 — @) Cx(0,e ™) thus:
— 1 — 00 il B (0, 1)
_e(n)JX (Qn,t) = — <9—79n> Cx(9,€ )Js (Qn,t)—l-ﬁ

. 1_ei(0—0n)
Since Qn - 8, I

2
E <
first part of statement 7) is proved.
We now want to obtain a stronger result. More precisely, we claim that:

— —i and Cx(0,e ") — Cx(0,e ™) by continuity. Lastly

Rn(0n,t)
0—0n

soif -6, =o0 (\/Lﬁ), Rgfgé:t) o uniformly in ¢, and the

_Cc
= n(0—6,)’

R, (0,1
sup M 20 (15)
tepo,| 0 —0n
Since Y, = sup Rnfggnn’t) ng?i% % %{f)q classical manipulations yields:

P(Y,>2s) <P (> |Cx(0n, B)ex| > rﬁ)

< P (S5, |Ox (00, BeePTICx (00, B)eal? > 5] > Fiz5)
< P(J, > ¢

10



with 3 = “EL ST [Cx (0, BT ||Cx (0, B)ail” > 555
In view of the proof of theorem 2, we only have to prove that E(J,) — 0.

E(J,) < Z\/E (ICx (0, B)zil )\/P <10X(9n,3) > ;EZO

|Cx (0n, Bexlly < D270 la(d, 0n)] len—sll,
< ON0la (G 0)] £ O30 (00 10l < o

e2(n) n 2 —2 4
Hence E (J,) < C20 s [(ﬁ) E (|Cx (0n, B)=x] )1

and E (J,,) < C’e;(z) = 0(1) since ||Cx(0,, B)ey||, is bounded, and (15) follows.
It is then easily seen that the continuous function R} (6,,?) obtained by the linear
E@nt)| P
0—6 :

n

n also satisfies sup
te[0,1]

Since v2J. (O, t) + % ( “ kg, t]+1> (nt — [nt]) = oW.(t), we finally obtain:

interpolation of R, (0, £);_o

.....

Jx (0,,1) ioC (0,e7%)
XD b () = ——— LW
AN o
where a,, (1) = m (em™misigpy4) (nt — [nt]) + R’i((g\’;’—t()(:';:()en’t)
and (13) immediately follows, since sup |a, (t)| = o, (1).

te[0,1]

Now suppose that f () # 0. Then Jx (0,,,t) = C (e*i9”> J. (0,,1)+ R, (0,,t) with

sup |Ry (0,,1)] Zo. Thus, with the only requirement that e(n) = o (n) when 6 = 7,
te[0,1]

we get (14).

|

Remark 3 When 0,, =0 for all n, we have, as a simple application of theorem 7 ;
oC (e’i‘g)
V2

In the results (13), (14) and (16), it will be convenient to say that W, is the
Brownian motion associated to X,
From these results, we can now deduce our statistics of interest. T'wo applications

Jx (0,t) = W.(t) if 0 £ 7, 0C (e )W, (1) if =7 (16)

of the continuous mapping theorem yield, when f(0) = 0:

e If e(n) = o (n'/*): |
sup e(n)Jx (On,t) = o |Cx (0,e77)|/ V2% sup |[W. ()|

te[0,1] te[0,1]

¢2(n) sup Tx (0,1) = 0% [Cx (0,7)|" /2% swp (WO (17)

te[0,1] tel0,1]

Note that [W,.(t)| is a Bessel process of order 2.

11



o Ife(n) =o(n'/?

le(n)| Jx (0n,1) = iocC (0, ) W,(1), and:

2

¢’ (n)Lx (0n) = 0 |Cx (0, )" x* (2)/ 2 (18)

4 Test of the hypothesis: f(6) =0

The hypothesis H is supposed to be satisfied, with d > 2.

4.1 Definition of the test statistics

We, first, must be more specific about the hypotheses to be tested. Indeed, when
fu(0) = 0, the limit laws which appear in (17) and (18) are degenerate, and we are
faced once again with the problem raised in the introduction. Hence, we define the
following null hypothesis:

Hy: f(0) =0, /®(0) #0 (19)

Note that Hy can also be written as: f(0) =0, f,(0) # 0.

The statistics defined by (17) and (18) depend on the nuisance parameter oC (9, e”ﬂ).
Irom (6) and (7), this parameter depends only on f, (6). If the u; could be observable,
the tests statistics might be defined as:

e?(n) sup Ix (0n,k/n)

n 2(n)Ix (0,
g =" e = S ) (20)
fu(0) Jfu(0)
m is a consistent estimator of f,(#). The limit laws of these statistics are

0
K (0) sup ]WC(t)]2 and K (0) x% (2) respectively, with K (0) = 4rsin?0 if 0 # =,
te[0,1]

K (m) = 7 if § = 7. Note that these results are valid once e(n) = o (n'/?) for &, and
e(n) = o (n'/*) for &.

Unfortunately, u; can’t be exactly recovered from X;. Indeed, following Gregoir
(1999), we define for any temporal series (7;), the series of cumulated sums at fre-
quency w [S; (Z,w)],.y in the following way

S (Zw) =Y 22U LR 54 S gandw #£ 7

S (Z,7) =30 Zre TR if ¢ > 0

It is easily seen that:

(1 —2cosdB + B%) S, (X,0) = X,
Si (X, 0) = uy — UO% —I—u,1% ifw#m (21)

Sy (X, ) = uy — ug cos (7t)

12



S; (X, 0) includes some deterministic components® with stochastic oscillations around
frequency 6. Thus, estimation of f,(#) from S, (X,0) with usual methods is not
satisfactory in that case.

As in the case where ug and u_; are constant, we propose to perform, for 6 # 7,
a regression of S; (X, 0) on sinf (t + 1) and sin 0t for t = 1,...n, and then collect the
residuals 2y, of this regression. For 6 = 7, there is only one regressor: cos .
Let Ju (w,1) be the Fourier transform of the sequence (tUgyn),c,c,. It is clear that

Jz (0,t) =0, and, for w; =0 + QZJ,j ooy, =11, .om, and m = o (n):
Lemma 9 ||J; (w;,t) — Ju (w;,8)]|, = O (E) uniformly in t.

Proof: we assume that 6 # 7, the proof being identical for § = 7. For ease of
exposition, we write de regression model in its complex form:

Se (X, 0) = uy + ae™ 4 ae ™
with a € Hx. The matrix representation of this model is written as:
Let ﬂ (a, a and ﬂ = (ap,a,) the OLS estimator. U, = (U, - - - ,ﬂn,n)/ =U, —
Ja (w t) T
B (w,0) = Bu(wt) =~ (1 220 T (A (0 -0 {3 (0.0) ~ 2L, 007}
+ An (=0 —w) {3, (0,7) - 22 @% 0.0})

But ||J, (0,t)]], = O (1) uniformly in ¢ since u, is PND. Hence:

(w, ) \/— Egn]l e " [ty n — up), and some easy calculations yield:

130 (@,8) = 3u (@0l < = (C1 |8 (0 - )] + 3 1A, (0 + )

Since A, (0 —w;) = 0 for j # 0 and |0 +w;| < 20 + %Tm < m for n large enough
(0 € )0, 7] by assumption), the result follows from (3).
[ |

Remark 4 If we use Jsx (w,t) instead of Iy (w;,t), we have the less precise bound:

1 Jsx (wj, t) — J (wj,t)H2 =0 (\/Lﬁ) uniformly in t.

4.2 Convergence of the test

In this part we study the behavior of both statistics & and & under two distinct
alternative schemes:

th 2 f(0)#0 (22)

H, = f(0)=07.00)=0

0 is a root of order two of f under Hy, and of order four under H,,.

3in the precise sense of the Wold decomposition.
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4.2.1 The periodogram under H,

First, suppose that 8 # w. Under H, let S; (X, 0) = Y; and let }//;; denote the process
obtained after the regression detailed in the previous part. For each ¢ > 2 :

(1—QCOSQB+BQ>}Q:Xt

and Y; is clearly not (asymptotically) stationary, since the autoregressive component
admits the pair of complex unit roots (ew,e*w). We now recall in a lemma the
asymptotic behavior of Iy (w).

Lemma 10 Under H,, and j fized integer:

i) 2 = op(1) fw#0
i) Ly (0+20) = =52 O (e7) fy e 2 W, (1)dt if 0 # 7

= 0Cx (e7™) fol e MW, (L)dt if 0 =7

Proof: see the appendix .l
We deduce:

1

Iy (@) =Ty (@) =4 (1= 2800) o (A, (0 - w) {Iy (0) - 22T (0)§
LA (=0 - w) {W — Aoy, (9)}) = o,(n) if w #£ 0

Forw=w; =0+ 2%3 and j # 0, we get, since A, <—m> =0:

n

Iy (@) =Ty (@) + 3 (1+0(1) x An (—20 = Z1) {T, 0) + 0, (1)}
= Jy (w;) + O, (1)

The term O, (1) is uniform in j. It means that %J{, (w;) and %Jy (w;) have the same
limit. On the other hand, the fact that Jy (¢) = 0 is not very attractive under H,,

—

because we want to obtain the divergence to infinity of some spectral estimator fy (6).
This is the reason why we introduce the following quantity:

Jy (w,t) =Ty (w,t) fw#0
= b ity =9, 0 e]0,1]
and I (w) = [T} (@)

We expect this slightly minor correction to improve finite sample performance of the
test under the alternative H,, by making the divergence to infinity of fy (6) faster.

4.2.2 A spectral density estimator

A general class of spectral density estimator are Daniell’s estimators, that is, for

0 € 0, 7] (see e.g. Brilinger (1981)):

FO) = %520 WinsL (0+0;) i£0 ¢ {0,7}

J——

FO) = 50 | 225 Wans1(0 +05) /[Z;L Wm,g} if 0 € {0, 7}

14



with 6 = %ST("), 0; = Zi s(n) = ["—9}, m = o(n) ; the positive weights W,

n ’ 21

satisfy the constraints Wy, ; = W, (—j), ZTzimW m,; = 1 and Zj,fm W2, — 0
when n T co. The asymptotic behavior of T 0+ 0, is much easier to handle under

H,, so we use a slightly modified estimator, with uniform weights:

m

— 1 1 2
f*(Q)Z%XQerl‘Z ]I*<8+ ﬂj) (23)

It is implicitly assumed in the sequel that d > 2 in Hy, and m = o (n).

Lemma 11 Under Hy and H;, f*(0) is consistent, whereas under H,, it diverges to
+00.

Proof: see the appendix.ll
We can now state the main result of this part which gives the asymptotic properties
of the statistics under thz alternatives hypotheses.

Theorem 12 i) Under Hy: if d > 2 and e(n) = o (n'/?) for &, e(n) = o (n'/*) for
2

2
&, then (e(’;ﬁb)) x & and (%) x &8 both converge to a non degenerate law. In
particular, if 0 € |0, 7|:
2
[W.(1)]
Jo [W.(t)| dt

2
<e?n)> x &P = 45sin” (0)
i) Under H,: if d > 4, |e(n)]® = o () and e(n) = o (n'/*) for &, e(n) = o (n'/®)
for &, then &8 and £ diverge to +oo.

Proof: see the appendix .l
Suppose for example that e(n) = n* and m = n” (a, 8 < 1). The conditions in 7)

and i) are fulfilled for & if & < min (}1, 1 25 ) If we are concerned only with the test

of Hy against H, we may take m = n*? in order to minimize the mean square error
of the spectral estimator (Priestley (1988)).

An asymptotic and consistent test with nominal size « for the hypothesis Hy
against the multiple alternative H,U H; is provided by the following critical region,
where i € {p, s} :

Wi (o, ap) = {5; < cal} U {5; > cl,m}with a1+ ay =, and ¢, (resp. ¢1_g,) 1s
the quantile of order o (resp. 1 — ay ) for the limit law of £°.

We conclude this section by some qualitative considerations about the choice of

the sequence e (n). From the previous results, we have, under Hy :

()3 (62) = i0Cs (0.6 ) 3. 02) = 0, (i + 2 24

The convergence of e (n)Jx (0,) to iocCx (9, e”ﬂ) W.(t) (and therefore the conver-
gence of & to its limit) depends on e (n) in two opposite contributions:

15



- The term 1 /e (n) measures the quality of the (non stochastic) approximation of

f(0) by f(0n).

- The term e (n) //n measures the stochastic error made by approximating e (n) Jx (6,)
by e (n) Cx (e7) J. (0,)

Observe that mi:r)l ( Loy e(n)) =n Y4 and the minimum is attained when

e(n) = Vn
e(n) = n'/*. Now, in order to improve the finite sample properties of the test, we

have to decrease the magnitude of the residual term in (24): this is the subject of the
following part.

1/4

4.3 The case ¢(n) =o0(n)

The main idea is to develop the residual term R, (w,t) under Hp and then modify
£¥ in order to allow the improvement e (n) = o(y/n), and under stronger regularity
assumptions, e (n) = O (n).

Remember that R, (w,t) = ——= [e" MY, ({,w) =V, (0,w)] with Y, ({,w) = Cx(w, B)sjuy

|

Lemma 13 i) If fx is C* on R, or if we suppose that [Hy,d > 2], then:
Yo (t,60,) — Yo (L,0) =0, (1) uniformly int

it) If fx is C° on R, then Y, (t,60,) — Y, (1,6) = O, (ﬁ) uniformly in t.

Proof: see the appendix .l
Suppose now that 6 # 7. We define:

an (t) = Yo (1,0,) — Y, (1,0)

Both quantities are o, (1). Let u, = D(@, B)s, be the real process introduced in
lemma 5, which satisfies:

X, = (1 — 2cosB —I—BQ> Uy
We have:

Ve iR, (O, t) =—ay (t) + eWnlntly (0) + (1 — efieB) [u[m] — uoew“[m]}

bn(t)

and for 9,, = 0:
VneMp, 0,t) = (1 — efieB) [u[m] — uoew[m]}
But under Hy, R, (6,t) = Jx (0,1), thus:

\/ﬁRn (9n7t> _ \/ﬁez‘(efen)[nt]JX (9775) — efz‘e[nt]bn (t) + (1 _ efz‘eB> o [ez‘(efen)[nt] . 1}
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We know (see lemma 9) that it is possible to build from S; (X, 8) 1 < j < n, estimators
of ug and u_1, g, and @ such as:

. 1 o 1
Ug,y, = Up + O, <%> U, =u_1+ O <7ﬁ>

Define now:

) 1
T (0n) = Ix (0n) — " "Iy (0) — —=

v [em(e—en) _ 1} % [%\n _ e*w@}
Similarly, for @ = 7, we have with u, = Cx (0, B)s, such as Xy = (1 + B) u:

. 1
T (0) = Jx (0n) — ™0 (0) — —=

[em(ef@n) . 1} v %\m
n

Theorem 14 i) If e(n) = O(y/n) and fx is C*, J% (6,) — Cx (e ") I. (6,) =

o ()

i) Ife(n) =nfl, He[1/2,1] and fx is C°:

J% (0n) — Cx (e7") I (0) = O, <1>

T

Proof: i) follows immediately from the preceding discussion. For i), lemma 13

yields

Ty (0n) = Cx (€77%) Je (0n) = 750y (7w) + Op () = Oy (3;) since H 212
|

The theorem yields clearly the convergence:

10C (9, e’w)
V2

and, more interestingly, when assumption i) is fulfilled:

e(n)dx (0n) = W.(1) (25)

e (n) Iy (0,) —ioCx (0,¢) J. (6,) = O, <niH + n11H> =0, <nl%> (26)

If we compare this result to (24), we see that the order of magnitude of the residual
term is now O, (%) for H =1/2, instead of O, (#) when one uses Jx (0,) with

the ”optimal” choice e (n) = n'/*. Of course, this result is still valid for 6 = .

e2(n)|J% (6n 2
M under H,.

We now examine &8 =
Ju(0)

Theorem 15 i)If fx is C* on R, then under H,, e (n) = \/n, m = o(n):

Sﬁ* = Op <l>
n

i1) With the hypothesis fx C° on R, e(n)=n", H € [1/2 1], m = o(n), we get:
& =0y (m)-
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Under hypothesis ii) with H = 1/2, the statistic diverges at rate 1 /n, which
is, as expected, very slow compared to the statistic &2 with e (n) = n'/*". Indeed,

2
theorem 12, part ii) shows that & = O, (e n)) =0, (n—\l/ﬁ) .

n

Proof: We give details for the case 6 # 7 only. First, J% (6,) = O, (1). Indeed,
Jx (0,) and Jx (0) are O, (1), thus:

1 N e — 2
T (00) = 0y (1) = = [ — 1] x [ — e 7]

Next, @g,, and @ diverge, since, if Y; is a non-stationary process such as:
(1 —2cos0B + B?)Y, = X;, we have with the notations used in lemma 9:

a, = Vn (1 _ w> - y (JY (0) B An(—29)m>

mn n n n

and from lemma 10:

g, = o () /lw (t)dt (27)
NG ’ T 2\2sind o
Next: @, = —2Rea,, and @ = —2cosf Rea, — 2sinf Ima,, so:

U'O,n —€ U 1n
N

Therefore J% (0,) = O, (1). The conclusion follows from theorem 12, part ii) which
is insensitive to the choice of the sequence e (n).

= —2isinfe YL,

4.4 The case e(n)=n

We adopt in this part a somewhat different approach. Indeed, we examine the behav-
ior of the periodogram when 6, = 6 + t/e (n) is considered as a function of ¢, which
will be supposed to lie in [—27, 27 (it could be possible to suppose t € [u,v] without
modifying the results). We assume now that ¢, converges more quickly to ¢ than in
the previous sections, that is n = O [e (n)].

Theorem 16 Define the following element of C [—27,27]: Gy (0,1) = v/2J. (9 + ﬁ .
Under H., H.:

i) Gn(0,.) = oL, (0,.) in law in C |—2m, 27|, the law of L. (0,.) doesn’t depend on 6.
it) If n =o0le(n)] and if 0 #0 and 7 then L. (0,.) = W, (1)

iii) If e (n) =n and 0 € |0, 7|, L. (6,1) is a complex gaussian stationary process with

N——

covariance function r (h) = QSin,Eh) - 42'Sin2(hh/2), When 0 = 0 or w, L. is stationary,
whereas RelL. and ImIL. are gaussian and not stationary.
iv) If 0 is another frequency such as 0 # £60 mod. :

! !

G, (0,.),Gy (5, )} = [LC 0,.),L, (5, )} , and L. (5, ) is independent of L. (0, .)

18



Proof: see the appendix .l
From the continuous mapping theorem, if e (n) converges very quickly to infinity,

sup  |J. (9 + ﬁ) —Jen (9)‘ = 0 : this situation is not interesting for our pur-
te[—2m,2m|

pose, because there is clearly nothing to be gained by considering such frequencies

0,. The non-trivial case is e (n) = n, and from now on, we maintain this assumption.
We also assume that f is C°.

Now suppose that 6 ¢ {0, 7} and fx (#) = 0. Once more, we exploit the residual
term:

R, (w) = L [e 7Y, (w) — Yo (w)] withY,, (w) = Cx(w, B)z,

\/7
) =Y, (0) =0, (). Now, if 6 # 7 we define:

n
Irom lemma (13), Y, (On) —
an (t) = Yo (0nt)—Yn (0), an (1) = Yo (0n)—Yo (0) and the real process u,, = D(0, B)sy,

such as:
X, = (1 — 2cos 6B —I—BQ> Uy
Vet Ry (04) =—ay (1) + €y, (0) + (1 — e B) [u, — uge™"™]
b (t)
sup by, (t)] = O, (2) and for 0, =0, \/ne™ R, () = (1 — e “B) [u, — upe™] .
But under Hy, R, (6) = Jx (), thus:

VAR (00s) = VRO (6) = P9y 1)+ (1 7 B) [0 —
With en,t =04+ %:
VB (0ug) — Ve T (0) = b, (1) + e — 1] x [0 — ]

and b, (t) = —ay, (t) + e™ea, (0)
Estimators of uy and u_1, U, and @ 1, previously discussed satisfy:

. 1 J— 1
U = Ug + Op <%> ;U1 = U1 + Op <\/—ﬁ>

Let the "corrected” Fourier transform be:

T (0ns) = Tx (0ns) — e "Jx (0) — NG [e7" = 1] % [to, — e “u_q,] (28)
J% (0n0) = 0 and:
ndx (On.¢) = nCx (efwn’ﬁ Je (One) + \/‘ﬁ@*mebn (1)
+le =1 % v/n [uon —uo— € ¥ (W10 —u_y)]
Chn

We know that:

3, (0)+ 0, (+)

n
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and g, = —2Rea,, and @ = —2cosfRea, — 2sinfIma,, Thus:
— y T . . — 5 1
N [Uo,n — g —e ¥ (u,l’n — u,l)} = —2isinfe “J, (0) + O, <5>

with Ju (0) = D (0,¢ ) 3. (0,40, () and D (0,6 ) = = (1= e 27) " Cx (0,6 )
Lastly, nCx (e’w“vt) =n (e’it/" — 1) Cx (9, e’w“vt) converge to —itC'y (9, e’w)
uniformly in ¢.
From the continuous mapping theorem and theorem (16) we get:

V2

with V gaussian complex process defined by:

nJy (Ont) = Cx (9, efw) V(1) (29)

V(1) = —itL. (0,t) + [1 — e "] L. (6,0) (30)

If r (h) is the covariance function of L. (1), we note that:
E|V (£)] = 2Re [it [l — e #]r (1)} + {11 —eitp? +t2}7~ (0)
and then:

E[V(t)]2 =4(1—cost) (1l —2cost) + 912

We remark that:

nJy (0n)=10Cx (0,6 7) I (Ony)—[e ™ = 1] C = O, <%> +0, <\/Lﬁ> =0y <\/Lﬁ>

The order of the "residual” term is then 1 / \/ﬁ
Now suppose that fx (0) >0 (and 6 ¢ {0,7}).

J% (0n) = Cx (e77*) Jc (0ny) — 1 /n x e *Cx (%) I (0)
+1/y/n x e b, (1) + e — 1] x 1 /y/n X [ton —ug— e ™ (U1, —u_1)]

sup |J% (0n4)] < sup ‘C’X (e*w”ﬂ Je (Qn,t)‘ + C'|J. (0)]

0<t<1 0<t<1

10, (737) + 2 o —wo— e ¥ (W 1n —u 1)

(27) and theorem (16) imply that sup J% (0n:) = O, (1).
0<t<1

From the preceding developments, it is natural to introduce the following stochas-
tic function:

_ 0+l

() = ——

fu(0)

We summarize our results in the following theorem:

~P

Theorem 17 If fx is C° on R, m = o(n), then under H,, ¢, (t) = 4msin2 0|V (1))?
and under H, EZ (1) =0,(1).
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This result, although mterestlng from a theoretical point of view, does not di-
rectly provide a test of Hy since 5 (1) does not diverge under H,. But it is in fact
straightforward to define an asymptotic consistent test, which moreover avoids the
calculation of 4y and %_;. We proceed as follows. Under Hy, from (29) and (30), we

T

obtain the limiting distribution of the slope of J% between ¢ — Z and 0 + =

n Ty (0+2) =I5 (0-2)| = —%CX (0, ) [L. (0,7) — L. (6, ~m)] (31)
The proof of theorem 16 shows that for all 6 € |0, 7]:
L.(0,7)—L,(0,—m) ~ N, (0,4)
It yields |L. (0, 27) — L. (6, —2%)]2 = 2x, (2). Now, it is easily seen that:
* T * T — E — — z
B (04 2) =B (0= 7) =3 (04 7) ~ 0 (=)
Under H, we obtain the convergence:
B O 0=8) =0n (L) O (4 )0+ 0 ()
=[COx (e7mm) = Ox (e )] 3. (0

~ ~/

O(n—1)

+Cx (e ) 5. (Oue) — I (B 5)] + O, (%)
= (Cy (e*w) [LC (Q, 7T) - L, (67 _7T>]

We define the following statistic:

I 045) -3 0=
[m%@l]

The numerator of £ has been studied among the preceding lines. We now have to
study the behavior of the denominator. It is clear that:
P

-1
Under Hy : fx(6) & 0 and f,(0) = f.(0) > 0 thus [fX(e) + £,(0) 11 = 1.0)

Under H, : f/X@ SN fx(60) >0 and m £ 0 thus:

P

-1
e ———1
EURSPUN IO

Hence, we get (the case 0 € {0, 7} identical):

Theorem 18 If fx is C° on R, m = o(n), then:

Under Hy :
£ = 83 sin® Oy, (2) if 0 €10, 7| (32)
§n = 2mx, (2) if 0 € {0, 7}
Under Hy, :
&
= 4/ (0, (2) (33
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By replacing the term = by 2%, we may also consider the following statistic:

}(0+2) =B 0= _ ol (0+2) =T (0= F)]
0+ 0| 0+ 0|

2
Ss** — n
n

It is straightforward to check that, for 6 € |0, 7|, under Hy, £ = 1672 sin® 0y, (2)
and under Hy, En”—g = 8 f2(0)x, (2). This statistic is designed to accommodate for
non-zero intercepts in the process Xy, as it will be seen later.

5 A test free of nuisance parameter
It is indeed very easy to derive such a test, through a slight extension of theorem 7.

Theorem 19 If en,én € 10, 7| are two sequences converging to 0, 0, = 0 + e '(n),
0, =0+ ¢ ' (n) and such as Vn, 0, # 0,,, and:
either e(n) = o(n) and €(n) = ole (n)].
either e(n) = e (n)[1 + A\, with A, = 0(1) and €(n) = o (nA )

/
We define S,(t,0,) = \/% (ELM]1 exp(ikby)eg, S exp(ikd,,)z ) and T,(t,0,) the
1].

(k0
appropriate interpolation of S, (t,0,) which belongs to C |0,
() two independent complex

Then To(t,0,) = 0 (Wey(t), Wea(t)) . Wey(t) are W, ot

Brownian motions.

Proof: see the appendix .l
Suppose now that H is fulfilled with d > 2. Under Hy and conditions

e(n)=o <n1/2> ,E(n)=o <n1/2>

we get easily, as in theorem 8&:

e?(n)Ix ({n) N o? ‘C’X (0,e7%) ‘2)( 2) (34)
#e (0) ) 7\ %[0 (0.0 ) X2
The chi-square are indépendent from the preceding theorem.

2
We then deduce (Z(TZ;) Ejg:; = % = Fy, Fisher distribution with (2,2) de-

grees of freedom.
This law has no expectation. For that reason, we prefer state the result in the fol-

= \/Fa (35)

The c.d.fofy/Fy2is, for x > 0, F(x . An asymptotic test with size o of Hy ()
against H, is:

lowing form:

TL

TL
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Wi () ={&,, (s) > c1_o}with ¢34 = 4 /1?70‘ quantile of order 1 — « for the law /F5 9

The test is consistent since e(n) = o (e(n)) and under Hy:

Iy,

thus &7 (s) 2 +oo.

We note that E. /59 = 5 and var /I = 00. &, (s) does not admit (asymptotically)

moments of order > 1. As a consequence, under Hy, outliers are likely to occur more

often with & than with &8 &7 £P*.

One possible choice is e(n) = % (¢ < %) and e(n) = %, C and C constant
Suppose now 0 € 0, 7[, and e (n) = n, € (n) = /n. From (25), (31) and theorem

19: .
< Vil (0,) > _, i0C (0,e*) < W.(1) >
n|Ix (0+7) = Ix (0= 7)] V2 V2rW.(1)
with Tic (0) = Ix (9 + %) T (0) — & [ VA 1] X o
and v27W,.(1) = [L. (0, 7) — L, (0, —7)]. From the continuous mapping theorem:

gz*zﬁ‘JX <9+%>_JX (8_%” :>\/§7r\/m
% (0n)] |

A consistent test of Hy against H, with size « is then:

Wn<a>={s:;*<s>> 1““}

«

6 Extensions and applications

6.1 Non-zero mean processes

Suppose now that we observe the process Y; = Re (ce™") + X instead of X;, where
X, is the zero-mean process considered previously and v some known? frequency in
[0, 7]. In other words, we include a ”seasonal” intercept to the dynamic of X;. We
know (see Brillinger (1981)) that a preliminary regression of Y; on cos (vt) and sin (vt)
provides an estimate of ¢, ¢ such as:

e Under Hy, c—c=0,(1/n)ifv=0,ifv#£60,c—c=0,(1/y/n) and ¢ is

asymptotically normal.

e Under H,, ¢— ¢ =0, (1 /y/n) and ¢ is asymptotically normal.

4We do not adress here the problem which occurs when 8, is not known, and therefore must be
estimated.
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Note that we can not test the hypothesis ¢ = 0 when v = 6 with standard
techniques. Let X; be the residual of this regression, and d = ¢:

~
~

c—c d—d
= \/ﬁAn(u—w)—l— NG

To save space, we only consider the tests &8 and £;".

Ay (v +w) (36)

o Test &8 R
Iy =0, we gt [Tx (0n) = Jg (0)] < 2 x e () + 122 x 0 1)
So under Hy, e (n) [Ty (6n) = Jg (6n)] = O (552)
and under Hy, [J]X (0,) —J% (Qn)} =0, e(:)
If v # 0, we get [Tx (0.) — Jg (0,)| = Z2 x 0 (1) + ’dgg’ % O(1)
So under H, ¢ (n) [Ix (6n) = Jg (0n)] = O (432
and under Hy, [J]X (0n) —J5 (Qn)} =0, (%)
e limit of the numerator of £ is not affected

We see that if e (n) = 0(\/_), th
by the replacement of X; by

o Test £
Suppose first v # 6. N
Let Jo =Jx (0+2) = Jx (0 = %) and J, = Iz (0 + %) - J (0 - &)
To — Ty —b—fb (A, (QNH%) — A, (0—v—2)]
Now, {rom (3), J, — J, = O (%) under Hy and H,. Thus:
n [Jn —A{n} = O, (1) under Hy (37)
J,

O, (%) under H,

Now, if v = 6, one obtains simply J,, = j]\; because A, (%r) =A, (——) =0

It follows that the limit of the numerator of £;" is not affected by the replacement
of X; by )?t if v = 0. However, when v # 0, nothing can be said from (37). But
fortunately, applying the operator (1 — 2 cosvB + B?) to Y} solves the problem®, and
do not affect our test, thanks to its local properties.

We turn now to the denominator of &8 and £;**. For a stationary process around
deterministic terms, a classical result asserts that filtering deterministic components
by running preliminary OLS leaves the limiting properties of spectral estimators un-
changed (see e.g Priestley (1988)). But we must verify that this result is still valid

when the cumulated series is involved, for the calculation of m under Hy.

Lemma 20 Under Hy, m is still a consistent estimator of f,(0) if X; is replaced
by Xt

°In this case, we can also test the hypothesis ¢ = 0 by standard methods.
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Proof: see the appendix.ll

As a conclusion, once the process has been properly filtered, the seasonal intercept
at frequency 0 is, at least asymptotically, without effect on our test statistics. This
result could be extended to more complex deterministic terms (linear and quadratic
seasonal at the frequency ), but this will not be done here. By contrast, this result is
invalidated when linear terms at a frequency 67 # 6 remain in the data. However, this
situation can be handled in a simple way for the generic case where this component

takes the form:
P

dy = Z ()\ktk cos (011) + pit" sin (9175)>

k=0

where typically P =0 or 1 and 6, is known. Because (1 — 2cos1 B + BQ)PJrl dy =0,
it suffices to difference the series as much as necessary to get rid of the influence of
these terms. Of course, this does not affect the tests for the frequency 6.

6.2 Testing the null of stationarity against seasonal unit-
roots alternatives

The model is the following®:

Yo =3 [(aucostl, + b,sintd,) + t (a, costd, + b, sintf,)] + X,

0uCF
[] (1—2cosb,B+ BQ)d" X =& (38)

0 EF
F'is a finite part of |0, 7], and we make the following assumptions:

H, :d, € {0,1} for 0, €]0,7|,d, € {0,1/2} for 6, € {0, 7}
H, : &, is a stationary ARMA process with stricly positive spectrum at frequencies 6, € F.

Model (38) allows for quite different seasonal representations, deterministic or stochas-
tic, slowly changing or highly unstable. Moreover, it has the desirable property that
the parameters of deterministic components keep the same meaning whatever the
value of d,, is: this property is not shared by the model considered by Engle et aliz
(1990). The hypothesis H; means that integrated process of order two at some fre-
quency 8, € F' are excluded. Now, the problem at hand is the identification of d,,, or
more precisely, to decide between d,, = 0 and d,, = 1.
Let 0,, be fixed. We define the operators:

zhB)= [[ (1-2cos0,B+ B’
0ucF—{0ug}
Z% (B) = (1 —2cosb,,B + B?)
We get immediately:

Zno (B)Yy = Zy (B) |(auy cos tyy + by, sintf,,) +t (a;o cos th,, + b;o sin t&uO)} +7Z, (B) X;

SImplicitely, b, = b; = 0 when 6, =0 or .
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Z: (B)Z, (B)Y; =27, (B) (a;o [cos t0,, — cos (t — 2) O,,) + b, [sint0,, — sin (¢ — 2) Ouo))
+ 7y (B) 7y, (B) X4

and the filtered variable:

0uEF—{0uo}

X, = Zgo (B) Z&O (B)X: = (
(1 —2cosb,, B+ BQ)lfd“O £t

(1—2cost,B+ BQ)Qd“> X

Testing d,,, = 0 against d,, = 1 is equivalent to:
I5 (0u,) = 0 against f5 (04,) >0 (39)
Note that the null hypothesis is stationarity at frequency 0,,. We remark that:

W, =27 (B) (a;o [cos t0,, — cos (t — 2) O] + by, [sint0,, — sin (¢ — 2) Ous))

U

=1,

! !

b,.) . The

for some known deterministic vector T; and unknown coeflicients 8 = (auo, o

test procedure is then:
e Run a preliminary regression of Z2 (B) Z. (B)Y; on T;.

e (et the residual of this regression, and then perform the test of nullity of the
spectrum at frequency 0, .

Moreover, it is clear that the test-statistics associated with two distinct frequen-
cies, 6, and 0, are asymptotically independent, because the Brownian motions which
occur in their respective limit law are themselves independent.

Remark 5 Note that these tests are robust to the presence of conditional heteroskedas-
ticity in &, a result which does not seem to have been established for Dickey-Fuller or
Phillips-Perron tests (see Phillips and Perron (1988)). Indeed, to the knowledge of
the author, the assumption of mixing which is needed to find the limiting distribution
of these tests is lacking for GARCH processes.

6.3 The case 6§ unknown

Even if our main goal is to test wether the spectrum vanishes at seasonal frequencies,
it may be interesting to consider the situation where 6 is not known in advance. The
problem becomes now:

Hy:inf f (w) =0

H,:inf f (w) >0

We define 6 = inf {w € [0, 7], f (w) = inf f}. Unfortunately, the tests developed in
this paper are not directly helpful to achieve this task. Consider for example our first

test statistic:
& (0) = GQ(HE)L(%)
fu(0)
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Though &P () is a continuous function of #, this is not the case for its limit law £ (6)
since:

01 # 0y = &7 (01) is independent of £ (6)

This means that the periodogram fails to provide global information relative to the
spectrum. As an illustration of this well-known result, let us consider the statistic:

. Q19
€ = inf Iy <ﬂ>
0<j<[n/2] n

It converges to zero, even when fx (w) is strictly positive everywhere. In the simplest

case Xy = & 1.1.d N (0,1) the variables %]IX (2—Z?> are 1.1.d following a y, distribution.

Then:

P (5; >z) = e 3214 and P (nfz > ) — e”i, thus & = O, (1).
The strategy is then to get an estimate 0 of 0 and to plug it into our test statistics.

Here, we follow Miiller and Prewitt ((1992)). We suppose’ that &; is gaussian iid,

Hj is satisfied with d = 4, f® (0) > 0 and 6 € |0, 7[. This last hypothesis is rather

unsatisfactory, but is needed to overcome the discontinuity which arises at the points

0 and 7 for the limit law.

Then from Miiller and Prewitt ((1992)), one gets®

0) Lo

0) 5 N (e, 0?)

Under Hy : n¥ (60—
Under H,, : n? (06—

We do not need to be more specific about 5, and the parameter (¢, 02). We just recall
that 6 is the arg-min of some well-defined kernel estimator of f. We introduce a slight
modification of this estimator (remember that 6 € [0, 7]):

0 = max <§, 1> if§<g,§*:min <§,7T—i> ifgz

ns nd

S

where 6 € }0, %[ will be fixed latter. Now suppose that the sample (X;),.,., has
been split into two parts: the first part, for » running from 1 to m,, is devoted to the
estimation of #; the second part is used to the calculation of the tests statistics with
6 in place of . We take m,, = [n /2] . Obviously, ¢ is independent from ¢, for j > m,,
and this fact allows us to replace 6 by 0 without affecting the limiting distribution of
the statistic:

Ix (5* + e(n)*l)
Iy (5* + g(n)*l)

e(n)

é(n)

"The assumption about &; are not the weakest possible.

¥We should mention the method proposed by (Newton and Pagano (1983)) for the estimation of
periods associated with peaks in the spectrum. But their methodology is not valid for our problem,
because it consists in estimating extrema of an autoregressive approximation of the spectrum, and
we know that such approximation is not valid under Hy.
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where we set e(n) = "—Cf (b<(< %) and é(n) = %2(6 < Z < (), C and C constant, and
Ix is the periodogram from observations X,, ;1 to X,, . We suppose that hypothesis
H, with d > 2 are fulfilled.

Theorem 21 Under Hy, we have &, = \/Fb9, whereas under H,, & diverge to 400

Proof: We use the notations of theorem 19. Set 0, = 0 + e(n)™! and En =

0 + é(n)~!. The martingale difference array is now uy,j = o, xcx with:

acos (O,k) + bsin (6,k) + ccos (Enk:) + dsin (Enk:)

) U\/ZZanrl E [a cos (0,k) + bsin (6,k) + ccos (Enk:) + dsin (Enk:)} i

Let yn g = acos (O,k) + bsin (0,k) + ccos (gnk:) + d sin (gnk:)
We must prove that Zzzmn 41 uik £ 1. Let us show that

2—|—62—|—2—|—d2
S E@L) ~ (40)

k=mn+1
We write yfbk = Wpx + Znk
with: w,x = [acos (0,k) + bsin (0,k)]” + [c cos ( ) + dsin ( )}
and z,; = 2 [acos (0,k) + bsin (0,k)] [c cos (Enk‘) + dsin (an‘)
)

E> Y way = (d? —62){ — 1Ecos[(—_1)9 ] Siiﬁ(_%i’ﬁ %WQZ)Q

1
Y n 1 3n sm( Gn)
c d?) {4 Ecos 10, } a(0,)

+abBsin[(% ~1)0,] S;f;f?f’s) +edBsin (% - 1)0,] 2E

+ 5d?

But e(n) ' =0 (n"?), s0 in"? < 0 + e(n)™! < —3n° for n large enough, so we
get:

o~k 1
sin (9 + e(n)fl)‘ > sin 5717‘5 >Cn?

and then |cos [(n + 1) 6,] % < C'n’. Now,
El w —1<a2—|—62—|—02—d2) :()(n‘sfl)
n mET g

It yields I |3 375y wnp| — 5 (a + 0%+ ¢? — d?)

Let’s examine a generic term of + Ek 1 Znk

%E Zkzo cos (0,k) cos (an‘)‘ < Sin<@> + Sin<@>
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The second term has been treated in the proof of theorem 19: indeed, it does not

depend on the value of 0. As for the first term we use the same argument as before
because: N
e(n) 1 +en)t=o0(n?),so %n*‘s < [en;rgn] <7-

we obtaln:

A

n~? for n large enough. Finally,

N =

and (40) is proved.

Now, S a2, —1 = Zem Ul PP poge g2 2 g2
y 2 ik=mp+1 Un.k = 2D S Y . nk = Yn kCk Ynk

E (Ezzanrl Zzb,k ’fmn> = Zzzmnﬂ L <Zzb,k ’fmn>

= St (Vhaet = ot (By2,)")
Note that |y, x| < 1, so we get (E:Zmnﬂ Zg,k ]fmn> = O (n), and by the law of
iterated expectations, F/ (E:Zmnﬂ Zik) = O (n). Finally,

2
u 1

E § 2 - =0 =
k=mn—+1

b d
It yields > 1 nk £ 1. Note now that |Un 1| < \/‘ag: :‘JL‘E@‘/) lex] < % ||

and fax |tni| = 0p (1).

We finally get:

S 1 €08 (0.k) N,
2| T | (N
\/ﬁ Ek Mp+1 cos 8 k 2 N3

> k., 41 COS O,k Ny

with N; 1.1.d standard normal. Then:

(e )= (8

Now, from (11) with ¢t =1: E‘ (n)Ix (Q ) 2”]1 (0n)e(n)f (6 ‘ =0 (1) and
e(n)f(0,) = e(n)f 0 + e(n)™! f ?is continuous on R. So we get, for some
constant C' > 0: ‘f (@ +e(n 1) f ( ) (9 )‘ < Ce(n) ? and:

o) (0) = ef (77) =1 (7')] < Cetn

Now, under Hy, | f ( ) < c'lo -0 , SO we get:

e(m)f (62) ~ 1 (7")

~0 (e(n)*l +e(n) ‘@" - 9‘)

We see now that:

e(n)‘@*_g‘:26(n)‘§*_9‘+0><e(n)><1(§<n_15)_|_0/Xe(n)xl(§>ﬂ_n_15)
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By 6 — 0 =o, (n’%), we get e(n) ‘5* — 9‘ =0, (1) and:

by continuity of f" The treatment of quantities involving 0, is similar. The desired
result follows immediately.
P HX(§*+e(n)*1)

Under H,, f(0,) — f(0), then W

e(n)
é(n)
|

converges in distribution. Since

— +o00, £, diverges.

7 Conclusion

This paper presents results related to the behavior of the finite Fourier transform
of a sample extracted from a stationary time series. Building upon functional limit
theorems, one can easily derive statistics of the hypothesis that the spectral density
vanishes for some given frequency. The interest of this method is three-fold. The
calculation of all statistics is quite simple with standard asymptotic distribution,
the case of unknown frequency can be dealt with, and lastly the method leaves the
possibility to handle series which are only locally regular: this point is currently under
investigation, and partial results indicate for instance that we may get an estimate
of the fractional degree of differencing for long memory processes. The drawbacks of
the approach developed in this paper are classical when dealing with non-parametric
methods: estimators converge rather slowly, and tests are sub-optimal once the model
has been plugged into a parametric framework.
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8 Appendix

8.1 Proof of lemma 1

Let us consider the complex stationary process Y; = e “'X,. Y, is PND, and its
spectral density is fy (w) = f(w+0). Let ¢ > 0 such as |§ —<,0+2[ C V(0). we

have:

B . in(aj) ) f(a:) ) O+e ]a: . 8’1+Oé .
R e iy S = Ll A e

Let m = inf {sin2 ([x—10]/2),z € |[-m,7]\|0 —=,0 — 5]} > 0. From |siny| > % |y
for all |y| < e:

™ O0-+¢
]I(X,@)Sml/ f(a:)da:—l—C// |z — 0]* ' dx < o0
-7 0

—&

because f is integrable and « > 0.
Thus the function ¢ (w) = (1 — e*i“’)fl belongs to Ly ([—m, 7], fydy). From the

spectral representation® of Y;, we define a stationary process by:

Vo= [ etpwaz )
moreover, this process belongs to Hy and verifies:
Y, =Yi—Yiq (41)

We proceed to show that }N/t € Hy (1) = { ,7 < t}. Classically, we consider:

th=2< >YHeHy<>

It is clear that: )

et et m < e et T sin?(mw

Vi = Vo= 550, Ve thus B (Vi = V) = Wmmﬁw<ﬂ%w+mm
Let H (w) = |@ (w)|* f (w+6). Pour w| < e, H(w) < Clw|*

From a well known argument, and the integrability of H we get:

/“ me)dw:f AU/ 2) ) o+ 0(1)

_r sin? (w/2) w?

ffs sinQ(:r;w/Q)H (w) do <2 fs sinQ(Srm;)/Q)dw — Om2—© Oms S;DQ(m)da?
< Cm?>@ [C + [ ]

&

°Zy (w) is the process with orthogonal increments (P.O.1) associated to Y.
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But [ =0 (m*?) ifa>2
=0(1) fa<?2
=0O(logm) ifa=2

Thus, in all cases f:r %H (w)dw = O (M* +logm), so:

E (}N/tm —}2)2 =0 <mo‘ + logm> =o(1)

m?2

and the result follosz.
Now, write Y; = €?'Y;. We have X; = ¢“'Y; which can be written:
X, =(1-¢éB)Y,

Y, € Hy (t) C Hy (¢) (42)

Suppose that 6 ¢ {0,7}. Let us consider the stationary process Z; = Y, with

spectral density. f7 () = Z(S‘;)];QGG) . The argument used previously gives
f:r .fQZ((m) dx < 0o and we obtain a result analogous to (?7):
T sin x/2)

3 Z, stationary process such as Z; = Z.— 7, and Z, € Hy (t) C Hy () C Hx (1).
Next, we get: R
}/t — esztZt = uy — efzeutil

with v, = efwtz. Irom (?7) we obtain:
Xe=(1—-¢"B) (1—¢“B)us = (1 —2cos0B + B*) uy (43)

(tt),cz 1s a complex process verifying u, € Hx (t). But it is easily seen that u, is
real. Indeed, let 7, and Zx be the POI associated with u; and X respectively. Then
(43) yields:
dZ, (w) = (1 — 2cos 0™ + %) ' dZy (w) and dZ, (w) = dZ, (—w) which means that
uy 18 real.

Now, (42) when 0 € {0, 7}, and (43) when 0 ¢ {0, 7}, yields the desired result.
Let’s now turn to the unicity of u;. If v; is another solution, let d; = u; — ;.

(1 — 2cos0B + B?)d; = 0, thus A stochastic variable such as d; = Ae™".
Both w; and v; belong to Hx (t), and d; € Hx (t), so:

A=e"d; ﬁ Hy (t) = {0}

t=—o00

because X; 1s PND.
|

8.2 Proof of lemma 3

Firstly, we remark that log f (w) = %ao + 327 ase™, the (as),so being the Fourier
development of log ¥ (w) = log (Z;io \Iljeij“’) . Notice that the convergence involved
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here is both pointwise and in quadratic mean because log f is continuous. From the
hypothesis, this function is C?, so we get from standard results

v

. 1 iht _ (_1)p " iht ® 34 _ —p
an = o qe log f (t)dt = - qe (log f ()™ dt = .o(h™?)

Suppose now for example that f® admits no derivative at o and 7. By integrating
by part on [—m, —a], [—,a], [a, 7] we obtain the bound a; = O (h7?71) .
Next, U’ (2) = U (2) (3.7 g as2®) and ¥, = L S0 kay, ¥, pour n > 1. We set now,
for 1 <a<pC(a,m)=sup{0<j<m, (14 75%|¥;|}. C(,m) is increasing with
m. Letxe}g,l[.
a C(a,n—1)(1+4n“ kla
(L) [B] < SRS
MC(pn—1)

e D DR e
with M = sup (h**1]as|) . Hence:

MC(a,n— 1)(1+no‘)

(14+n%) |0, < Zk 1m+zk [nw1+1m
MC(a,n— 1)(1+n“) [n*] n—[n?]
< - T T e
. (14n*)p> 1 (14n%)
< MC (Oéan 1) |:(17([nz]/n)a) + [n®]P

For some integer Ny, the expression between brackets is an o (1) for all n > Ny:
(14 n%)|T,| < MC’(a n—1)x 1 =C(a,n—1),and C(a,n) = C(a,n—1)
for n > Ny. It yields ¥,, = O (n O‘) and the lemma follows for all d € |0, v — 1].
|

8.3 Proof of theorem 7
Let (a,b) € R? be fixed. We define u, ; = ,, x&;, with:

0,k bsin (6, k
Tnp = @ 0s (0nk) + bsin (Onk) and Ui’k = Var(un )

o/ h (acos (0,k) + bsin (0,k))’

Let vy = 22:1 Ung, and Yy, (8) = vp ey + (1t — [0t]) tn g1

Now we show that Y, () converge weakly to a standard Brownian motion. Indeed,
(un k) 1s a martingale difference array adapted to the filtration () and

S var (u, ) = 1. We proceed to the following steps:

P
DY uik — 1
n 9 _ Yroi(acos(0nk)+bsin(0nk)? (3—02) YR 2 % g2
Zk 1Unp = 4 = 0237 (acos(Onk)+bsin(0nk))? T ooy e, y?L with 7 = 02 ’
Ynp = G COS (an‘) + bsin (6,k). From the trigonometrical identities:

n

S cos(0,k) = 5 — 5 cos [(n+1)0, sin (n)

— sin (6,,)
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3

sin (0,k) cos(0,k) = % sin[(n+1)6,] sin (n0y,)

— sin (6,,)
we get [Yp y2, — (a® — b)) 2 4+ nb?| < m and:
n 2 12
n ’ 2 n |sin (0,,)]

k=1

When 6 ¢ {0,7}. From the convergence of 8, to # # 0 and 7, the term in
the right hand side of the inequality is O(n" ') and Y7, yn’k & +b n .When
0 =7, nsin(f,) ~ —n (0, — ) — 400, and for § = 0, nsin(f,,) ~ n& — 400
by assumption. Thus, in all cases:

yn,k 9
k=1

Now, we get:
g —o0p =g —0" =37 ¢ (sf ;—0%). Define n, = &} — 07 and ¥ (z) =
L= ¢

b= 0 () (2~ o)

Because ¥ is square-summable, and doesn’t vanish in the unit disk:
s — o’ =V (B)n,

We set U1 (2) = Z;io d;z? for a sequence (d;) satisfying Z;io |d;| < oco. By
assumption, (1;,Fx) is a m.d.s. It is easily seen that its moments up to order 2
are bounded: o7 = 0% + 377 ¢ (7, — 0?), and:

[o?]], < o +Z’Ck’ lee x5 +0%) < o0
k=1

- (1 - Z !cd) (Z !%!) sup B (=7)

k=1

4

sup & (Ut < and sup (nf) < o0

Now, let A, = >, | yn’ka.

A, = Zk lynk |:Z] 0 i1 ]:|
EA% = EZ,U:l yn,uyn,v Ejfk:ufv djdkEnzfg)
= ZZ,U:l y?l,uyzb,v E‘ij;ma,x(ufv,()) djdj*IH“UEnifj)

But yfbu < (' and En? < (), so:

n 0 0 2
EA2 <D u (Z !djdju!> <n (Z !de>
u=1 i=u 7=0
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and finally we get:

2
. EA2 1
E 2 - -
(Zunk 1) <C—r=0 <n>
k=1
the result follows from Chebychev’s inegality.

lim Lm]l o =Lforalltel01].

n——moo

2
ynk

Eklnk

aQ+b2

From o7 , the result is obvious since Ek VYo~ S [t

max |uny| — In probability.
1<k<n n—o00

Indeed, |unx| < Ms < Tgk Classically, for all 6 > 0 we have:
P <max |tn| > (5> <P <max

\/ Ek 1 nk
£k §
=K > =
1<k< 1<k<n | VP C>

<P (% 22:15%11 [5% > g—Zn} > 2—22) =P (Jn > 2—22)

with J, = %22:1 Hl [5% > &2 n} An application of Cauchy-Schwartz’s and

Chebychev’s inegality yields:

E(J) <535 VE(s)

<oy, A %

52
C?

l—|
|—|

and then J, LA 0.
The hypotheses for the functional central limit theorem are fulfilled (Davidson

(1994)), so we get:

Yo (t) = B(t) with B(¢) standard Brownian motion (44)

n— 00

~1/2
(42) can be written (E:Zl yik> (@n) Yo(t) = B(t),0r

n—o0

ay/2 [0 =i cos (K0,) + (nt = [nt]) cos ((nt] + 1) 0n) sy ] +
b\f [ M -, sin (k6,,) + (nt — [nt]) sin (|nt] +1)9ng[m]+1} = o\/a? 1 0B(t)
In a more compact form:

(a,b) T (t,0,) = oVa? + 0?B(t) = o {aB1(t) + bB2 ()}

where By (t) and By(t) are two independent Brownian motions, the equality
defined in the sense of distributions over the space C (0,1). From the Cramer-
Wold device, it yields the convergence of T, (¢,60,) to (B1(t), By (t))/ .

[

35



8.4 Proof of lemma 10

The proof follows quite classical arguments. We begin with the following function:
Wo (w,t) = V2Ix (w,t) = Cp (w, ) + 1S, (w, 1) , (w, 1) € [-7, 7] x [0,1]

We saw that W, (0,¢) + \/ﬁf«b(\t) = oCy (e*w) W, (1); the convergence is achieved for
all 6 € [0, 7], and the limit may be degenerate in case f(6) = 0. Moreover:

<\/gsin 9) Yy = sin[(t + 1)0] C» <9, %) — cos [(t +1)6] S, <9, %)

(\/%sin Q) S Yie e =15 LC,(0,5) —iS, (0,5)} eik(efw)} it
5[ G (0.5) 8. (0. ) e M i

or, in complex form:

Qﬁzin(G)JY (w) _ _i¢i9 [% 22:1 W, (_ 7%)6%(9%)}
e[S W, (0. 5) 0]

Irom the proposition 8 of Jeganathan (1991) we have

1 — k .
=3 W (0,= ) e ) = o,(1
n r— < ) TL> € Op( )

for all w € [0, 7], and

n

1 k ,
- —0. = th(0-w) _ 1
- E W, < ’n> e 0,(1)

k=1

for all w € [0, 7] \ {6} . It is easy to verify that we have also:
by (j) = = znjw 0.5 ) e mers) _ o )

uniformly in j for some integer j being fixed. Moreover:

1 K\ pemi 2w~ [k o
= W, <9, —> gty V2 > T, <—> = oC (e / XYY, (t)dt
[ 1 [ [ 1 [ 0

But % S T, (£)| < V2 sup jfn(?)‘ £ 0, so we get:
te[0,1]
1 & k\ pemi B
- Z Wol —0,— e = aCy (e ) e "W, (t)dt
"4 " 0

W, (1) is also a complex standard Brownian motion.
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When 6 =7, (1+ B)Y; = X; and \/%Yt = cos (tm) Cy, <7T, %), hence:

S e

n —

, 1
Z C, <7T, E) e~ V2T, (t) = V20Cx (e7) / e TN, (t)dt.
n 0

k=1

8.5 Proof of lemma 11
We define the "theoretical” (i.e. non feasible) estimator of f,(6):

m

—— 1 1 27y
0) = — L,16+—
=5 2 garrh (04 7)

We first prove that this estimator is consistent under Hy. We follow Brockwell and
Davis (1986) and adapt the proof to the presence of conditional heteroskedasticity
By assumption d > 2,377 k |b(k,0)| < oo, so f, is C* and:

L
Vn
The bound is uniform in w. It yields:

f/(a) =o* Erfm 2m+1]I <9+27U>fu (94-2”) +0, )
=0’ Erfm 2m+1]I (8 + 27ry> [fu (8 + 2%) — Ju (9)
02 S el (04 20) 12 0) + 05 ()
J(0) = Ain+ Ay fu (0) + Oy (%) say.

fu being C1, sup ‘fu (Q + 2—;”) — fu (8)‘ <Cm soE(A,) =0 (%) For the second
J

27

E ]Iu (w) - E]Is (w) fu (w) =0

AN
%y

[E——

J——

term, we work with the martingale representation of f(#):

. 2m]
0% Mg = ZT*fm smyile (0 + ) = PO B B cazpe @ D)
S —i(a— 2mj i(a— 27 n
= (2m+1)n ijfm ELKb 25451 {e ( b)(9+.n ) + e( b)(9+ T ) + % Ea:l 52
= (2mil)n ET:fm E?,a<b 25a5b COS [(8 + Q—;U> (CL — b)} —+ % 22:1 gg
m n b1 e "
= G o {1 25 Vi sacos [(04+ 22) (a = D)) f + £ 300, 2

We get:

n -1 m . n
AQ’n :m Z&bz Zm {€aCOS <8—|— 2%> (CL— b)} —I—%Z&g

b=1 a=1 j=— a=1

>

Dn,
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Let n, = mxgb 22;11 4 Z {cos l<8 + ﬂ) (a — b)} }; 7, is am.d.s. adapted

. n
- .
Vab
to the filtration Fy, so:
C n
ED? = ———— E E (n?
Ton2(2m+1)° — ()

1
Thus, by the Cauchy-Schwartz’s inequality: E(n?) < +/E (5%)\/1[3 (22;11 5aVa,b)
We can write:

Vap =cosbl(a—b) V., —sinb (a —b) V,,

with Vi, =377 | cos [(60+ Z2)a] and V,, = > asin [(6+ Z2) a].
We get:

b1 4
E (Z gavab> < CE (7, + 7},)
a=1

with 71, = 22;11 £aVeo and Zop = 22;11 £4Vs,a, martingale sequences for the filtra-
tion [Fy; from Burkholder’s inequality we have:

b 2
EZ{, < CE (Z ggvc?a>
a=1

2
and B}, < CB (S0, &2V2) = CS, Y Bk VA2

a—1~a’c,a c,a’ c,h

2
I b b ' b
<C Za:l Zh:1 V?a‘/?h =C (Za:l V(:Qa)
by an application of Cauchy-Schwarz’s inequality, and the fact that moments of order
four of g; are bounded. This result can be written as:

1 n b b
o0 (s {3 (300 ) + (02 1)
=1 =1 a=1
1 n n
=0 {3 )
Observe now that |V, 4| + |Vsa| < 2 ‘Am (%)‘ :

nE) e

2wa>‘2

n

or:

n

1
2
0130553

a=1

The following lemma deals with the asymptotic behavior of > " | ‘Am (

Lemma 22 > | |A,, (2£2) ‘2 = O (mnlogm)

n

3



Proof: z|A,, (z)| < 2 for z € |0, 7], and similarly:
(2w — x) |Ap (x)] < 2 for x € |7, 27|

We dGCOHlpOSG Za 1 ‘A <27m> ‘2 = (Zn/m + Za n—n/m ZZLQn/m + EZ;://;n) ‘A <27I'a> ‘2
The first two terms are handled by bounding ‘A <2m> ‘ by m?. For the third term,

we have:
n/2 ora n/2 n/2 n/2
> A, (22 > /WGQ_ ¢ 3 Grm= cnmz/_

But Zn? (ll ~ logn — log (%) = logm. The fourth term is treated in a similar

way: e
n—n/m ora n—n/m _9 n—n/m 1
) Am<7> <oy (1) som Y L

a=n/2

n—n/m n/2
and Za n?Q n—a Zain/m é
|
Irom (43), we get:

a=n/2 a=n/2

logm
1Dull, = 0 (\/ = )

it yields D,, = o, (1), and, in the same way of the proof given for theorem 7:

n
1 2 P 2
—g g, — 0
n

a—1

Finally:

0) 5 072 x 0% x f,(0) = f.(0)
We now define 0, = 0 + 2%

S~

Jg@ _/f\(Ag)‘ < % ZT:fm 2ml+1 ’J* (ejm) —J (ejm)’ X ’J* (gj,n) +J (ej,n)’
|70 =70, <=5 g 130 0500 = 36,0,
(13 @511, + 13 65,1,

(1 - —) |J (0 )H; =0 (%) For the other

The term associated to 7 =0 is

2m+1 n2o
terms, lemma 9 provides the bound m
lo
From 377, m < 22T we get:

17070, -0 (2) w

and then Jﬁ@ SR fu(0). In particular, under H;, we just add the additional hypoth-
esis f,(0) = 0, and the consistency of f*(#) yields f*(0) o
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Under H,: Jﬁ@ 27r(2m+1)]1*( n) = mﬂy(& + 2”) with the notations used
Iy (6+2%)

previously. We know that — 5%~ converge to a non degenerate law L, say. Let’s
fix o >0. P (J(0) < )SP@ﬂ9+%)<%mm%§Pﬁﬂﬂ9+%y<%@»

2mam

But by assumption =-5* — 0, and L., doesn’t put any mass at the origin. It yields
P (f/(y) < a) — 0 and the result follows.

8.6 Proof of theorem 12
We begin with the H; scheme:

A (0:) | 1.(0)
L0 e2n) 1.(0)

with X; = (1 — 2cos @ + BQ)QUt and f,(0) # 0, uz = (1 — 2cos 6 + B?) v

By a similar argument the one used to define &7 :

% = Lo if e(n) = 0 (n'/*) (47)

Let ek,n =0 + %

E[Lw) =Y (1-4) 76

lil<n

BLW) - L@ <X 990+ X 106) = o(2) wiformly in w, because

7] <n [7]>n

d > 2 implies 7, (j) = O (j7?)
E (I,(w)) = fulw) + o <%> uniformly in w

B (£.00)) = £(0)] = 0 (2) + srziry X a1 (01) = £ (6)]
We know already that | f, (0kn) — fu(0)] = O (%) uniformly in k.
Hence E (ﬁ(&)) =0 (%) and by the assumptions for e (n):

B (X(n)1(0)) =0 (1)

It yields e2(n) fu(6) ©

From (44), | fz(0) = Ju(0 >H1 o (iz) so mfi(e) £ 0

From f,(0) > 0 #(;3/@ — 400 and & — +o0o. The argument for & is identi-
cal, with the more stringent restriction e(n) = o (nl/ 8) for (45) and Ix(0,) replaced

by sup Ix (6,,%). This concludes the proof of point ii).
t€[0,1]
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We turn now to the proof of point 7). Phillips (1991) has already studied the be-
havior of spectral density estimator at zero frequency for an integrated process in a
somewhat different context. For the sake of clarity and completeness, we provide a
different proof of the result, valid for all §. We build upon lemma (10), and assume
0 < 7 (the case § = 7 is similar). We set wj =0+ i

SO, () = |2 S W (=0,2) e W52 [ 4o+ 2 Re {55 50, Wi (—0,2) (5}
sin? n ) LN

: nQ(Q)]IY (wj) = ‘% D Wa (=0, 5) e - ‘ T op (1) + fony

E;nzl R, ; < 2sup ’bn,j’ X % 22:1 ‘Wn <_97 %)‘ = 0p (1) x O, (m) = Op (m)

The same argument yields E;’il |br, j]2 = 0, (m) . Now:

_ ZW < > 727rzg— / W -0 t) 727rzgtdt

=i Joom { n (=0, 5) e72miin — W, (=0,1) G*W} di
an,jr <SS i (W (0. 2) = W (=0,0)] + e

Gril < S0, f(k/n { sup W, (—0,u) =W, (—0,v)|+ sup |W, (—0,1)] x ch} dt

27rzg oo 6727rijt

W, (—e,t)} dt

k—1)/n
)/ lu—v|<1/n 0<t<1

1
Gl < (—) T osup [ (—6,0)] x €™
mn mn

0<t<1
wp, (8) the modulus of continuity'® of W, (—6,.). We define W, (=0,t) =W, (—0,t)+
T, (t) the element of C'[0, 1] interpolated from W, (—0,t), with sup |1}, (t)| = o, (1),

0<t<1
and W, (6) its modulus of continuity. Obviously:

()-+()

and because W, (—0,.) is tight:
Ve,n >0, 36 > 0, ng such as P |w, (6) > n| < . Hence, for n large enough,

<2 sup ’Tn (t)’
0<t<1

P [cNun (%) > 7]] < ¢ because Wy, (.) is an increasing function. Thus, @, (%) =0, (1).
Irom sup |W, (—=0,t)] = O, (1), we get:
0<t<1
Gnj=0,(1)+ O, (%) = 0, (1) uniformly in j by assumption on m.
It yields:

2

w (—0,1) e ™t + H,

" 2
lE W, <_g E) Pl
n " n

k=1

with:
Hog < |Gugl x {1Gugl +2( 3 W (0, 5) e 5

< |G| X {]Gn,j] +4 sup |W, (-0, )]} =0, (1) unif. en j.
0<t<1

Jo W (=0,1) *mﬂtdt‘

)}

Vo, (6) = sup  |[Wy, (=0,2) — W, (=0,y)|
|z—y|<é
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So we have:

8 sin? (0) T T
—y 2 Irlwy) = >
=0

=0

2

1
/ Wy (=0,t) e *™'dt| + o, (m)
0

| 2 -
But | [ W, (—0,t) *mﬂtdt‘ = f f[01]2 W, (=0,0) W, (=0, v)e 27 dudu

Thus Z] 0

=(m+1) fo (W, (—0, )| du+ //?é Wy (—=0,u) Wy, (=0, 0) Ay 27 (u — )] dudv

>

JIW, (=0, 1) *mﬂtdt‘ = [ Wi (=0,u) Wy, (=0, 0) Ay 2 (u — v)] dudv

Knm

We have:

2
| K| < <sup ]Wn(—Q,t)]> X / | A1 [27 (u — v)]| dudv

0<t<1
UFv

Now, let 0 < 6 < 1 be fixed.

L / B et el dudo= ([ [] Y e ) duae

Irom (3), the second term is bounded by ff0<‘u ol<s 7 1 Ldudv = Cste. Now,
1 u+é6
Ioctuvies | Bman 27 (u = v)]| dudv < [ ( [ Ay 27 (u = )| dv) du
= fis |Ap1 (2m2)| dx
We know that this term is O (logm). Thus we get:
8 sin? (0) 1
85 0 S () = (m 4 1) / Wi (=0, 0)” du + O, (log m)
0

=0

n2

We obtain similarly 8sin’ (9) Z
and finally:

Iy (w;) = m fy [Wa (=0,0)[" du + Oy (logm)

j=—m
SSinQ(Q)f/@ /1]W (-0 )]2d Lo log m
- 7 — nl—0, u u - -
n? 0 PA\om+1
An application of the continuous mapping theorem yields:

8 sin? (0)

n2

7(0) = o®|Cx (¢ ) / W.()| dt (48)
The remaining point to check is the correction for deterministic components. But:
Jy (w;) = Iy (w;) + O, (1) uniformly in j

42



It yields:
I (w;) =TIy (w;) + Op (1) + 2Re {Jy (w;) x Op (1)}

But M 1Ty (w;)] < %22:1 ‘Wn (—9, %)‘ = O, (1) uniformly. in j.

Hence Iy (w;) / n? = Ty (w;)/n* + O, (n ') uniformly. in j and the estimator built
with Iy (w;) admits the same limit law than (46). In particular, the nullity of the
term associated with wg = 6 has no asymptotic incidence. The convergence of &
results from theorem (8), part ii) and the continuous mapping theorem.

8.7 Proof of lemma 13
Yo (£,0,) — Yo (£,0) = [Cx (0, B) — Cx (0, B)] 2y and:

2 U
K ’Yn (tu gn) - Yn (t, 8)’2 = g_ / ‘CX(ena eiiw) - CX<87 eiiw)‘Q dw
™ —T
From (4), |Cx (0n,e) = Cx(0,e7)] < 32370 22700 [ Wk (1 — €90
which is bounded by:
K J . 7(6—05) ) J K ) ) )
C> o Zj:l sin (T) “" (Ek:KH Zj:l + 2 ko Zj:JH + Zk:KJrl Ej:JJrl) 44
_ J 00 K 00 00 00
< CKJ2€ ! (M“'Zj:l Zk:j+K+1 ’qjk"l'zk:o Zj:k+]+1 ’\IJRH'ZR:KH Ej:]+k+1 ’lIJJ’

By assumption, ¥, = O <m7d> for d > 2. We then obtain the following bound:
CRe ' (m4C1 Y0 G+ K+ 1) O 3 (b + T+ 1) 30 (ke + 1)
or CKJ?%e ' (n)+CyJ(K+2) "™ + O K (J+2) "™ +Cy(J+ K +1) %

We set K = .J = [loge(n)]. With these values we obtain:

(Cx (0 e ) = Cx(0,,¢)| <O (%) Fo(l) = o(1)

uniformly in w. Hence:

E|Y, (t,0,) — Y, (t,0)]” = 0(1) and Y,, (t,0,) — Y, (t,0) = 0, (1) uniformly. in ¢.

If fis C°, then ¥, = O <m7d> for all d < 4, and we may proceed directly with the
classical bound ]ei‘” — 1 —z| < Cz for all real z:

Cx(One) = Cx (0,6 < (S50 S50 U= B)19,1) 10— 0,
< Ce (1) Yoo Sy 113 < Ce () S0 g b2

The last expression is O (e (n)) if d is chosen such as d > 3.
|

8.8 Proof of theorem 16

We write Gy, (.) in place of G, (6, .) in order to shorten the notations. We first proceed

with the convergence of the finite-dimensional distributions |G, (t1),...,Gn (tk)]/ for
=2 <t <1y < ... <t <27 If k=1, this is a consequence of theorem 3. If
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k=2 let 8, =0+1/e(n) and Q;L =0 + ly/e(n). The proof is similar to that used
for theorem 19. Let’s consider [S;L (t1), S, (t2)] =

’ n . ’ !
VE (i cos(Ouk)n, i sin(Onk)es, iy cos(0, k)=, 5y sin(0, k)=

For (a,b,c,d) € R* fixed, we define a martingale difference array u,; (already con-
sidered in theorem 19) by the expression:

acos (0,k) + bsin (0,k) + c cos (8;%) + dsin (8;%)

04/ 22:1 yik

and y, x = acos (0,k) + bsin (0,,k) + c cos (QLLk:) + dsin (QLLk:) )

Un,k = TnkEE with L,k =

We have to prove that Y ¢ ; unr = N(0,1). In order to show that » 7  u? , L]
and max ]unk] St 0 it is enough to prove that Y 7 lynk ~ Cn for some C' > 0

1<k<n
(see theorem 19).

yfbk = yfbyk’l+yi’k’2—|—2yn,k,1yn’k,2—l—2 (acos (0,k) + bsin (0,k)) (c cos (9;11:) + csin (Q;k‘))
with: ypx1 = acos (0,k) + bsin (0,k)and y, 2 = ccos (Q;k‘) + ¢sin (8;%)

We already proved that for 6 € 10, 7[, >, (yikl + yik2> ~ L;rc’?wn
Now, for 8 = 0, we have:

1 - 1 1 cos[(n+1)8,] sin[nd,,] sin[(n41)0,] sin[nd,]
n 22:1 yi,k,l =b+ (a2 - 62) 2 t3 (nns)in[Gn] - ) +ab (nns)in[en] -
12 2 32\ (1 | 1cos[(ntl)ts/e(n)]sin[nt; /e(n)] sin[(n+1)t /e(n) | sin[nty /e(n)]
b + (CL b ) + 2 nsinft1 /e(n)] ) + ab nsinfti /e(n)]

2

~a*ifn=ole(n)

-~ CL2 (% + sm[2t1]) + bQ (_ . Sl]jl[fltl]) € ab%ftll fn=c¢e (n)
and for # = 7, we have:

S h Vg ~ DPH(a® = 1) (% + %(71)“1 ws[(ntlzt;hﬁt(f/)e]((;)l])n Sin[ml/e(n)]) and the same

—

result.
Next, we get:

LSl o5 (Gnk) cos (9 k:) o(1) + L cos <n {9n92}> n(n )

2n

e n=ole(n)| and 0 € ]0, 7|

Ly oos (G,k) cos (9 k:) 0(1) + 2 cos <n Pn@ﬂ) n(nf’n;’n)

The second term converges to 1 /2 when n tends to infinity because n =

o(1). Similarly:
% ZZ;S sin (6,k) sin (Q;k,‘) =1+0(1)
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23 cos (0uk) sin (0,k) + 2 52713 sin (0uk) cos (0% ) = 0 (1)
Finally > 0, v2 5 ~ (MQQMQ +ac+ bd) X n.
The Central Limit Theorem for martingale difference sequences (Davidson (1994))

yields:

(a,b,c.d) [S, (1), S, (tQ)}’ = gyf(at e+ (b+d)N(0.1)

Define now L () = L N (0,Iy)and X = (L IL,/)/.

From the equality in distribution (a,b,c,d) X = \/(a + 0)2 + (b+ d)2 N(0,1),

we get:

! !

S, (1), 8, ()] = o (L1 (49)

nzo[e( )] and 6 € {0, 7}

2y g cos (0uk) cos (0,k) =2+ 0 (1)

2y g sin (0uk) sin (0,)) = o(1)

2y g cos (0uk) sin (0,k) + 2 523 sin (0uk) cos (0% ) =0 (1)
and Y yr . ~ (6> 4 ¢+ 2ac) X n
From (a,b,c,d) X = 1/2(a + ¢)> N (0, 1), we define:

2 (S cos(0uk)er, Shy cos(0yk)ee)

2 (S sin(Onk)ex, Shy sin(0k)ex )

N (0,1). It is easy to verify that:

> B

!

S5 (1), 55 (12)] =

[Sn (1)75( 2)]
and L (1) =

5

—

|||p~

[Se (1), S5 ()] = ov2 (L,L)
[ (t1) , Sy (82)] =0
and point i) is proved.
e(n) =nand 6 € |0, 7]
2ijocosgk‘cos 9 ) o(1) + %
2 Zk Osln 9 k: sm (9 ) 1 sm(t1 )
QER o cos (O,k)sin (6

2 25 Osln (0,k) cos (9; + tg
and then Y ;. y2, ~v (a,b,c,d) X & with:

) t1—1o
’ 2sin? (ﬁ;tz)
n 1) t1 tQ
(1)

k
k

N’ N

4sin? ( b ;tg )
t1—1o

v(a,b,c,d) =a®+ b+ % +d? + [ac + bd] X w + [bc — ad] %
This can be written as:

b [ )5 )] > N

We now define [L (¢)]oc,c; = [L1 (¢) , Lo (t)]/ as a gaussian stationary bivariate
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EL (t)L (t + h) :
(51)

process with covariance function I' (h)
2sin?(h/2)
h € |—4m, 47|

sin(h)
r (h> = _gsing(h/Q) sin(h)
h h
) takes the value (1,0) for h = 0). Tt

sin(h) sin?(h/2)

h

(

(by a continuity argument ( W
is now clear that /
k(a,0,c,d) N (0,1) = (a,b,c,d) [L( t)’ ,L(@)’} . Hence,
S (1), 8, ()] = o [L(1) L () | (52)

o e(n)—nandQE{O 7}
2 Zk _o cos (O,k) cos ( ) o(1)+ Smt(lt:t;tg) + smt(lh t;z)
2 Zk o sin (0,k) sin ( ) =o(l)— Smt(ltjr;t?) + smt(lh t2t2)
251]1 (t1+t2) 2sin? ( 1 tQ)
(8 l{,‘) = t1+t22 tl,t;
) e
t1—1o

QEk o cos (O,k) sin
0(1) + t1-+t2

2 Ek _o sin (0,k) cos (9 k
Wlth the notations of the previous point:
) _ CL 1+ sm[2t1]) + bQ (1 . sm[2t1]) +2a bsm 2[t1]
sm(t1+t2):|
zl_tz)]

a,bc,d) =
‘I‘C (1 + sm[QtQ]) +d2 (1 _ sm[2t2] + 2 dsm [tg]
[ t1—12 t1+t2
i (—]—Zt +t 25in2( 3
t1—1to

+ac X sin(t — tg) + smt(tii»tg) + bd % sin(t1 — tg)
ﬁ;tz) 2sin? )
] + be % [ —

v

t1—
5 ) 251]12( 5
- t1—1to

(zlﬁz

+ad X -
We define now [L (t)]yc;c; = [L1 (2), Lo (t)]/ bivariate non stationary gaussian
process with covariance functlon [ (t1,19) = EL (t;) L (t2>/. It is easy to verify
a,b, c,d) [L (t)’ ,L(@)’} when

(

)

)

'

that \/k (a,b,¢,d) N (0, 1) b e,
sm(t1 to) sin(t1 +¢2) 25in2(¥) . 2Sin2(t1 tg)
T'(t1.t9) = 1 _ t1+ts t1—to
( 1) 2) 251]1 (% att ) QSiDQ(EJTtZ sin(t1—t2)  sin(t1+t2)
t1-+t2 t1—1t2 t1—t2 t1-+t2
The proof for & > 2 is omitted, because very similar. We turn now to tightness
of the sequence G,, (15).
G (1) = G (1) = /2 [, (e M0 at0) — e 0 ai))
. : 2
M@w%@mﬂz%ELéWﬁﬁﬂ%W%w
- ﬁ E: ( sin k‘té(nt)?
2 2
— 2n62(n) ’tl t2’ Zk:l k*=0 (eQ(n)) ’tl ’

because |sinz| < |z| for all z
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In the two cases under investigation, n = O [e (n)]. Hence, B|G, (t2) — G (tl)]2 <
Clty — t2]2 for some C' > 0. An appeal to theorem 12-3 of Billingsley (1968)
yields the desired result. The assertion ) of the theorem follows.
In complex notation, we get, when e (n) =n and 6 € |0, 7[:
Gy (t) = oL. (1) with L. (¢) = L; (¢) + iy (t) complex gaussian process with
covariance function:

sin (h) sin? (h /2)

r(h) = BILq (1) + Ly ()] [Ly (¢ + h) — iy (1 4 )] = 25528 — 472

. d

In particular, 7 (0) = 2 and G. (1) = W, (1).
. <92

When e(n) = n and 0 = 0 or m, 7 (t1,t2) = 2% +4iw =

7 (ty — t1): the complex process is stationary (with the same covariance function

as before), but non-gaussian: point #ii) is proved.
Proof of point iv) follows closely proof of theorem 19, by remarking that all the

terms % E?;& h(j6,)k (jgn) are o (1) with 2 (.),k(.) € {cos(.),sin(.)}.
|

8.9 Proof of theorem 19
We adopt the following representation for S, (t, 8, ):

/

[nt] [n?] [nt] [nt]
2 ~ ~
Sn(t,0,) = \/; Zcos(&nk‘)sk, Zsin(@nk‘)gk, Zcos(@nk‘)sk, Zsin(@nk‘)sk

k=1 k=1 k=1 k=1

By an argument routinely used in the previous results of this paper (see for example
theorem &), we fix (a,b,c,d) € R}, and we define:

acos (0,k) + bsin (0,k) + c cos (Enk:) + dsin (Enk:)

Unk = TnkCk with Tni =

g\/zzl [a cos (0,k) + bsin (6,k) + ccos (Enk‘) + dsin (/én/{,‘)i| 2

Let yn g = acos (O,k) + bsin (0,k) + ccos (gnk:) + d sin (gnk:) )
The key-argument in the proof of y 7 | uik 51

L, a2t d?
Z yn,i ~ 2

n

=1
Indeed, 37 . = Up 11 + Ui go + 2 acos (Onk) + bsin (0,k)] [c cos (@J{:) + dsin (5711{:)}
with: ypx1 = acos (0,k) + bsin (0,k) and y, 2 = ccos (Enk:) + dsin (Enk:)

i n 2 2 @’ b2t 4d?
From previous results, > 7 | (yn’kyl + yn’,ﬁ) ~ 5 n

Let’s examine the remainder terms:
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()= (o 8) S e (o22) S

9n+9n) ‘7 which O(1) if @ < 7. I 6 = 7, then:
1 + e(n)

D e(n)
e(n)

=0 (1) by assumption

The first term is bounded by

(v

Moreover, in all cases:
(n

Ife(n) =e(n)[l 4+ A\,] with A\, = 0(1) and €(n) = o (nA,), we immediately have:

sin

sin (9n+9n

1 _
) |1 _ o)
) =2 |y — &)

(1) x0(1) =o(1 ) if é(n) = ole(n)]

and then E:;é cos (0,k) cos (Enk:) = o(n).
The other cross-products in the second term appearing in yi . are handled in a similar
way. The last step is max |u, | — 0 which follows one more time from
1<k<n n—-:00
[t | < (al+[b|+]c|+|d])
= SV V2
We finally get:

e < 5= Jes]

(a,b,c,d)T,(t,0,) = ova?+ b2 + c2 + d2B(t)

with B(¢) standard Brownian motion, which is equivalent to the assertion of the
theorem.

8.10 Proof of lemma 20

Assume that 0 # 7, and let Jy- (w;,t) be the DFT calculated from the residual uf, of
the regression of S ()A( , Q) on sin 6 and sin (£ + 1) 6, which uses the residuals of the
first step regression )?t. We have only to prove that:

| T+ (wj,t) = Ja (wy, t)]|, = O (nil) uniformly in ¢

for w; = 2L |j| <m=o0(n).
We get after some calculations:

$i(X,0) = Si(X,0) = 2Re [E— ) S, (¢"",0)]

with

S ivt o 2iet ezt@ _ eztzx efzt(i' _ eztzx
t <€ s ) = — - — -

sinf | 1 — efv—"0) 1 — eivto)
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Let w, = uy — 2Re (€ — ¢) S¢ (e, 0)]. As in lemma 9:

o (W, 6)=Ju (w;, 1) = —% (1 - W) X <An (0 — w;) {Jw 00— 220y (9,t)}>

n? n
(53)
We consider only the case v = 0. Then S; (¢!, () = —2siptf

sin? 0

Jw (W, t) = Jy (w,t) =C xIm(c—c)[A, (0 +w)— A, (0 —w)]

Then ||Jy (w;,t) — Ju (wj,t)

( =C X |Im(¢—c¢)A, (04 w,)|l, = O (n ') under H.
This result and (?77?) yields:

[®
| (wy,t) = Ju (wy, )], = O (nﬂ)

8.11 Tabulation of sup |W,(¢)]
te0,1]

We consider X! = & with €. drawn independently in N (0,1) for t = 1,..., N, and

i = 1,..., N5, Ns being the number of simulated samples and N, the size of each

sample. Let Ig be a finite grid partitioning [0,1]: I = {Nip,j =0,1,... ,Np} :

The following approximation (in law) holds when N, is large enough:

Y, =sup ‘JX (%,t)‘ “ % sup |W.(¢)|. Therefore, the quantiles of sup |[W.(¢)| are
telg te[0,1] te[0,1]

obtained from the empirical law of the variables 2Y;2. If P <sup |W.(t) ]2 > cq_ a> =

telg
and ¢ o = ¢(Ng,a) = Fjgsl (1 — ) is the empirical quantile, we know that Iy, =

P <sup [W.(1)]* > ¢ (N,, a)> has expectation o and (approximately) variance 67, =

telg

w X h™?(¢y_,) where h(z) is the density of probability of sup ]WC(t)IQ. The
° te[0,1]

error on ¢, is then quantified by 7,. With Ny = 6000 and N, = 500, we obtain the

following table for both quantiles and their standard errors.

o |0.01]0.0250.05{0.10|0.15 | 0.50 | 0.85 | 0.90 | 0.95 | 0.975 | 0.99
Cloq | 997 | 838 | 7.01 | 5.65 | 4.97 | 1.537 | 2.46 | 0.87 | 0.64 | 0.41 | 0.19
014|020 0.15 | 0.10 | 0.07 | 0.06 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.04
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