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1. Executive summary 

This discussion document follows upon work led by the ACPR on Artificial Intelligence (AI) since 2018. 

In March 2019, after an initial report and a first public consultation, the ACPR launched, along with a 

few actors in the financial sector, exploratory works aiming to shed light on the issues of explainability 

and governance of AI ς mainly understood as Machine Learning (ML). Composed of meetings and 

technical workshops, they covered three topics: anti-money laundering and combating the financing 

of terrorism (AML-CFT), internal models (specifically credit scoring), and customer protection. Two 

focal areas emerged from those works, namely evaluation and governance of AI algorithms. 

Evaluation 

Four interdependent criteria for evaluating AI algorithms and tools in finance were identified: 

1. Appropriate data management is a fundamental issue for every algorithm, as both 
performance and regulatory compliance are conditional upon it. Ethical considerations, such 
as fairness of processing and the absence of discriminatory bias, have to be taken into account 
in this regard.  

2. Performance of an ML algorithm can be addressed using a variety of metrics. The range of 
metrics available is sufficient for assessing the accuracy of virtually any ML algorithm used in 
finance, according to both technical and functional criteria. It is however sometimes necessary 
to balance the selected criteria against the desired degree of explainability. 

3. Stability ŘŜǎŎǊƛōŜǎ Ƙƻǿ Ǌƻōǳǎǘ ŀƴŘ ǊŜǎƛƭƛŜƴǘ ŀƴ a[ ŀƭƎƻǊƛǘƘƳΩǎ behaviour turns out to be over 
its lifecycle. Due care must be taken to guarantee its generalizability to production data and to 
continuously monitor risks of model drift once deployed in production. 

4. Explainability, a close cousin of algorithmic transparency and interpretability, has to be put in 
ŎƻƴǘŜȄǘ ƛƴ ƻǊŘŜǊ ǘƻ ŘŜŦƛƴŜ ƛǘǎ ŀŎǘǳŀƭ ǇǳǊǇƻǎŜΦ ¢ƘŜ άŜȄǇƭŀƴŀǘƛƻƴέ ƻŦ ŀ ǎǇŜŎƛŦƛŎ ǊŜǎǳƭǘ ƻǊ ƻŦ ǘƘŜ 
ŀƭƎƻǊƛǘƘƳΩǎ behaviour may prove necessary for end users (whether customers or internal 
users); in other cases, it will serve those tasked with the compliance or governance of the 
algorithm. The provided explanation thus aims to either inform the customer, ensure the 
consistency of workflows wherein humans make decisions, or facilitate validation and 
monitoring of ML models. We therefore introduce four levels of explanation (observation, 
justification, approximation, and replication) in order to clarify the expectations in terms of 
explainability of AI in finance, depending on the targeted audience and the associated business 
risk. 

Governance 

Incorporating AI into business processes in finance inevitably impacts their governance. We 

ǊŜŎƻƳƳŜƴŘ ǘƻ ǇŀǊǘƛŎǳƭŀǊƭȅ ŦƻŎǳǎΣ ŀǎ ŜŀǊƭȅ ŀǎ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ŘŜǎƛƎƴ ǇƘŀǎŜΣ ƻƴ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ŀǎǇŜŎǘǎΦ 

Integration into business processes. Does the AI component fulfil a critical function, by dint of its 

operational role or of the associated compliance risk? Does the engineering process follow a well-

defined methodology throughout the ML lifecycle (from algorithmic design to monitoring in 

production), in the sense of reproducibility, quality assurance, architectural design, auditability, and 

automation?  

Human/algorithm interactions. Those can require a particular kind of explainability, intended either 

for internal operators who need to confƛǊƳ ƻǊ ǊŜƧŜŎǘ ŀƴ ŀƭƎƻǊƛǘƘƳΩǎ ƻǳǘǇǳǘΣ ƻǊ ŦƻǊ ŎǳǎǘƻƳŜǊǎ ǿƘƻ are 

entitled to understand the decisions impacting them or the commercial offers made to them. Besides, 

processes involving AI often leave room for human intervention, which is beneficial or even necessary, 

but also bears new risks. Such new risks include the introduction of biases into the explanation of an 
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ŀƭƎƻǊƛǘƘƳΩǎ ƻǳǘǇǳǘΣ ƻǊ ŀ ǎǘǊƻƴƎŜǊ ŦŜŜƭƛƴƎ ƻŦ ŜƴƎŀƎƛƴƎ ƻƴŜΩǎ ǊŜǎǇƻƴǎƛōƛƭƛǘȅ ǿƘŜƴ ŎƻƴǘǊŀŘƛŎǘƛƴƎ ǘƘŜ 

algorithm than when confirming its decisions. 

Security and outsourcing. ML models are exposed to new kinds of attacks. Furthermore strategies 

such as development outsourcing, skills outsourcing, and external hosting should undergo careful risk 

assessment. More generally, third-party risks should be evaluated. 

Initial validation process. This process must often be re-examined when designing an AI algorithm 

intended for augmenting or altering an existing process. For instance, the governance framework 

applicable to a business line may in some cases be maintained, while in other cases it will have to be 

updated before putting the AI component into production. 

Continuous validation process. The governance of an ML algorithm also presents challenges after its 

deployment in production. For example, its continuous monitoring requires technical expertise and 

ML-specific tools in order to ensure the aforementioned principles are followed over time (appropriate 

data management, predictive accuracy, stability, and availability of valid explanations). 

Audit. As for the audit (both internal and external) of AI-based systems in finance, exploratory works 

led by the ACPR suggest adopting a dual approach:  

- The first facet is analytical. It combines analysis of the source code and of the data with 
methods (if possible based on standards) for documenting AI algorithms, predictive models 
and datasets. 

- The second facet is empirical. It leverages methods providing explanations for an individual 
ŘŜŎƛǎƛƻƴ ƻǊ ŦƻǊ ǘƘŜ ƻǾŜǊŀƭƭ ŀƭƎƻǊƛǘƘƳΩǎ ōŜƘŀǾƛƻǳǊ, and also relies on two techniques for testing 
an algorithm as a black box: challenger models (to compare against the model under test) and 
benchmarking datasets, both curated by the auditor. 

Such a multi-faceted approach is suitable both for internal auditors and for a supervisory authority, 

however the latter faces specific challenges due to the scope of its mission. In order to effectively audit 

AI systems, it will need to build both theoretical and hands-on expertise in data science, while 

developing a toolkit for the specific purpose of AI supervision. 

Public consultation 

The analysis presented in this document is subject to public consultation. The objective is to submit to 

financial actors and other concerned parties (researchers, service and solution providers, control 

authorities, etc.) guidelines sketched herein for feedback, and more broadly to gather any useful 

ŎƻƳƳŜƴǘΣ ƛƴŎƭǳŘƛƴƎ ƻƴ ǎǳǇŜǊǾƛǎƻǊȅ ŀǳǘƘƻǊƛǘƛŜǎΩ ōŜǎǘ ǇǊŀŎǘƛŎŜǎΦ 
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2. Introduction 

2.1. Methodology 

Following initial work and a December 2018 public consultation on the role of Artificial Intelligence (AI) 

ƛƴ ŦƛƴŀƴŎŜΣ ƛƴ нлмф ǘƘŜ !/twΩǎ CƛƴǘŜŎƘ-Innovation Hub undertook exploratory works with a small 

number of voluntary financial institutions in order to shed light on the issues of explainability and 

governance of AI in the sector. These exploratory works resulted in the avenues for reflection 

presented in this document. The technological spectrum considered here is detailed in appendix 7. 

CƛƴŀƴŎƛŀƭ ŀŎǘƻǊǎ ŀǊŜΣ ŀǎ ŜǾƛŘŜƴŎŜŘ ōȅ ǘƘŜ !t/wΩǎ ŦƛǊǎǘ ǇǳōƭƛŎ ŎƻƴǎǳƭǘŀǘƛƻƴΣ ǇŀǊǘƛŎǳƭŀǊƭȅ ŜŀƎŜǊ ŦƻǊ 

regulatory guidance pertaining to AI1. Indeed, this technology generates opportunities as well as risks 

ς ƻǇŜǊŀǘƛƻƴŀƭ ŀƴŘ ƻǘƘŜǊǿƛǎŜΦ hƴŜ ƻŦ ŀ ǎǳǇŜǊǾƛǎƻǊȅ ŀǳǘƘƻǊƛǘȅΩǎ ǘŀǎƪǎ ƛǎ ǘƻ ǇǊƻǾƛŘŜ ǎǳŎƘ ƎǳƛŘŀƴŎŜΣ ŀƭƻƴƎ 

with practical implementation guidelines, with the aim of balancing freedom of innovation with 

regulatory compliance and responsible risk management. 

2.2. Exploratory works 

The main goal of these exploratory works was to produce lines of thought on three topics, each related 

ǘƻ ǘƘŜ !/twΩǎ Ƴŀƛƴ Ƴƛǎǎƛƻƴǎ ŀƴŘ ŘŜǘŀƛƭŜŘ ƛƴ ǿƘŀǘ ŦƻƭƭƻǿǎΦ 

In each topic, the Fintech-Innovation Hub conducted a deep-dive analysis with voluntary actors in a 

two-fold way: 

¶ In each case, meetings to present the AI algorithms in question along with the main 
explainability and governance challenges. 

¶ Lƴ ǘƘŜ ŎŀǎŜ ƻŦ ǘƘŜ άǇǊƛƳŀǊȅέ workshops, a more technical phase involving data scientists on 
both sides, exchanging on relevant methods and tools, including review sessions of the source 
code and ML models developed by the actor. 

These workshops are briefly described hereafter. Appendices provide more detailed, anonymized 

descriptions. 

2.2.1. Topic 1: Anti-money laundering and combating the financing of terrorism (AML-
CFT) 

¢Ƙƛǎ ǘƻǇƛŎΩǎ ƪŜȅ ƛǎǎǳŜ ǿŀǎ ǿƘŜǘƘŜǊ !L Ŏŀƴ ƛƳǇǊƻǾŜ ŦƛƴŀƴŎƛŀƭ ǘǊŀƴǎŀŎǘƛƻƴ ƳƻƴƛǘƻǊƛƴƎΣ ŜƛǘƘŜǊ ōȅ 

complementing or by replacing traditional threshold mechanisms and other business rules. To tackle 

this challenge, workshop participants introduced ML algorithms able to generate alerts (in addition to 

traditional, rule-based systems already in place): those alerts are directly sent ŦƻǊ ǊŜǾƛŜǿ ǘƻ άƭŜǾŜƭ нέ 

teams2, which streamlines and secures the alert review workflow. The resulting operational gain is 

proven while the governance of two key AML-CFT processes studied in these workshops (namely 

declarations of suspicion and freezing of assets) needs to be re-examined in light of the human 

intervention required by those processes, and of the continuous monitoring required for ML 

algorithms. 

                                                           
1 See also Cambridge Judge Business School, 2020. 
2 Level 2 is in charge of compliance: see section 5.1.2 for explanations on the typical organization of internal 
controls. 
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2.2.2. Topic 2: Internal models in banking and insurance 

¢Ƙƛǎ ǘƻǇƛŎΩǎ ƪŜȅ ƛǎǎǳŜ ǿŀǎ ǘƻ ŘŜǘŜǊƳƛƴŜ Ƙƻǿ ςand under which conditions ς AI can be used in the design 

of internal models. 

Rather than studying internal models as a whole, the workshops have focused on credit granting 

models; both are related insofar as scores produced by those models can also be used to build risk 

classes, from which RWAs (Risk-Weighted Assets) are computed.  

The workshops involved two actors: a banking group which designs and implements its credit scoring 

models internally, and a consulting firm which provides a development platform for hybrid (ML- and 

rule-based) models, tested in this case on the computation of the probability of default. Both 

application scenarios demonstrated how introducing ML impacts governance: the initial validation 

process becomes more technically-oriented, monitoring tools become a requirement for internal 

review, and explanatory methods have to be integrated into continuous oversight as well as into audit 

processes. 

2.2.3. Topic 3: Customer protection 

¢Ƙƛǎ ǘƻǇƛŎΩǎ ƪŜȅ ƛǎǎǳŜ ǿŀǎ ǘƻ ŜƴǎǳǊŜ ǘƘŀǘ !L ŀƭƎƻǊƛǘƘƳǎΣ ǿƘŜƴ ǳǎŜŘ ƛƴ ǘƘŜ ŎƻƴǘŜȄǘ ƻŦ ƴƻƴ-life insurance 

ǇǊƻŘǳŎǘ ǎŀƭŜǎΣ ŀƭǿŀȅǎ ǘŀƪŜ ƛƴǘƻ ŀŎŎƻǳƴǘ ǘƘŜ ŎƭƛŜƴǘΩǎ ōŜǎǘ ƛƴǘŜǊŜǎǘǎΦ 

The ML model studied on this topic aimed at producing prefilled quotes for home insurance products. 

That use case involved two main compliance requirements: fulfilling the duty to advise so as to 

properly inform the customer, and offering a non-life insurance product which is consistent with the 

requirements and needs expressed by the customer. 
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3. AI design and development principles 

We suggest four evaluation principles for AI algorithms and models: appropriate data management, 

performance, stability, and explainability. 

The objectives represented by these principles need to be mutually balanced: simultaneously 

maximizing all of them is usually impossible. They can be viewed as the cardinal points of a compass 

by which to guide the design and development of an AI algorithm: 

 

3.1. Appropriate data management principle 

Evaluating the compliance of an algorithm and of its implementation requires covering a large 

spectrum of requirements. At the very core of those compliance requirements lies the proper 

management of data during each stage of the design and implementation process of an AI algorithm, 

as described in this section. 

Input data 

Defined as data fed to an algorithm during its conception, input data comprises reference data, training 

data, and test (or evaluation) data. Proper management of input data is sometimes governed by sector-

specific regulation, for example data completeness and data quality requirements in the banking sector 

are prescribed by prudential norm BCBS 2393. 

Data governance (Dai, 2016) is an essential function within any financial organization with a number 

of data-driven business processes. Setting up a proper data governance for an AI algorithm will not 

work if data sources fed to it are inappropriately managed, for example if they are fragmentary, 

anecdotal, insufficiently durable, can be tampered with, or if the organization does not control their 

lifecycle. 

                                                           
3 Basel Committee on Banking Supervision's standard number 239 is an international standard, whose subject 
title is "Principles for effective risk data aggregation and risk reporting". 
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Pre-processing 

Evaluation of an ML-based system also needs to take into account operations performed on input data 

prior to the machine learning phase itself. Pre-processing Ƴŀȅ ƘŀǾŜ ŀƴ ƛƳǇŀŎǘ ƻƴ ǘƘŜ ǊŜǎǳƭǘƛƴƎ ƳƻŘŜƭΩǎ 

performance (for example by over- or under-sampling training data) as well as on its ethical 

acceptability (for example by excluding protected variables from training data).  

Post-processing 

Finally, evaluation should also include operations performed on the output (i.e. predictions or 

decisions) of the model produced by the ML algorithm. Such post-processing may have a significant 

impact as well, such as in the case of methods aiming to remove or reduce discriminatory biases4 from 

already trained models ς for example by cancelling out the dependency of predictions made by a 

probabilistic model on sensitive variables (Kamishima, 2012)5. 

3.1.1. Regulatory compliance 

Regulatory compliance often includes requirements of two kinds: 

- Compliance with regulation pertaining to data protection and individual privacy, starting with 
GDPR in Europe. 

- Taking into account regulatory requirements specific to a domain or use case. For example in 
ƛƴǎǳǊŀƴŎŜΣ ƛǘ ƛǎ ǇǊƻƘƛōƛǘŜŘ ǘƻ ǎǘŜŜǊ ǘƘŜ ǎŀƭŜǎ ǇǊƻŎŜǎǎ ōŀǎŜŘ ƻƴ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ŎŀǇŀŎƛǘȅ ǘƻ ǇŀȅΥ 
the offer needs to be at least consistent with the demands and needs expressed by the 
customer ς not driven by the maximization of sales revenue from insurance products. 

Compliance with the first category of requirements can be assessed by well-proven methods: 

undesired biases can be detected, prevented or suppressed (by operating at any of the 

aforementioned stages: input data, pre- or post-processing), dependency on sensitive variables 

(whether explicitly or implicitly present in the data) can be suppressed, etc.  

The second category of compliance requirements, those which are sector-specific, often goes beyond 

the scope of data management: this is the case of the obligation of means and of the performance 

obligation in AML-CFT, which call for suitable explanatory methods. 

Another example will illustrate the stakes of sector-specific regulation in further detail: that of an ML 

system put in production in an insurance organization, which aims to target high-priority prospective 

customers for a marketing campaign regarding a multi-risk insurance contract. The IDD (Insurance 

Distribution Directive), a 2016 European directive, introduced principles close to the equity principle 

ŘŜǎŎǊƛōŜŘ ƛƴ ǘƘŜ ƴŜȄǘ ǎŜŎǘƛƻƴΥ ƛƴǎǳǊŀƴŎŜ ǇǊƻŘǳŎǘ ŘƛǎǘǊƛōǳǘƻǊǎ ǎƘƻǳƭŘ άŀƭǿŀȅǎ ŀŎǘ ƘƻƴŜǎǘƭȅΣ ŦŀƛǊƭȅ ŀƴŘ 

professionally in accordance with the best interests of their customers.έ ¢ƘŜǊŜŦƻǊŜΣ a[ ƛǎ only allowed 

for customer targeting on the condition that the criteria used are based on the needs fulfilled by the 

                                                           
4 The polysemy of the ǘŜǊƳ άōƛŀǎέ should be noted. It sometimes refers to a statistical, objective characteristic 
of a predictor or estimator, other times to an unfair or unequal treatment whose polarity and importance are 
subjective and of an ethical or social nature. The presence of a statistical bias may lead to a fairness bias, but this 
is neither a sufficient nor a necessary condition. 
5 The issue of discriminatory biases is not specific to AI either. The risk exists in any statistical model, e.g. it is 
ŘƻŎǳƳŜƴǘŜŘ ƛƴ ǘƘŜ ƭƛǘŜǊŀǘǳǊŜ ƻƴ άǊŜŘƭƛƴƛƴƎέ ƛƴ ōŀƴƪƛƴƎ ŜŎƻƴƻƳȅΦ IƻǿŜǾŜǊ ǘƘŀǘ Ǌƛǎƪ ƛǎ ŀƳǇƭƛŦƛŜŘ ōȅ ǘƘŜ ǳǎŜ ƻŦ ŀƴ 
ML algorithm, in addition some detection and mitigation techniques for that risk are also ML-specific. 
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product ς and not on ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ŎŀǇŀŎƛǘȅ ǘƻ ǎǳōǎŎǊƛōŜ6. The challenge is thus to correctly 

appreciate the prospective ŎǳǎǘƻƳŜǊǎΩ ƛƴǎǳǊŀƴŎŜ ƴŜŜŘǎΣ ǿƘƛŎƘ ŀǊŜ ƳǳŎƘ ƳƻǊŜ ŘƛŦŦƛŎǳƭǘ ǘƻ ŜǾŀƭǳŀǘŜ ŦƻǊ 

an algorithm than for a human. When ML is used, this requires using larger datasets (in breadth and in 

depth), which in turn generates or increases data-induced risks such as implicit correlations with the 

capacity to subscribe (which are difficult to detect) and more generally undesired biases (themselves 

often latent, see next section). In short, using ML to implement a customer targeting system for 

marketing should be conditioned upon mastering those risks and deploying tools to detect and 

mitigate them. 

3.1.2. Ethics and fairness 

Besides constraints stemming from sector-specific and cross-cutting regulations, ethical issues lie at 

the core of the ever-increasing usage of AI in business processes which impact individuals and groups 

of people. Those issues include social and ethical concerns in the broadest sense, and particularly 

questions of fairness raised by any automated or computer-aided decision process. 

Ethics guidelines published by the European Commission (European Commission High-Level Expert 

Group on AI, 2019) illustrate both the importance of ethical issues and the blurred boundaries they 

share with the other principles described in this section: 

1. Human agency and oversight 
2. Technical Robustness and safety 
3. Privacy and data governance 
4. Transparency 
5. Diversity, non-discrimination and fairness 
6. Societal and environmental well-being 
7. Accountability. 

These guidelines underline the broad spectrum of challenges related to ethics and fairness in AI. 

Specifically, the analysis of biases ς especially those of a discriminatory nature ς is an active research 

domain, which schematically comprises the following stages: 

- Carefully defining what constitutes a problematic bias ς whether a classification bias or 
prediction bias, or an undesired statistical bias already present in input data ς and the metrics 
enabling to characterize and quantify such biases, including via explanatory methods 
(Kamishima, 2012) ; 

- Determining to what extent biases present in the data are reflected, if not reinforced, by AI 
algorithms 

- Lastly, mitigating those biases whenever possible, either at the data level or at the algorithm 
level. 

Exploratory works conducted by the ACPR, along with a broader analysis of the financial sector, 

showed that bias detection and mitigation were at an early stage in the industry: as of now, the 

emphasis is put on internal validation of AI systems and on their regulatory compliance, without 

pushing the analysis of algorithmic fairness further than was the case with traditional methods ς in 

particular, the risk of reinforcing pre-existing biases tends to be neglected. This blind spot, however, 

only reflects the relative lack of maturity of AI in the industry, which has been introduced primarily 

                                                           
6 Indeed, the conception of an insurance product should start by defining a target market, based on 
characteristics of the group of customers whose needs are fulfilled by the product. 
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into the less-critical business processes (and those which bear little ethics and fairness risks): it can 

thus be anticipated that the progressive industrialization of additional AI use cases in the sector will 

benefit the currently very active research on those topics. 

 

3.2. Performance principle 

Performance of an ML algorithm can typically be assessed using two types of metrics: 

¶ Predictive performance metrics. For instance AUC (Area Under the Curve) ς or alternatively F1 
score ς can be applied to algorithms which predict credit default risk of a physical or moral 
person. Such metrics can be categorized as KRI or Key Risk Indicators. 

¶ Business performance metrics, which can be categorized as KPI or Key Performance Indicators. 
¢ǿƻ Ǉƻƛƴǘǎ ƻŦ ŀǘǘŜƴǘƛƻƴ ŦƻǊ ǎǳŎƘ ƳŜǘǊƛŎǎ ŀǊŜ ǘƘŜƛǊ ŎƻƴǎƛǎǘŜƴŎȅ ǿƛǘƘ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ƻōƧŜŎǘives 
and their compatibility with its compliance requirements7. 

Importantly, algorithmic performance of an AI algorithm is not a standalone objective: it needs in 

particular to be weighed against the explainability principle. Subsequent sections will show that the 

ŀŘŜǉǳŀǘŜ ŜȄǇƭŀƴŀǘƛƻƴ ƭŜǾŜƭ ŘŜǇŜƴŘǎΣ ŦƻǊ ŀ ƎƛǾŜƴ ǎŎŜƴŀǊƛƻΣ ƻƴ ƳǳƭǘƛǇƭŜ ŦŀŎǘƻǊǎ ŀƴŘ ƻƴ ǘƘŜ ŜȄǇƭŀƴŀǘƛƻƴΩǎ 

recipients. The choice of an explanation level in turn induces constraints on technological choices, 

ƴƻǘŀōƭȅ ƻƴ ǘƘŜ άǎƛƳǇƭƛŎƛǘȅέ ƻŦ ǘƘŜ ǎŜƭŜŎǘŜŘ algorithm. 

An overview of the fundamental trade-off driving such choices is given in appendix 10.1.1. 

 

3.3. Stability principle 

¢ƘŜ ǎǘŀōƛƭƛǘȅ ǇǊƛƴŎƛǇƭŜ Ŏƻƴǎƛǎǘǎ ƻŦ ŜƴǎǳǊƛƴƎ ǘƘŀǘ ŀƴ a[ ŀƭƎƻǊƛǘƘƳΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ŀƴŘ ƛǘǎ Ƴŀƛƴ ƻǇŜǊŀǘƛƻƴŀƭ 

characteristics are consistent over time. Expectations in terms of stability are all the more important 

                                                           
7 It is for instance highly likely that maximizing sales revenue from insurance products is an inappropriate metric 
for an ML algorithm used as part of the sales process: it might indeed introduce into the algorithmic process the 
kind of conflicts of interest which regulation precisely aims at preventing. 

APPROPRIATE DATA MANAGEMENT 

All data processing should be as thoroughly documented as the other design stages of an AI 

algorithm (source code, performance of the resulting model, etc.) This documentation enables risk 

assessment in the areas of regulatory compliance and ethics, and the implementation of tools for 

detecting and mitigating undesired biases, if need be. 

ALGORITHMIC PERFORMANCE 

Performance metrics of an ML algorithm have to be carefully selected, so as to evaluate the 

technical efficacy of the algorithm or alternatively its business objectives. The inherent trade-off 

ōŜǘǿŜŜƴ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ǎƛƳǇƭƛŎƛǘȅ ŀƴŘ ƛǘǎ ŜŦŦƛŎŀŎȅ Ƙŀǎ ǘƻ ōŜ ǘŀƪŜƴ ƛƴǘƻ ŀŎŎƻǳƴǘ. 
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in the case of ML, as the dimension of data (in order to make up predictor variables) tends to be much 

larger than in traditional predictive or decisional algorithms8. 

Three major sources of instability are herein identified. As of now, AI algorithms in production in the 

financial sector seldom take into account these instability sources, neither individually nor for their 

overall effect. This may be due to the relative lack of maturity of AI engineering and operational 

processes, and thus subject to change in the future. However ML instability risks should not be 

neglected since they generate significant operational and compliance risks. Hence a few mitigation 

methods are suggested in the following for each of them.  

3.3.1. Temporal drift 

Firstly, stability of an ML model implies absence of drift over time. This is essential since the distribution 

ƻŦ ƛƴǇǳǘ Řŀǘŀ ƳƛƎƘǘ ŘŜǾƛŀǘŜ ǎǳŦŦƛŎƛŜƴǘƭȅ ǘƻ ŘŜƎǊŀŘŜ ǘƘŜ ƳƻŘŜƭΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ŀǎ ǿŜƭƭ ŀǎ ƻǘƘŜǊ 

characteristics (such as compliance-related aspects or the absence of bias) ς especially if it is not 

periodically re-trained. 

This temporal drift can be detected using somewhat classical monitoring and alert generation 

mechanisms, which should however be built upon appropriate drift indicators and a well-tried 

infrastructure. A key point in this regard is that temporal drift of a model is often linked to the evolution 

of the training database, hence the very first stage when designing a drift monitoring tool ς before 

even taking into account data processing ς consists of detecting structural changes in those input data. 

3.3.2. Generalization 

Stability of an ML model can also be understood as robustness, in the sense of generalization power 

when confronted with new data9. A lack of generalization power may have gone undetected during 

the model validation, for example because test and validation datasets ς though dissociated from 

ǘǊŀƛƴƛƴƎ Řŀǘŀ ŀǎ ǘƘŜȅ Ƴŀȅ ōŜ όάƻǳǘ-of-ǘƛƳŜέ ǘŜǎǘƛƴƎ ŀƴŘ άƻǳǘ-of-ŘƛǎǘǊƛōǳǘƛƻƴέ ǘŜǎǘƛƴƎύ ς almost 

inevitably differ from the real-world data fed to the model in production. 

Lack of generalization power may be detected and (at least partially) remedied during the model 

design and parameterization stages. However the resulting model should be subjected to continuous 

ƳƻƴƛǘƻǊƛƴƎ ōŜŎŀǳǎŜΣ Ƨǳǎǘ ƭƛƪŜ ǘŜƳǇƻǊŀƭ ŘǊƛŦǘ ƛǎ ǳƭǘƛƳŀǘŜƭȅ ƛƴŜǾƛǘŀōƭŜΣ ǘƘŜ ƳƻŘŜƭΩǎ ǇŜǊŦƻǊƳŀƴce can 

never be guaranteed to generalize sufficiently well to previously unseen data. 

3.3.3. Re-training 

Lastly, re-training an ML model, whether periodically or on a quasi-continuous basis, does not solve all 

instability issues, since it results at the very least in non-reproducible decisions on a given input 

                                                           
8 Lǘ ƛǎ ŜǾŜƴ ƻƴŜ ƻŦ .ƛƎ 5ŀǘŀΩǎ Ƴŀƛƴ ŎƘŀǊŀŎǘŜǊƛǎǘƛŎǎΣ ŀƴŘ ŀ ǎƛǘǳŀǘƛƻƴ ǿƘŜǊŜ ǘŜŎƘƴƛǉǳŜǎ ǎǳŎƘ ŀǎ ƴŜǳǊŀƭ ƴŜǘǿƻǊƪǎ 
particularly shine. Generally speaking, the predictive power of a classification model can be shown to increase 
with the number of variables up to a certain point, after which it degrades ς ŀ ǇƘŜƴƻƳŜƴƻƴ ŎŀƭƭŜŘ IǳƎƘŜǎΩ ǇŜŀƪ 
όYƻǳǘǊƻǳƳōŀǎΣ нллуύ ŀƴŘ ŀǎǎƻŎƛŀǘŜŘ ǘƻ ǘƘŜ άŎǳǊǎŜ ƻŦ ŘƛƳŜƴǎƛƻƴŀƭƛǘȅέΦ 5ƛƳŜƴǎƛƻƴŀƭƛǘȅ ǊŜŘǳŎǘƛƻƴ ƛǎ ŀŎǘǳŀƭƭȅ ŀ ǾŜǊȅ 
common concern in ML (Shaw, 2009). 
9 Generalization power and predictive bias are the two key criteria to balance when designing and tuning a 
ǇǊŜŘƛŎǘƛǾŜ ƳƻŘŜƭΦ DŜƴŜǊŀƭƛȊŀǘƛƻƴ ƛǎ ƛƴǾŜǊǎŜƭȅ ǇǊƻǇƻǊǘƛƻƴŀƭ ǘƻ ǘƘŜ ƳƻŘŜƭΩǎ ǾŀǊƛŀƴŎŜΣ ƘŜƴŎŜ ǘƘƛǎ ŀǊōƛǘǊŀƎŜ ƛǎ ǊŜŦŜǊǊŜŘ 
to as bias-variance trade-off: low bias is usually associated to high performance on training and test data, 
whereas low variance implies that the model generalizes well to new data. 
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between subsequent versions of the model. The main consequence of this instability source over the 

ŎƻǳǊǎŜ ƻŦ ǘƘŜ ƳƻŘŜƭΩǎ ƭƛŦŜŎȅŎƭŜ όǘƘǳǎ ǇǳƴŎǘǳŀǘŜŘ ōȅ ǊŜ-training phases) is a lack of determinism in the 

overall system. This can become a problem when a particular decision must be reproduced (for 

ŜȄŀƳǇƭŜ ǘƻ ŎƻƳǇƭȅ ǿƛǘƘ D5twΩǎ ǊƛƎƘǘ ǘƻ ŀŎŎŜǎǎ ŀƴŘ ƻǇǇƻǎƛǘƛƻƴύΣ Ǉƻǎǎƛōƭȅ ŀŎŎƻƳǇŀƴƛŜŘ ōȅ ŀƴ 

explanation (which can be produced by one of the explanatory methods described hereafter). 

This instability source, when it cannot be mitigated via a low-enough re-training frequency, can at least 

be compensated by properly archiving all subsequent versions of an ML model used in production. 

 

3.4. Explainability principle 

Of the four principles exposed here, explainability is the one most distinctive of AI systems compared 

to traditional business processes. 

3.4.1. Terminology 

Notions of algorithmic explainability, transparency, interpretability, and auditability are closely 

related: 

- Transparency is but a means (albeit the most radical) to make decisions intelligible: it implies 
ŀŎŎŜǎǎ ǘƻ ŀƴ a[ ŀƭƎƻǊƛǘƘƳΩǎ ǎƻǳǊŎŜ ŎƻŘŜ ŀƴŘ ǘƻ ǘƘŜ ǊŜǎǳƭǘƛƴƎ ƳƻŘŜƭǎΦ Lƴ ǘƘŜ ŜȄǘǊŜƳŜ ŎŀǎŜ ƻŦ 
complete opacity, the algorithm is said to operate as a black box. 

- Auditability means the practical feasibility of an analytical and empirical evaluation of the 
algorithm, and aims more broadly at collecting explanations on its predictions, as well as 
evaluating it according to the aforementioned criteria (data management, performance, and 
stability).  

- The distinction between explainability and interpretability has been the subject of numerous 
debates, which are summarized in appendix 9Φ ¢ƘŜ ǘŜǊƳ άŜȄǇƭŀƛƴŀōƛƭƛǘȅέ ƛǎ ƻŦǘŜƴ ǊŜƭŀǘŜŘ ǘƻ ŀ 
ǘŜŎƘƴƛŎŀƭΣ ƻōƧŜŎǘƛǾŜ ǳƴŘŜǊǎǘŀƴŘƛƴƎ ƻŦ ŀƴ ŀƭƎƻǊƛǘƘƳΩǎ behaviour (and would thus be more 
suitable for auditing), whereas interpretability seems more closely associated with a less 
technical discourse (and would thus primarily target consumers and other individuals 
impacted by the algorithm). 

3.4.2. Objectives 

Explanations pertaining to an AI algorithm generally address the following questions: 

ü What are the causes of a given decision or prediction? 
ü What inherent uncertainty does the model carry? 
ü Are the errors made by the algorithm similar to those due to human judgment? 
ü .ŜȅƻƴŘ ǘƘŜ ƳƻŘŜƭΩǎ ǇǊŜŘƛŎǘƛƻƴΣ ǿƘŀǘ ƻǘƘŜǊ ǇƛŜŎŜǎ ƻŦ ƛƴŦƻǊƳŀǘƛƻƴ ŀǊŜ ǳǎŜŦǳƭ όŦƻǊ ŜȄŀƳǇƭŜ ǘƻ 

assist a human operator in making the final call)? 

STABILITY 

Potential instability sources which may affect AI algorithms deployed in the organization over time 

should be identified. For each such source, associated risks (operational, compliance risks, or 

otherwise) should be assessed, and proportionate detection and mitigation methods implemented. 
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Thus the objectives of an explanation vary greatly, especially depending on the stakeholders 

considered: 

- Providing insights to domain experts and compliance teams. 
- CŀŎƛƭƛǘŀǘƛƴƎ ǘƘŜ ƳƻŘŜƭΩǎ ǊŜǾƛŜǿ ōȅ ǘƘŜ ŜƴƎƛƴŜŜǊƛƴƎ ŀƴŘ ǾŀƭƛŘŀǘƛƻƴ ǘŜŀƳǎΦ 
- Securing confidence frƻƳ ǘƘŜ ƛƴŘƛǾƛŘǳŀƭǎ ƛƳǇŀŎǘŜŘ ōȅ ǘƘŜ ƳƻŘŜƭΩǎ ǇǊŜŘƛŎǘƛƻƴǎ ƻǊ ŘŜŎƛǎƛƻƴǎΦ 

An overview of the fundamental trade-off driving the technical choice of an algorithm based on the 

types of explanations required is given in appendix 10.1.2. 

3.4.3. Properties 

An ideal explanation should have the following properties: 

- Accurate: it should describe as precisely as possible the case studied (for a local explanation) 
ƻǊ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ behaviour (for a global explanation). 

- Comprehensive: it should cover the entirety of motives and characteristics of the considered 
decision(s) or prediction(s). 

- Comprehensible: it should not require excessive effort in order to be correctly understood by 
its intended recipients. 

- Concise: it should be succinct enough to be grasped in a reasonable amount of time, in 
accordance with the time and productivity constraints of the encompassing process. 

- Actionable: it should enable one or more actions by a human operator, such as overriding a 
prediction or decision. 

- Robust: it should remain valid and useful even when input data are ever-changing and noisy. 
- Reusable: it should be customizable according its intended recipients. 

In practice, not all of these qualities are simultaneously achievable. Besides, as previously mentioned, 

they have to be balanced against other principles ς notably performance. Thus these properties should 

rather serve as comparison criteria between explanations provided by various methods, so as to select 

the one most appropriate to a specific use case. 

3.4.4. Explanation levels 

CƻǊ ǎƛƳǇƭƛŎƛǘȅΩǎ ǎŀƪŜΣ ǿŜ ŀŘƻǇǘ ƘŜǊŜŀŦǘŜǊ ǘƘŜ ǘŜǊƳ άŜȄǇƭŀƛƴŀōƛƭƛǘȅέ ǊŀǘƘŜǊ ǘƘŀƴ άƛƴǘŜǊǇǊŜǘŀōƛƭƛǘȅέ ǘƻ 

describe the broader concept (cf. section 9 on the terminology). Algorithmic explainability aims to 

demonstrate: 

- On the one hand, how the algorithm operates (which roughly matches the common meaning 
of algorithmic transparency). 

- On the other hand, why the algorithm makes such and such decision (in other words an 
interpretation of those decisions). 

! ƪŜȅ ŎƘŀƭƭŜƴƎŜ ƻŦ ǘƘŜ άǿƘȅέ ǉǳŜǎǘƛƻƴ ƛǎ ǘƘŜ ŀǳŘƛǘŀōƛƭƛǘȅ ƻŦ ŀƴ a[ ŀƭƎƻǊƛǘƘƳΦ !ǎ ŦƻǊ ǘƘŜ άƘƻǿέ ƻŦ 

explainability, associated challenges include:   

- For human operators who interact with the AI system: to understand its behaviour 
- CƻǊ ƛƴŘƛǾƛŘǳŀƭǎ ŀŦŦŜŎǘŜŘ ōȅ ǘƘŜ ǎȅǎǘŜƳΩǎ ǇǊŜŘƛŎǘƛƻƴǎ ƻǊ ŘŜŎƛǎƛƻƴǎ όǎǳŎƘ ŀǎ ŎǳǎǘƻƳŜǊǎ ƛƴ ŀ ǎŀƭŜǎ 

context): to understand the underlying motives 
- For those who designed the system or are tasked with checking its compliance: to assess its 

social and ethical acceptability, in order (among other things) to prove the absence of 
discriminatory bias in its decision-making process. 
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The concept of an explanation level introduced here attempts to summarize in a single metric the 

depth of an explanation10. This metric exists on a continuum, along which we define a four-level scale 

of qualitatively distinct levels, which are described in the following. 

 

 

 

                                                           
10 This concept is thus by definition an over-simplification of the quality of an explanation. It aims at facilitating 
the choice of a target explainability level, without eliminating the need for a multi-dimensional analysis of the 
explanations provided. 

Level-1 explanation: observation 

Such an explanation answers technically-speaking the question άHow ŘƻŜǎ ǘƘŜ ŀƭƎƻǊƛǘƘƳ ǿƻǊƪΚέ 

and functionally-speaking the question ά²Ƙŀǘ ƛǎ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ǇǳǊǇƻǎŜΚέ This level can be 

achieved: 

- EƳǇƛǊƛŎŀƭƭȅΣ ōȅ ƻōǎŜǊǾƛƴƎ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ƻǳǘǇut (individually or as a whole) as a function 
of input data and of the environment 

- Analytically, via an information sheet for the algorithm (cf. appendix 11.1), the model, and 
the data used, without requiring the analysis of the code and data themselves. 

Level-3 explanation: approximation 

Such an explanation provides an ς often inductive ς answer to the question άIƻǿ ŘƻŜǎ ǘƘŜ 

ŀƭƎƻǊƛǘƘƳ ǿƻǊƪΚέ This level of explanation can be achieved, in addition to level-1 and 2 

explanations: 

- By using explanatory methods which operate on the model being analysed (cf. appendix 
11.3). 

- Via a structural analysis of the algorithm, the resulting model and the data used. This 
analysis will be all the more fruitful if the algorithm is designed by composition of multiple 
ML building blocks (hyper-parameter tuning or auto-tuning, ensemble methods, boosting, 
etc.). 

Level-2 explanation: justification 

Such an explanation answers the question: ά²Ƙȅ ŘƻŜǎ ǘƘŜ ŀƭƎƻǊƛǘƘƳ ǇǊƻŘǳŎŜ ǎǳŎƘ ŀ ǊŜǎǳƭǘΚέ (in 

general or in a specific situation). This level can be achieved: 

- Either by presenting in a simplified form some explanatory elements from higher levels (3 
and 4), possibly accompanied with counterfactual explanations (cf. appendix 11.3). 

- Or by having the ML model itself it has been trained to produce (cf. appendix 11.2). 
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It should be noted that each level characterizes an explanation (or a type of explanation), rather than 

an ML algorithm or model. Strictly speaking, it is about the level of intelligibility of the explanations 

provided by the system, not about the intrinsic explainability of the system. Thus, a highly explainable 

model such as a decision tree might lend itself to a level-4 explanation (by thoroughly detailing all its 

branches), but also to a level-1 explanation (by simply stating that it is a decision-tree predictor 

operating on a given set of input variables). The latter would suffice in a case where the fine-grained 

behaviour of the model does not need to be ς or must not be ς disclosed.  

Under a more technical perspective, appendix 10.2 examines in further detail the technical feasibility 

of higher-level (3 or 4) explanations: it presents an important hurdle to overcome (software 

dependencies) along with a path to reach level 4 (replication). 

The next sections describe two factors ς among a number of them ς driving the explanation level 

required from an AI algorithm, especially in the financial sector: on the one hand the intended 

recipients of the explanation, on the other hand the risk (both its nature and its severity) associated to 

the considered process. Thus, the same algorithm might require a higher explanation level when its 

inner behaviour also needs to be captured and/or when the explanation is provided in a particularly 

sensitive context. 

3.4.5. Recipients of the explanation 

The first key influence factor of the expected explanation level is the type of recipient targeted. This is 

because the relevant form under which an explanation should be proposed in order to be effective 

depends both on their technical and business proficiency and on their intrinsic motives for demanding 

an explanation. 

Hence different explanation levels could be applied to the same algorithm depending on whether the 

explanations serve an end user (who tries to check that they have not been treated unfairly by the 

system, and for whom an explanation has to be intuitively intelligible) or an auditor (who needs to 

ǳƴŘŜǊǎǘŀƴŘ ǘƘŜ ǎȅǎǘŜƳΩǎ ǘechnical architecture in detail and who is subjected to rigorous regulatory 

requirements). 

We hereafter describe three kinds of recipients for an explanation, and suggest each time what an 

appropriate form of explanation looks like. 

Level-4 explanation: replication 

Such an explanation provides a demonstrable answer to the question άIƻǿ ǘƻ ǇǊƻǾŜ ǘƘŀǘ ǘƘŜ 

ŀƭƎƻǊƛǘƘƳ ǿƻǊƪǎ ŎƻǊǊŜŎǘƭȅΚέ 

This level of explanation can be achieved, in addition to level-1 to 3 methods, by detailed analysis 

of the algorithm, model and data. In practice, this is feasible only by doing a line-by-line review of 

the source code, a comprehensive analysis of all datasets used, and an examination of the model 

and its parameters. 
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Customer or consumer: simple explanations 

An example of explanation intended for a customer occurs in the context of insurance product sales: 

the duty to inform makes it mandatory to explain to prospective customers why they were offered a 

given insurance product and not another one, furthermore those motives need to be cantered around 

the consistency of the contract (in the case of non-life insurance) or its adequacy (in the case of life 

insurance). 

The nature and terms of this explanation must therefore be intelligible and satisfactory with regard to 

the consumer (who cannot be required to master the intricacies of the sales process, nor the 

implementation of the underlying algorithm). 

Continuous monitoring: functional explanations 

Internal review teams, particularly those tasked with continuous monitoring, need to verify the 

ƳƻŘŜƭΩǎ ŜŦŦƛŎŀŎȅ ǿƛǘƘ ǊŜǎǇŜŎǘ ǘƻ ōǳǎƛƴŜǎǎ ƻōƧŜŎǘƛǾŜǎΦ 

The focus in this case is put on the performance of the process involving AI, rather than on its internal 

mechanics, thus the explanation given should be of a functional nature. 

Auditor: technical explanations 

¢ƘƛǊŘƭȅΣ ŀƴ ŀǳŘƛǘƻǊ Ƴǳǎǘ ŜƴǎǳǊŜ ǘƘŀǘ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ƛǎ ŎƻƴǎƛǎǘŜƴǘ ǿƛǘƘ ǊŜǎǇŜŎǘ ǘƻ ƛǘǎ 

specifications, including in terms of regulatory compliance and of technical requirements. 

This entails, for example, verifying how an ML model is produced, but also checking the absence of 

discriminatory bias in that model. Therefore the explanation given must be technically accurate and as 

representative as possible of the audited model. 

3.4.6. Associated risks 

The second factor of influence on the required explanation level is the risk associated to the (total or 

partial) replacement of a human-controlled process by an AI component. 

The nature and severity of that risk are highly variable, as shown by the following examples: 

¶ AML-CFT: a process such as freezing of assets, which is subjected to a performance obligation, 
bears an increased level of risk when AI is introduced, not only by dint of its critical role, but 
also because its evaluation then depends on comparing human and algorithmic efficiency. 
More precisely still, the risk will be particularly elevated in a continuous monitoring or audit 
situation (which has to assess that relative efficiency) and more moderate for a daily user of 
the algorithm who keeps performing the same controls as when using a traditional transaction 
monitoring system. 

¶ Internal models: introducing ML into e.g. the computation of solvency margins of a banking 
institution has a direct impact on the assessment of its solvability risk, therefore the team who 
ŘŜǎƛƎƴǎ ǘƘŜ ƛƴǎǘƛǘǳǘƛƻƴΩǎ ƛƴǘŜǊƴŀƭ ƳƻŘŜƭ ǿƛƭƭ ŜȄǇŜŎǘ ŀ ǎŀǘƛǎŦŀŎǘƻǊȅ ƭŜǾŜƭ ƻŦ ŜȄǇƭŀƴŀǘƛƻƴ ŦƻǊ ǘƘŜ 
results of those computations. 

¶ Insurance: the insurance contract sales process has its own regulation, which imposes among 
other things a duty to inform and the personalized presentation of reasons and justifications 
to the customer, if need be. Conversely, ex-ante customer segmentation in the insurance 
sector relies mainly on accuracy objectives, without the same requirement in terms of 
explainability. 
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3.4.1. Examples of explanation levels by use case 

We attempt here to illustrate those somewhat abstract definitions of explanation levels and of their 

driving factors through a few concrete use cases ς all of which have been deployed by financial entities, 

and some of which were analysed during the exploratory workshops conducted by the ACPR. 

For each use case, the following table suggests an explanation level as a function of the 

aforementioned criteria (targeted recipients and associated risk). Those suggestions are based on our 

initial market analysis, whose observations the present document aims to validate or correct (see 

consultation in section 6). 

EXPLAINABILITY 

For each use case of AI, the impacted business processes should be determined and the roles filled 

by the AI component should be detailed. The types of recipients targeted by an explanation can 

then be described, along with the nature of the associated risks. That entire context dictates the 

level and form of an appropriate explanation for the AI algorithm, which must be agreed upon by 

ŀƭƭ ǎǘŀƪŜƘƻƭŘŜǊǎ ƛƴ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ƎƻǾŜǊƴŀƴŎŜΦ 
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Domain
Busines 

process
AI functionality

Explanation 

recipients
Context Associated risk

Customer
Compensation 

process

Operational risk (customer 

satisfaction)
1

Internal control
Daily oversight of 

the process

- Operational risk

- Compliance risk (contract 

honoring)

- Financial risk

2

Auditor
Evaluation of the 

algorithm

- Operational risk

- Compliance risk (contract 

honoring)

- Financial risk

3

Customer
Online quote 

request

Compliance risk (customer 

misinformation, failure to 

perform duty to inform, 

discriminatory biases...)

2

Internal control or 

internal auditor

Compliance 

checking

Compliance risk (customer 

misinformation, failure to 

perform duty to inform, 

discriminatory biases...)

3

Validation team

Model and model 

update policy 

validation

- Solvency model risk 

- Compliance risk
4

Administrative, 

management, and 

supervisory 

bodies

Model approval
- Solvency model risk 

- Compliance risk
2

Level-2 agent Alert analysis

None (if the analyst's 

methodology is not modified 

by the algorithm)

1

Internal control
Continuous 

monitoring

- Operational risk (false 

negatives / false positives)

- Compliance risk 

(performance obligation)

2

Auditor
Periodic 

inspection

- Operational risk (false 

negatives / false positives)

- Compliance risk 

(performance obligation)

3

Internal 

models
Model design

Computation of 

solvency margins

AML-CFT
Freezing of 

assets
Alerting
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4. Evaluation of AI algorithms 

The following diagram represents the lifecycle of an AI algorithm and of the resulting model, from the 

design and training phases to its use in production ς and possible iterations to the learning stage, for 

instance upon patching the algorithm. It attempts to put in perspective those implementation stages 

with the appropriate validation steps, whether continuous or periodic, internal or external. 

It also aims to show how each stage in the lifecycle benefits from a suitable evaluation process, based 

on the four principles previously mentioned, namely data management, performance, stability, and 

explainability. Finally, it illustrates the multifaceted approach to evaluation detailed in section 5.5.1, 

which combines analytical and empirical evaluation. 

 

 

 

 

EVALUATION OF AI 

The lifecycle of AI algorithms introduced into each business process should be detailed so as to list, 

at each stage, which design and development principles (data management, performance, stability, 

explainability) apply in particular, and which evaluation method is appropriate for that stage. 
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5. Governance of AI algorithms   

Introducing ML algorithms into the financial sector often aims, be it via descriptive or predictive 

methods, to automate or improve (e.g. by customizing it) a decision-making process which used to be 

performed by humans. Therefore, the governance of those algorithms requires careful consideration 

of the validation of each of these decision-making processes. In particular, their regulatory compliance 

objectives as well as their performance objectives are only achievable through a certain level of 

explainability and traceability. 

The following governance concerns need to be taken into account as early as the design phase of an 

algorithm11: integration of AI into traditional business processes; impact of this integration on internal 

controls, specifically on the role assigned to humans in the new processes; relevance of outsourcing 

(partially or fully) the design or maintenance phases; and lastly, the internal and external audit 

functions.  

5.1. Governance principles in the financial sector 

General governance principles applicable to any financial institution include the description of the 

άŎƻƴǘǊƻƭ ŎǳƭǘǳǊŜέ policy implemented in the organization, the presentation of ethical and professional 

norms it promotes, along with the steps taken to guarantee proper implementation of those norms 

and the process in case of failure to do so. In addition to those principles, other procedures should be 

documented, such as how to detect and prevent conflicts of interest. 

In this context, the most relevant elements of governance when introducing AI into business processes 

appear to be the operational procedures within those processes, the extension of segregation of duties 

to the management of AI algorithms, and the management of risks associated to AI. These elements 

are briefly described in this section. 

5.1.1. Operational procedures 

Operational procedures should be adjusted to the different activities performed, communicated, and 

periodically updated, for example via a clear written documentation. Their main goals are to describe 

how the various levels of responsibility are assigned, the resources devoted to internal control 

mechanisms, the risk measurement, mitigation and monitoring systems implemented, and the 

organization of compliance monitoring. Those procedures also list rules relative to IT security and to 

business continuity planning. 

5.1.2. Segregation of duties 

There are no organizational standards relative to internal controls and risk management, only methods 

which have been tried and tested when implementing such functions (COSO, Cobit, Risk IT, etc.). 

                                                           
11 This document does not address another governance issue, which should nevertheless precede any decision 
to adopt a technical tool ς independently of its usage of AI and of its business application ς, namely the 
cost/benefit analysis. In other words, only governance questions specific to the usage of AI in the financial sector 
are considered herein. 
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Nevertheless, internal control mechanisms conventionally comprise multiple levels of control, so as to 

Ŧƻƭƭƻǿ ǘƘŜ άŦƻǳǊ-ŜȅŜǎ ǇǊƛƴŎƛǇƭŜέΦ /ƭŀǎǎƛŎŀƭƭȅ ǘƘƻǎŜ ƭŜǾŜƭǎ ŀǊŜ12: 

- A level-1 control, within the business units which conduct their activities or perform their 
duties in a controlled manner. 

- A level-2 control, exercised by the unit managers or directors, or in more complex 
organizations by teams responsible for internal controls (also referred to as internal oversight). 

- A level-3 control, exercised by the internal audit directorate, which aims to guarantee the 
proper implementation of control mechanisms by periodically reviewing their operational 
accuracy. 

A clear segregation of duties must exist between business units which commit operations, and those 

which record and monitor operations on an ongoing basis. 

5.1.3. Risk recognition and assessment 

Organizations should perform a risk mapping, which must be periodically updated and evaluated, so 

as to develop a coherent and comprehensive view of risks. They should also define and regularly 

promote a solid, consistent risk culture dealing with risk awareness and with risk-taking behaviour. 

Lastly, they should implement systems and procedures to guarantee a cross-cutting, prospective risk 

analysis. 

5.2. Integration in business processes 

One of the main challenges for the governance of AI algorithms is their integration in existing 

processes. Key factors to take into account are the role played by the algorithms within a business 

process, the engineering methodology used, and who the end users are.  

5.2.1. Role of AI 

The roles played by AI components in business processes are highly variable.  

The primary AML-CFT workshop (section 8.1) illustrates how the function of an ML model can be 

operational, even business-critical: in that case, its role is to route certain alerts triggered by financial 

transactions with a particularly high estimated risk directly toward level 2 (Compliance), thus inducing 

an operational risk in case the Compliance team becomes overloaded. The critical function of the AI 

component is also elevated in this case by the constraint of real-time operation: suspicious 

transactions should be detected and reported with as small a lag as feasible. 

Conversely, the incorporation of ML into the prospective customer selection process for the purposes 

of commercial canvassing or cross-selling is not truly disruptive, and does not incur any significant 

change in the business process. 

5.2.2. AI engineering methodology 

The definition of an appropriate engineering process for ML varies greatly depending on the business 

process and on how the models are used. Two examples shall illustrate this variety of situations:  

                                                           
12 ¢ƘŜ нлмо ά/w5-L±έ 9ǳǊƻǇŜŀƴ ŘƛǊŜŎǘƛǾŜ όCapital Requirements Directive) defines the basis for such an 
organization within financial institutions. 
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- When ML is used by marketing teams (a common case, although not covered by the 
exploratory works described herein), significant room for manoeuvre is granted to model 
building, which is often an iterative process since one-off model deployment is used e.g. to 
feed a marketing campaign. 

- Conversely, ML usŜ ŎŀǎŜǎ ǎǘǳŘƛŜŘ ƛƴ ǘƘŜ !/twΩǎ ǿƻǊƪǎƘƻǇǎ ǊŜǉǳƛǊŜ ŀ ƳƻǊŜ ǎȅǎǘŜƳŀǘƛŎ 
engineering process, closer to the best practices adopted by the software industry: build 
automation, reproducibility of releases, QA (quality assurance) process, monitoring of the 
models deployed in production (including their stability over time). The engineering process 
should thus meet more stringent requirements in this latter case. 

Thus the AI engineering process can vary from a one-off build-and-deploy mode, through an iterative 

build process, all the way to a continuous process which can also be fully automated, typically using 

CI/CD13. 

As for the delivery mode of the AI system itself, it is also variable between a manual delivery process 

where only final artefacts (i.e. the ML models) are retained to be put in production, and at the other 

ŜȄǘǊŜƳŜ ŘŜƭƛǾŜǊƛƴƎ ǘƘŜ ŜƴǘƛǊŜ ŘŀǘŀǎŜǘǎ ŀƴŘ ƛƴǘŜǊƳŜŘƛŀǘŜ ǊŜǎǳƭǘǎ ŦǊƻƳ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ŜȄŜŎǳǘƛƻƴ ŀƴŘ 

model-ōǳƛƭŘƛƴƎ ǎǘŀƎŜǎΦ ! ƳƛŘŘƭŜ ƎǊƻǳƴŘ ōŜǘǿŜŜƴ ǘƘƻǎŜ ǘǿƻ ŀǇǇǊƻŀŎƘŜǎ ƛǎ ǘƘŜ άƳŀƴŀƎŜŘ ǎŜǊǾƛŎŜǎέ 

approach offered by the consulting firm which participated in the workshop on probability of default 

(section 8.4), which is composed of two elements: on the one hand a model engineering workbench 

which follows a systematic (albeit not fully automated) model-building approach but is controlled by 

the solution provider, on the other hand an information sharing platform which enables the customer 

who uses the ML model to perform a complete review of the engineering process, and provides an 

audit track independent from the execution of that process. 

 

5.2.3. AI end users 

The impact of the introduction of AI in a business process primarily depends on who its end users are 

ς as opposed to personnel responsible for its internal control whose role will be examined in the next 

section. Those end users may be internal such as marketing teams and business unit managers, or 

external such as clients and prospects. 

                                                           
13 CI/CD (Continuous Integration / Continuous Deployment) refers to general software engineering principles 
based on automating the entire design and development process, which enables more frequent product releases 
than traditional methods allow, without trading off their quality. This methodology is closely related to agile 
methods as well as the DevOps approach, which associates the roles of software development and IT operations. 

AI ENGINEERING METHODOLOGY 

The AI engineering process should be designed to cover the entire algorithm lifecycle. Depending 

on the use case, a systematic approach may be necessary, in accordance with principles of model-

building automation, build reproducibility, quality assurance, and monitoring of the engineering 

workflow.  

In any case, full traceability of the AI design and engineering process should be guaranteed. 
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In particular, maintaining the quality expected from the process requires examining whether a 

particular form of explanation should be provided to end users so as to clarify and motivate the 

decisions and predictions impacting them. 

Types of end users 

In the case of integrating an ML component into an AML-CFT workflow (see details on these works in 

the appendix), end users are level-1 and level-2 teams: 

- Verifications performed by the Compliance team need to be adequate to this new approach 
(which requires mastering the underlying technology). 

- Model validation needs to be performed much more frequently than e.g. in the case of capital 
requirements models, since drifts may occur in real time here (for example a false positive rate 
which deviates from the norm), hence monitoring of the model must itself be feasible in (quasi) 
real time. 

In the case of the workshop on customer protection (section 8.5), prefilled quotes for a home insurance 

contract are delivered to the customers themselves, which requires explaining the reasons for offering 

ŀ ǎǇŜŎƛŦƛŎ ǇǊƻŘǳŎǘΦ ¢ƘŜǎŜ ǊŜŀǎƻƴǎ Ƴǳǎǘ ōŜ ƛƴ ƭƛƴŜ ǿƛǘƘ ǘƘŜ ŎǳǎǘƻƳŜǊǎΩ ǊŜǉǳƛǊŜƳŜƴǘǎ ŀƴŘ ƴŜŜŘǎΦ 

Human-machine interactions 

It is essential that end users of an algorithm, insofar as they are internal users tasked with ensuring the 

accuracy and quality of a business process, remain independent from the machine. This is because 

human experts are able to spot manifest errors made by the algorithm, which also offers the benefit 

of contributing to its performance and stability (i.e. two out the four design principles presented in this 

document). 

AI also provides additional leverage to check the absence of systematic biases or temporal drift in the 

decisions made ς or the advice given ς by an automated process in finance: in such a situation, 

introducing ML into processes enables to decrease the operational risk. 

Human intervention in a decision-making process delegated to software is not inconsequential, as it 

introduces a new kind of risk: the downside of enabling a human operator to validate the decisions is 

that they may become liable, especially in cases where they contradict the algorithmic result rather 

than confirm it. Besides, humans sometimes modify their own behaviour when interacting with a 

machine: they may tend to systematically follow the algorithmic results, including the erroneous ones, 

rather than engaging their liability by rebutting them. 

This issue of independence from the algorithm and responsibility towards its decisions are of course 

related to the explainability principle, since a human operator needs to understand the mainspring of 

a given decision in order to, if need be, counter it with a more appropriate one.  

Lastly, human intervention might introduce bias ς desired or not ς into the explanations associated to 

ŀƴ ŀƭƎƻǊƛǘƘƳΩǎ ƻǳǘǇǳǘΣ ǿƘŜƴŜǾer the explanations provided or amended by the operator become 

disconnected from the actual underlying factors which led to that output: the explanations become 

distorted or overridden, furthermore transparency is no longer guaranteed for the algorithm, which 

may hide some of its deficiencies. A basic recommendation appears relevant in this regard, namely not 

ŀƭƭƻǿƛƴƎ ƘǳƳŀƴ ƛƴǘŜǊǾŜƴǘƛƻƴ ǘƻ ŘŜŦƛƴŜ ƻǊ ŦƻǊƳǳƭŀǘŜ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ŜȄǇƭŀƴŀǘƛƻƴǎΦ 
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5.3. Internal control system 

The other major impact of introducing AI algorithms pertains to the continuous validation of those 

algorithms, and specifically internal control procedures.  

5.3.1. Organization of internal controls 

Monitoring algorithmic performance and detecting its potential drift over time requires a different 

design of the human validation process. For example, the AML-CFT workshop (section 8.1) illustrated 

how the partial replacement of level-1 operators by an ML algorithm may decrease the capacity to 

evaluate the process efficiency in the future, at least in terms of false negatives (alerts not raised by 

the system, and thus corresponding to transactions which will not be analysed by the human eye): this 

is why some of those operators have been assigned to manual labelling ƛƴ ǇŀǊŀƭƭŜƭ ǿƛǘƘ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ 

execution, thus continuously yielding new training data. 

As for the organizational structure of internal controls, an ML algorithm often aims to replace (partially 

or fully) the tasks performed by the level-1 team (reviewed by their hierarchy) and/or level-2 team (in 

charge of compliance checks), but probably not level-3 (in charge of internal controls) ς although 

nothing precludes this automation stage to be achieved in a more distant future. The users of the 

algoǊƛǘƘƳΩǎ ƻǳǘǇǳǘ ŀǊŜ ǘƘǳǎ ς as should be ς not part of the team tasked with monitoring its behaviour, 

nor are they its designers. 

 

5.3.2. Initial functional validation 

In the case of the workshop on credit scoring models (section 8.3), a pre-deployment model validation 

process was defined, with the involvement of technical teams (in charge of building and validating 

AI END USERS 

The scope and conditions of human intervention in AI-driven business processes should be well-

defined. Lƴ ǇŀǊǘƛŎǳƭŀǊΣ !L ƛƴǘŜƎǊŀǘƛƻƴ ƛƴǘƻ ǘƘƻǎŜ ǇǊƻŎŜǎǎŜǎ ǎƘƻǳƭŘ ōŜ ǇƭŀƴƴŜŘ ŀŎŎƻǊŘƛƴƎ ǘƻ ŜƴŘ ǳǎŜǊǎΩ 

needs. If end users include both internal and external individuals, the respective forms of 

algorithmic explanations appropriate to each of those should be articulated. 

Algorithmic results may also have to be submitted to a human validation process. This validation 

should be governed by rules documented as part of the internal control procedures, both because 

human responsibility becomes engaged and because the algorithm may modify human behavior 

and judgment.  

ORGANIZATION OF INTERNAL CONTROLS AND AI 

Internal control procedures of AI algorithms should, to the extent possible, involve both technical 

specialists and domain experts. Indeed, monitoring those algorithms requires initial technical 

validation of the components involved, their continuous monitoring, and adequate management 

of compliance risks generated or reinforced by the ML. 
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models, both locally and globally within the banking group in question) and of the compliance and risk 

management department. 

In particular, any model deployment (be it a model creation or the patch for an issue affecting an 

already-deployed model) requires validation by the group-level Risk Committee, among other things 

to approve the chosen risk management strategy. The use of ML within these models is thus 

considered and evaluated by stakeholders across the organization: by technical experts, domain 

specialists, and within high-level committees. This approach appears beneficial and applicable to other 

use cases, possibly with variations according to how critical the impacted business function is. 

 

5.3.3. Ongoing functional validation 

Exploratory works on the AML-CFT topic, wherein an ML algorithm detects anomalies to be analysed 

by teams at levels 1 and 2, have shed light on how such an algorithm requires more sophisticated 

methods for ongoing review than traditional methods do. This includes continuously monitoring the 

proper calibration of the algorithm: volume of alerts raised to level 2, rate of false positives filtered 

out downstream, etc. 

This upgrade of the ongoing validation process thus requires from the teams in charge: 

- At a minimum, deploying and mastering tools for monitoring the operational behaviour (in real 
time if need be) of the algorithms. 

- Building appropriate expertise and tradecraft so as to detect incidents upfront, and ideally to 
diagnose and remedy them as well. 

 

5.3.4. The case of internal risk model updates 

Whenever AI is used in the construction of internal models, an essential consideration in the validation 

process is how to define triggering events for a model revalidation. In this regard, AI-based internal 

models differ from expert systems based on rules and various predefined configuration parameters, 

which have to be revalidated each time those parameters are proactively updated or are deemed 

obsolete: ML-based internal models become invalid following a major change in their input data. (It 

should however be noted that those models are not always devoid of predefined configuration 

INITIAL FUNCTIONAL VALIDATION 

The impact of an AI algorithm on the initial validation process should be defined as early as the 

design phase. Stakeholders involved should include technical staff from the design and validation 

teams, domain experts, and transverse committees concerned with the business processes in 

question. 

ONGOING FUNCTIONAL VALIDATION 

Ongoing functional validation of AI algorithms requires both dedicated tools (such as dashboards 

enabling the teams in charge to monitor their overall behavior) and closely interacting with the 

technical experts who designed them and performed the initial validation. 
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ǇŀǊŀƳŜǘŜǊǎΣ ǎǳŎƘ ŀǎ ŀ ƭŜŀǊƴƛƴƎ ŀƭƎƻǊƛǘƘƳΩǎ ƘȅǇŜǊ-parameters, in which case they must be subjected to 

the same treatment as traditional, rule-based models.) 

Lƴ ǘƘŜ ǇŀǊǘƛŎǳƭŀǊ ŎŀǎŜ ƻŦ ƛƴǘŜǊƴŀƭ Ǌƛǎƪ ƳƻŘŜƭǎ όǊŜŦŜǊǊŜŘ ǘƻ ŀǎ ά.ŀǎŜƭ ƳƻŘŜƭǎέ ƛƴ ǘƘŜ ōŀƴƪƛƴƎ ǎŜŎǘƻǊύΣ ŀ 

model update policy defined by the banking institution clearly documents a number of criteria (such 

as a specific threshold being exceeded upon a parameter adjustment) which trigger the requirement 

to report the model update to the supervisory authority. This kind of parameter adjustment is typically 

decided and performed by the human experts in charge of the risk model, therefore one may ask what 

should become of those triggering events if the model is based on ML. 

Lƴ ŦŀŎǘΣ άŎƭŀǎǎƛŎŀƭέ ƛƴǘŜǊƴŀƭ ƳƻŘŜƭǎ ŀǎǎǳƳŜ ǘƘŀǘ ǇŀǊŀƳŜǘŜǊǎ ŀǊŜ ŎŀƭƛōǊŀǘŜŘ ŀƎŀƛƴǎǘ ǘƘŜ ŘŀǘŀΣ ƴƻǘ ǳƴƭƛƪŜ 

the training phase for an ML model. Besides, current regulation requires a governance framework 

which comprises the processes of back-testing and model parameter updating: parameter updates are 

often the consequence of back-testing results and thus caused by changes observed in the data. 

The internal model update must be reported as soon as the induced change is deemed material by the 

institution, which should therefore define within its governance framework the process for evaluating 

the materiality of a change ς whether the model uses ML or not. 

Lastly, most actors in the banking sector opt for a scheduled calibration strategy; however some 

classical internal models update their parameters on a periodic, systematic basis (for example their 

volatility parameters in the case of a market model), also similarly to ML models. Therefore, from a 

model update policy standpoint, it appears that ML-based models can be treated like traditional 

internal models. 

5.3.5. Technical validation 

Technical expertise is required for AI validation, typically throughout the Data Science spectrum: 

- Data Owner and Data Steward are respectively responsible for the governance and for the 
quality of data used by the algorithms. 

- Data Engineers and Data Scientists are tasked with ensuring proper operational behaviour of 
software components which implement the algorithms. 

- [ŀǎǘƭȅΣ ƛƴ ǘƘƛǎ ŎƻƴǘŜȄǘ 5ŀǘŀ !ƴŀƭȅǎǘǎ ǇŜǊŦƻǊƳ ƛƴƛǘƛŀƭ ŀƴŘ ƻƴƎƻƛƴƎ ǾŀƭƛŘŀǘƛƻƴ ƻŦ ǘƘŜ ŀƭƎƻǊƛǘƘƳǎΩ 
output.  

The AI engineering stages to be covered by an adequate technical validation process include: 

- Model selection, training and tuning. 
- Continuous monitoring of the model (non-regression of the algorithm, absence of model drift, 

etc.). 
- The higher-value task of detecting new data sources or variables to feed the algorithm. 
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5.3.6. Management of AI-related risks 

Internal control procedures are inevitably impacted by the use of AI and their evolution closely related 

to the generated risks, depending on the type of integration with business processes (automated vs. 

computer-aided decision-making) and on the nature of those risks (regulatory or legal, operational, 

financial). 

Let us consider the example of AI used for assisting insurance claim processing: this downstream 

process within the value chain of insurance product distribution ς which is not part of the exploratory 

works presented in this documented ς has recently experienced an increased usage of ML. The typical 

use case in this context is to perform algorithmic filtering of incoming damage reports, so as to detect 

likely fraud cases or apply exclusion criteria. Cases having gone through those filters will result in a 

compensation offer (automatically generated in some cases), whereas rejected cases will be routed 

toward operators in charge of insurance claim files. The main challenge here is the accuracy of the 

claim management process: 

- The insurance organization is exposed to financial risk if the rate of incoming claims resulting 
in a compensation offer unduly increases. 

- Operational risk exists in case the volume of cases rejected by the algorithms increases to the 
point of overloading level-2 teams who need to review them. 

- Lastly, compliance risk appears if the overload is such that the rate of disputed claims itself 
increases significantly. 

Conversely, the main stake for the workshop on customer protection (section 8.5) is the explainability 

of the advice given, in order for the consumer who is offered an insurance product to be informed 

prior to making a decision. 

Besides these various AI-related risks, a cross-cutting concern is the necessity for a dedicated safety 

mechanism (as part of a fall-back plan going all the way to business continuity planning) designed to 

remedy an incident, major malfunction or failure of an AI component: 

- If the integration into initial business processes is sufficiently modular and robust, this safety 
mechanism may simply consist of falling back onto the initial process for the time period 
necessary to fix the failure. 

- If the process has been more structurally impacted by the integration of AI, the safety 
mechanism will require more sophistication (and often proves more complex to implement as 
it also needs to be officially validated). 

TECHNICAL VALIDATION 

Technical validation of AI algorithms introduced in business processes requires developing a broad 

in-house Data Science expertise, be it spread across departments (within an organizational 

structure built around multi-disciplinary profiles) or gathered within a specialized business unit. 

This technical expertise should span the Data Science spectrum (from data engineering to state-of-

the-art ML techniques) and be multi-tiered: generalist skills, financial sector specialization, and 

deep knowledge of business processes specific to the organization.  
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5.4. Security and outsourcing 

Security of solutions relying on ML algorithms requires taking into account at least two types of risks 

rarely ς it at all ς encountered in traditional solutions: specific algorithmic risk (in terms of availability 

and integrity) and data processing risk. An additional consideration is the potential outsourcing of the 

design, implementation or exploitation of those solutions, which bears ML-specific security risks. 

5.4.1. ML security 

ML security challenges are similar to those of traditional IT systems: they typically pertain to 

confidentiality, integrity, and availability. Their treatment, although it should be tailored to their exact 

usage of ML, is in no way unique to the financial sector. This is even more so as the attack surface in 

finance is narrower than in other sectors: IT security in finance is usually a well-funded and mature 

area, furthermore exposure from things like open source code and use of public data has thus far 

tended to be more limited than elsewhere14. 

The way to make an ML model safe is different from the way in which a web service exposed through 

a REST API15 ς or the underlying data sources for that matter ς can be secured. These three potential 

targets lie on three different architectural layers (while being mutually interwoven): respectively the 

model layer, the application layer, and the data layer. 

A comprehensive description of the potential flaws of an ML model and of the means to remedy them 

is beyond the scope of this document. A categorization of the main possible attacks is however given 

in appendix 12. 

                                                           
14 The reversion of this trend is however already visible, as many actors rely heavily (and sometimes exclusively) 
on open-ǎƻǳǊŎŜ ƭƛōǊŀǊƛŜǎ ŀƴŘ ǇǊƻŘǳŎǘǎ ƛƳǇƭŜƳŜƴǘƛƴƎ a[ ŦǳƴŎǘƛƻƴŀƭƛǘȅ ǎƻ ŀǎ ǘƻ ŀǾƻƛŘ άǊŜ-ƛƴǾŜƴǘƛƴƎ ǘƘŜ ǿƘŜŜƭέΣ 
and as the use of so-called alternative data (collected from the web or from other publically available sources) 
becomes widespread among data-driven systems in finance. 
15 REST (Representational State Transfer) is an architectural method commonly used to build applications 
exposed on the web. A REST API (Application Programming Interface) is thus a simple, standard, easily secured 
method to design and deploy a web service. 

MANAGEMENT OF AI-RELATED RISKS 

The nature of risks pertaining ǘƻ !LΩǎ ǊƻƭŜ ƛƴ ǘƘŜ ǇǊƻŎŜǎǎ ǎƘƻǳƭŘ ōŜ ŎŀǊŜŦǳƭƭȅ identified: operational 

IT-related risk, financial risk, compliance risk, etc. 

These risks should be included in the risk map required by governance principles, up to and 

including incident remediation and business continuity plans. 
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5.4.2. Third-party and outsourcing risks 

Financial actors rely on different types of third-party providers to develop their AI: design and 

implementation may be outsourced, off-the-shelf software products and services are now a common 

offering in AI, lastly hosting and administration of AI applications are often delegated to a cloud or 

hosting services provider. 

Outsourcing-related risks 

Risks classically generated by the outsourcing of software skills, design and implementation are 

particularly acute in AI. 

Those risks are difficult to mitigate in practice if they have not been sufficiently anticipated. Hence a 

good practice prior to any outsourcing decision is to perform an ex-ante risk analysis taking into 

account the following risks. 

Reversibility 

As reported by the outsourcing guidelines published by European control authorities (EBA, 2019; 

EIOPA, 2020), reversibility of outsourced solutions constitutes a significant, non-AI-specific source of 

vulnerability within financial institutions today. 

Using AI may even further exacerbate those concerns. Controlling the entire engineering workflow 

when it is outsourced requires mastering a variety of skills, including: 

- Data Science skills pertaining to advanced ML techniques. 
- Software design and architecture tradecraft related to complex systems with multiple 

integration points among components whose source code is not always open and well-
documented. 

- DevOps expertise in order to manage a heterogeneous infrastructure, which often combines 
dedicated hosting servers and cloud services. 

Even when the entire skillset is available, as is often the case in large banking institutions, those skills 

may be scattered across departments whose technical teams are too άsiloedέ to be able to re-

internalize what had been delivered (often as a monolith) by third-parties.  

Outsourced AI development 

As described in the workshop on probability of default (section 8.4), outsourcing the development of 

an AI component induces many changes in the business process. Resulting challenges are, among 

others: 

ML SECURITY 

Assessing the security of processes involving AI should take into account both classical IT security 

evaluation and the analysis of AI-specific risks and mitigation techniques. 

In particular, any impact assessment, incident remediation plan or security audit mission should 

consider potential attacks against ML models, against their underlying data, and against predictive 

and decision-making systems as a whole. 
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- Developing and nurturing adequate in-house resources (human and technological) to validate 
code written outside the organization. 

- Ensuring the delivered software is thoroughly documented as possible and periodically 
updated, so as to meet the criteria of internal control procedures. 

- Planning for an audit of the deployed solution as early as in the AI design phase, which requires 
thinking ahead in terms of software architecture and integration capabilities. 

- Deploying sophisticated (and themselves well-documented) explanatory methods in order to 
explain the results produced by a system whose development was outsourced. 

Off-the-shelf AI software 

The risks induced by an AI software acquisition strategy are similar to those resulting from outsourcing 

its development: dependency risk, non-reproducibility of results, lacking IT security by the software 

provider, product support deficiencies, and audit capability (assuming audit operations are relevant, 

i.e. when recurrently buying from the same provider). 

The workshop on probability of default (section 8.4) has raised the issue of the dependency risk 

towards an AI solution provider: in that specific case, the risk is controlled insofar as the provider 

enables the customer to review all stages leading to the delivered ML model. It remains nonetheless 

ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ǊŜǎǇƻƴǎƛōƛƭƛǘȅ ǘƻ ƳŀǎǘŜǊ ǘƘŜ ǘŜŎƘƴƻƭƻƎƛŜǎ ƛƴǾƻƭǾŜŘ ƛƴ ƻǊŘŜǊ ǘƻ ƳƛǘƛƎŀǘŜ ǘƘŜ ŘŜǇŜƴŘŜƴŎȅ 

and vendor lock-in risks. Furthermore, caution is advised against acquiring software which does not 

sufficiently limit this dependency risk, for instance if the resulting model constitutes the only 

deliverable, to the exclusion of upstream stages in the engineering workflow allowing to rebuild the 

model ς or alternatively, if that workflow is not adequately documented. This lack of information, both 

on how the ML model was designed and how it can be expected to behave, may lead both to 

operational risk and to difficulties in internal control and audit missions.  

Lastly, it should be noted that a risk such as non-reproducibility of results is neither new nor AI-specific: 

traditional models which AI aims to replace often share this characteristic with outsourced AI solutions, 

especially if they rely on stochastic methods such as Monte Carlo simulations16. 

Cloud hosting 

Service and application hosting on a public cloud has become an outsourcing scenario commonly 

encountered in the financial sector. To accompany this trend, an initial set of outsourcing guidelines 

have been published by European control authorities in banking (EBA, 2019) and in insurance (EIOPA, 

2020). 

Those guidelines cover more or less the same ground in both domains, namely: assessing how critical 

business processes are (and impact analysis), documentation requirements, duty to inform the 

supervisor, access and audit rights by the financial institution but also by the supervisor, IT security, 

the risks associated to data management, subcontracting, contingency planning (including business 

continuity plans), and the exit strategy out of the outsourcing agreement. 

                                                           
16 Monte Carlo simulations are a class of optimization methods which relies on randomness (more precisely, 
repeated, computationally-intensive random sampling) to emulate the behaviour of an often deterministic 
process or model. 
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5.5. Audit of AI algorithms 

The AI evaluation principles previously exposed in the context of initial and ongoing validation remain 

valid for audit operations, be they performed by internal teams as part of periodic review or by the 

control authority as part of its supervisory missions. Thus, an auditor will need to consider the precise 

context in which the algorithm was developed and, in particular, the business processes into which it 

is integrated or which are impacted by it in one way or another.  

Based on this context and on their objectives, auditors will need to consider the aforementioned trade-

offs between the different evaluation criteria of AI algorithms, and the evaluation methods themselves 

will need to be suitable for self-ƭŜŀǊƴƛƴƎ ǎȅǎǘŜƳǎΦ ¢ƘŜ ŀǳŘƛǘ ǘŜŀƳΩǎ !L ǎƪƛƭƭǎ Ƴǳǎǘ ōŜ ǎǳŦŦƛŎƛŜƴǘ ǘƻ ƳŜŜǘ 

these requirements ς as do those of the teams in charge of ongoing review. 

5.5.1. A multi-pronged approach 

A variety of situations can be encountered when evaluating an ML algorithm, due to the previously 

mentioned parameters (combination of algorithm type, end users and application scenario) and to the 

circumstances of the validation process itself (access to source code and underlying data may or may 

not be possible, technical resources may be available or not, etc.). The necessity to handle these 

different situations encourages the adoption of a multidimensional approach to the evaluation of ML 

algorithms: the one described in the following associates analytical and empirical methods.  

Analytical evaluation 

An AI algorithm can be characterized by its maximum explainability level, according to the four levels 

identified in section 3.4.4. 

[ŜǾŜƭǎ м όƻōǎŜǊǾŀǘƛƻƴύ ŀƴŘ н όƧǳǎǘƛŦƛŎŀǘƛƻƴύ Řƻ ƴƻǘ ƳŀƪŜ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ƛƴǘŜǊƴŀƭ behaviour intelligible: 

an explanation then cannot rely on the model architecture nor on the piecewise analysis of the 

algorithm at various levels of granularity. Levels 3 (approximation) and 4 (replication) on the other 

hand rely on a structural or detailed analysis of the algorithm ς or more precisely analysis of its source 

code and of the resulting model. 

THIRD-PARTY AND OUTSOURCING RISKS 

Any decision to outsource the design, implementation, hosting or operations of an AI system, or to 

use third-party products or services, must be preceded by an ex-ante risk analysis and take into 

account its results, especially with regard to reversibility. 

Some governance principles pertaining to the third-party relation should also be observed: 

- Ensuring proper documentation of deliverables and traceability of the process so as to 
enable auditing if necessary. 

- Guaranteeing the financial institution access (technical, practical, but also legal with regard 
to IP ς intellectual property ς rights) to the source code and the ML models, even when 
development or hosting of the latter has been outsourced. 

- Offering the same guarantee to the supervisor so as to enable audit missions which cover 
the AI systems, their source code, and the data they use. 
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If the organizational risk policy has adequately determined the explainability level required by the use 

cases of each AI algorithm, then audit missions pertaining to those algorithms should focus on high-

stake algorithms which have logically been assigned a higher explainability level (3 or 4). In that case, 

the analytical evaluation is feasible, assuming a few prerequisites are met ς the most important one 

being the accessibility of the source code, including its documentation. 

In cases where an internal or external audit mission addresses an algorithm which has been assigned 

a lower explainability level (1 or 2), one of the first stages of the audit should consist of validating that 

this level is compatible with the types of risks and the compliance requirements of the business process 

in which the algorithm is integrated. The audit may then evaluate the algorithm and its impact on the 

efficiency of that process via the empirical methods described in the following section. 

 

Empirical evaluation 

The ML system ƛǎ ƛƴ ǘƘŀǘ ŎŀǎŜ ǘǊŜŀǘŜŘ ŀǎ ŀ άōƭŀŎƪ ōƻȄέ and is evaluated from the outside, i.e. by 

observing its behaviour based on various input data. Several approaches are feasible, of which three 

are described in the following. 

Post-modelling explanatory methods. These methods operate on pre-trained ML models and are 

categorized as global or local depending on whether they aim to explain a specific decision or the 

ŀƭƎƻǊƛǘƘƳΩǎ ƻǾŜǊŀƭƭ behaviourΦ ! ƴǳƳōŜǊ ƻŦ ǎǳŎƘ ƳŜǘƘƻŘǎ ŀǊŜ ŎŀƭƭŜŘ άōƭŀŎƪ-ōƻȄέ ŜȄǇƭŀƴŀǘƻǊȅ ƳŜǘƘƻŘǎΥ 

ǘƘŜȅ ǊŜƳŀƛƴ ǾŀƭƛŘ ŜǾŜƴ ǿƘŜƴ ƛǘ ƛǎ ƛƳǇƻǎǎƛōƭŜ ǘƻ ŀŎŎŜǎǎ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ŘƻŎǳƳŜƴǘŀǘƛƻƴ ƻǊ ǎƻǳǊŎŜ ŎƻŘŜΣ 

and are therefore particularly suitable for algorithms whose maximum required explainability is level 

1 or 2.  

An auditor can also use post-modelling explanatory methods as a complement to any explanatory 

ƳŜǘƘƻŘ ƛƳǇƭŜƳŜƴǘŜŘ ōȅ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ŘŜǎƛƎƴŜǊ όǎǳŎƘ ŀǎ ǘƘƻǎŜ described in appendix 11.2). Besides, 

counterfactual explanations constitute a particularly interesting case of post-modelling explanatory 

method insofar as they can contribute to assessing that the appropriate data management principle 

described in this document has been followed, both in terms of regulatory compliance (specifically 

with respect to GDPR) and in terms of ethics and fairness. A non-comprehensive list of post-modelling 

explanatory methods is provided as appendix 11.3.  

The workshops led by the ACPR with financial actors, also detailed as appendix, have shown those 

explanatory methods to be already in widespread use within the internal validation processes of ML 

algorithms, mostly as a way to assess their proper behaviour by means other than efficiency metrics. 

It seems logical that the same methods should also be made available to external actors tasked with 

evaluating those systems. 

ANALYTICAL EVALUATION OF ML 

When the stakes warrant it, appropriate analytical evaluation techniques and tools should be 

implemented as early as the algorithm design stage. Those methods may rely on information sheets 

describing the algorithm, the model, and the data used, and whenever possible on the analysis of 

the code and data themselves. 
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Benchmark datasets. This method consists of providing test data designed to stress-test the algorithm. 

That dataset may be either synthetically generated or composed of real-world data (anonymized if 

need be), or even hybrid (typically via a generative model which enables to augment an initial 

άōƻƻǘǎǘǊŀǇέ Řŀǘŀ ǎŀƳǇƭŜύΦ 

From a technical standpoint, any empirical evaluation of this kind requires dedicated Data Science 

resources, more specifically Data Engineering profiles who can build benchmark datasets and 

frameworks. 

Challenger models. This method consists of providing a challenger model, whose predictions or 

decisions are to be compared against those produced by the model under evaluation. 

A point of attention regarding this method is its practical feasibility: indeed, the development of 

challenger models requires allocating significant resources (human and material) and time to the task. 

Those constraints are also hardly compatible with audit missions as currently performed by the 

supervisor, which consist of analysing the properties of the model in place and of checking their 

consistency with respect to regulatory requirements. Thus they do not aim at building an alternative 

ML model17. The next section suggests a few ways to implement this type of empirical evaluation 

method ς which is both an ambitious and a complex task. 

Lastly, it should be noted that multiple empirical evaluation metrics are available and that their choice 

depends on the objectives, both when using benchmark datasets and for challenger models. Some 

metrics focus on efficacy (in order to assess algorithmic performance) whereas others analyse how 

particular segments of the population are treated (in order to detect discriminatory biases), others still 

investigate decisions made by the algorithm on a particular data point, etc. 

                                                           
17 To put in perspective the effort required for building an alternative model, implementing a credit model for a 
banking institution typically involves tens of employees over a timespan of several years, even though its scope 
ƛǎ ƭƛƳƛǘŜŘ ǘƻ ǘƘŜ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ƻǿƴ ŘŀǘŀΦ 
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5.5.2. Challenges for the supervisor 

The previously described multidimensional approach to evaluating AI algorithms requires the 

supervisory authority to adapt its tools, methods and data. Indeed, the analysis of an ML component 

differs from that of a procedural algorithm (and even more so of a process performed by human 

operators). It requires not only a certain level of expertise, but significant resources dedicated to 

building tools ς such as challenger models ς and maintain datasets which enable efficient control 

missions. 

Besides, the variety of use cases for AI, and the variety of possible models for a given use case18, require 

that the supervisor find a balance in the implementation of its evaluation methods: on the one hand 

adaptability is necessary to support the inevitable diversity of models encountered in different 

organizations, on the other hand only a sufficient level of formalism enables a systematic approach 

όŜΦƎΦ ǘƻ ōŜ ŀōƭŜ ǘƻ ǇƭǳƎ ŀ ŎƘŀƭƭŜƴƎŜǊ ƳƻŘŜƭ ƻƴ ǘƘŜ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ŘŀǘŀΣ ŀƴŘ ŎƻƴǾŜǊǎŜƭȅ ǘƻ ǘŜǎǘ ŀƴȅ 

deployed model against a benchmark dataset). 

Work on the tools 

This line of work consists of building software and Data Science components in order to facilitate and 

accelerate supervisory missions. 

Those tools should enable producing challenger models as previously described, in order to compare 

them against those provided by the supervised organizations. A specific obstacle for the supervisor is 

the dependency on heterogeneous data models across financial actors: the evaluation method based 

on challenger models implies that those models be able to ingest data according to a structure specific 

to each organization. The challenge is analogous at the output: for example, some of the transaction 

                                                           
18 In the case of internal risk models, for instance, the diversity of models can be seen as a factor of prevention 
against herd behaviour and hence against systemic risk (see discussion paper ά!ǊǘƛŦƛŎƛŀƭ ƛƴǘŜƭƭƛƎŜƴŎŜΥ ŎƘŀƭƭŜƴƎŜǎ 
ŦƻǊ ǘƘŜ ŦƛƴŀƴŎƛŀƭ ǎŜŎǘƻǊέ published by the ACPR in December 2018). 

EMPIRICAL EVALUATION OF ML 

Empirical evaluation methods should be implemented as early as the AI algorithm design stage, and 

included in the quality assurance process of the resulting models (as part of the non-regression, 

functional, and integration tests).  

Explanatory methods should be viewed as an essential tool for evaluating an ML model. They may 

be implemented at the design stage or operate on previously trained models, besides some 

ƳŜǘƘƻŘǎ ŀǇǇƭȅ ǘƻ ƳƻŘŜƭǎ ǘƘŀǘ ƴŜŜŘ ǘƻ ōŜ ŜǾŀƭǳŀǘŜŘ ŀǎ άōƭŀŎƪ ōƻȄŜǎέΦ The choice of the most 

appropriate explanatory methods should take into account the algorithm type, the intended 

audience of the explanations, and the risk associated to the process. 

Internal audit and supervisory missions may also use empirical evaluation methods such as 

benchmarking using their own test scenarios and datasets, or the comparison of challenger models 

to the models deployed within the organization. In order to facilitate those missions, it is 

recommended to design data models and algorithms to be as modular and well-documented as 

possible ς which constitutes good software engineering practice anyway. 
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monitoring models described in the workshop on AML-CFT (section 8.1) produce a categorical output 

(low/medium/high risk level) whereas others produce a numeric suspicion score. 

Work on the data 

This line of work consists of enabling the supervisory authority to access and process data from various 

open or closed sources (public data, regulatory data, supervisory mission reports, etc.) at different 

levels (national, European or international control authorities). 

Those data should allow to build and maintain datasets for benchmarking the models deployed in the 

ƛƴŘǳǎǘǊȅΥ ǘƘŜ Ǝƻŀƭǎ ŀǊŜ ǘƻ ƳŜŀǎǳǊŜ ǘƘƻǎŜ ƳƻŘŜƭǎΩ ǇŜǊŦƻǊƳŀƴŎŜΣ ǘƻ ŀǎǎŜǎǎ ǘƘŜƛǊ ŜȄǇƭŀƛƴŀōƛƭƛǘȅ ƻƴ ƴŜǿ 

kinds of data, to detect their temporal drifts, and so on. 

The main challenge presented by the benchmark dataset approach is closely related to that described 

for challenger models: in the absence of standardization efforts, datasets must be produced according 

to a format and semantics aligned with those in place within the supervised organizations, which here 

also incurs an additional cost of technological and methodological adaptation. 

Training 

In order to enable and accompany this adaptation of the methods, tools and data available to the 

supervisor, appropriate training is a clear requirement, above all in the field of Data Science: such 

training may find its place at the supervision authority ς as is considered within the ACPR ς or in 

specialized institutions (for example pertaining to compliance in the banking sector). 
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6. Public consultation 

Respondents are invited to illustrate their answers to the following questions using the use cases of AI 

ς particularly of ML ς implemented in their organization.  

6.1. Context 

 

 

6.2. Explainability principle 

On the basis of exploratory works conducted on three topics along with a broader investigation of AI 

in finance and of state-of-the-art ML in other domains, this document has outlined a number of 

expectations pertaining to the explainability of AI algorithms. 

The relevance of those guidelines needs to be confirmed on several points, which are the object of the 

following questions.  

 

QUESTION 1: EXPERIENCE WITH ML 

¶ What kind of knowledge or experience do you possess regarding AI in general and ML in 
particular (R&D, Data Science, operational tradecraft, etc.)? 

¶ If you are answering on behalf of a financial institution, what is the level of familiarity with 
AI within your personnel (both in technical and in business roles)? 

QUESTION 2: IMPLEMENTATION OF ML (QUESTION SOLELY FOR FINANCIAL CORPORATIONS) 

¶ What are the ML algorithms implemented in your organization? 

¶ For each algorithm type, specify their use cases and the type of environment (development, 
pre-production, production)? 

¶ For each use case, according to which criteria and evaluation methods has the algorithm 
been selected (raw performance, explainability/efficacy trade-off, etc.)? 

¶ What are the respective roles of the teams involved in the design and implementation of 
ML algorithms in your organization (Data Scientist, software architects, project 
management, business experts, compliance officers, etc.)?  

QUESTION 3: DEFINITION OF THE EXPLANATION LEVELS 

Are the four explanation levels emerging from this analysis (1: observation, 2: justification, 3: 

approximation, 4: replication) clearly defined? If not, indicate the points of misunderstanding. 
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6.3. Performance principle 

 

 

6.4. Stability principle 

 

QUESTION 4: ADEQUACY OF THE EXPLANATION LEVELS 

Do those explanation levels appear to represent an adequate scale in the following senses: 

¶ Do they span the entire spectrum of current and future applications of AI in finance, from 
Ŧǳƭƭ ǘǊŀƴǎǇŀǊŜƴŎȅ ŀƭƭ ǘƘŜ ǿŀȅ ǘƻ ŀƭƎƻǊƛǘƘƳǎ ƻǇŜǊŀǘƛƴƎ ŀǎ άōƭŀŎƪ ōƻȄŜǎέΚ 

¶ Does the choice of four levels seem appropriate (if not, should there be fewer or more 
levels)? 

QUESTION 5: PRACTICAL EXAMPLES OF EXPLANATION LEVELS 

The table presented in section 3.4.1 suggests an appropriate explanation level for a few use cases 

of AI in the financial sector.  

¶ How suitable are those suggested levels? If insufficiently, for what reason? 

¶ Are those suggestions adapted to your own usage scenarios of AI (specify those scenarios)? 
If not, in what sense? 

QUESTION 6: TECHNICAL PERFORMANCE METRICS 

How do you view the technical performance metrics commonly used for ML (AUC or F1 score, GINI 

score, etc.), specifically: 

¶ Their adequacy with respect to the various ML algorithms? 

¶ The availability of methods to choose between those metrics? 

¶ How those metrics are used (model validation, selection of its operating point, model drift 
detection, etc.)? 

QUESTION 7: FUNCTIONAL PERFORMANCE METRICS 

¶ Which functional metrics (KPI) seem relevant when evaluating an AI component? Do those 
metrics account for compliance requirements specific to the processes considered? 

¶ Who should be responsible for defining functional metrics (technical or domain experts, 
with or without input from risk management and compliance teams)? 

QUESTION 8: TEMPORAL DRIFT OF MODELS 

¶ What risks are, according to you, generated by the potential drift of models over time?  

¶ What methods are or should be used to remedy those risks, or at least circumscribe them 
(out-of-time testing, alert triggering based on model drift detection, etc.)? 
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6.5. Appropriate data management principle 

 

 

QUESTION 9: MODEL GENERALISATION 

¶ What limits to the generalization power of ML models have been identified, whether in 
relation to overfitting or to intrinsic limits of the model? 

¶ How can those limits be handled (out-of-sample testing, etc.)? 

QUESTION 10: RETRAINING AS A SOURCE OF INSTABILITY 

¶ Based on your experience, are model retraining phases (whether on a periodic or 
continuous basis) a source of model instability? 

¶ What techniques are or could be used to limit this source of instability (non-regression 
testing with appropriate datasets, etc.)? 

QUESTION 11: REGULATORY COMPLIANCE OF DATA MANAGEMENT 

In your experience, which methods or techniques appear advisable in order to ensure compliance 

with various regulatory requirements relative to data management: 

¶ The GDPR? 

¶ Other cross-cutting regulations? 

¶ Sector-specific regulations, such as the European IDD (Insurance Distribution Directive)? 

Specify what stage(s) of the AI development process (design / training / prediction) involve these 

methods and techniques. 

QUESTION 12: BIAS DETECTION AND MITIGATION 

Which methods appear advisable in order to analyze biases in ML systems, for each of the following 

types of bias:  

¶ Pre-existing biases in the input data fed to the ML models?  

¶ Biases present in the algorithms themselves? 

¶ Biases within the models produced by the algorithms ς and in their decisions and 
predictions? 

More precisely, which fairness metrics enable the identification of biases, for example those with a 

discriminatory nature? 

Which methods can be used to mitigate the undesired biases thusly identified? 
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6.6. Integration in business processes 

 

 

6.7. Internal control system 

 

 

 

QUESTION 13: ROLE OF AI 

¶ Which are or should be, according to you, the outlines of a method to assess the integration 
of AI components in business processes? 

¶ What should such a method enable to evaluate: how critical the function of those 
components is, how disruptive they are with respect to the traditional process, what 
human-machine interactions are possible, etc.?  

¶ What are ȅƻǳǊ ǘƘƻǳƎƘǘǎ ƻƴ ƳŀƛƴǘŀƛƴƛƴƎ άpŀǊŀƭƭŜƭέ processes assigned to human operators 
ǎƻ ŀǎ ǘƻ Ŏƻƴǘƛƴǳƻǳǎƭȅ ŜǾŀƭǳŀǘŜ ŀƴŘκƻǊ ŎƻǊǊŜŎǘ ŀƴ ŀƭƎƻǊƛǘƘƳΩǎ ǊŜǎǳƭǘǎΚ 

QUESTION 14: AI ENGINEERING METHODOLOGY 

¶ Should the engineering methodology used for AI differ from that used for traditional 
models, and more generally from standard software engineering practices? If so, in what 
way? 

¶ How should, according to you, the ML model-building process take into account the 
integration of those models in business processes? 

QUESTION 15: RISK MANAGEMENT 

¶ How does the introduction of AI into business processes impact risk management: does it 
generate new risks or magnify pre-existing risks (specify the nature of those risks: 
operational or financial, legal, etc.)? 

¶ Are new, AI-specific risk management methods called for (for example, calibration of ML 
models in order to limit the exposure to a given type of risk)? 

QUESTION 16: FUNCTIONAL VALIDATION 

¶ What should be the initial functional validation process of an ML model (i.e. prior to 
deployment in production)? 

¶ Should functional validation be re-iterated when deploying a new version? Specify if the 
answer depends on the type of update (patch, improvement, etc.). 

¶ How should ML components be continuously monitored for business risks? 

QUESTION 17: INTERNAL MODEL UPDATE POLICY (INTERNAL RISK MODELS) 

¶ On what conditions may, according to you, ML algorithms bŜ ǳǎŜŘ ǿƛǘƘƛƴ ά.ŀǎŜƭ ƳƻŘŜƭǎέ 
in the banking sector, and within internal models in the insurance sector?  

¶ How should ŀƴ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ƛƴǘŜǊƴŀƭ ƳƻŘŜƭ ǳǇŘŀǘŜ ǇƻƭƛŎȅ take into account the use of ML 
in its internal models? 



 

40 
 

 

6.8. Security and outsourcing 

 

 

6.9. Multi-pronged approach to evaluation 

This document suggests implementing a multidimensional approach for auditing processes using AI. 

The following questions aim to further define this approach. 

 

 

QUESTION 18: TECHNICAL VALIDATION 

¶ What should be the initial technical validation process of an ML model (i.e. prior to 
deployment in production)? 

¶ What technical indicators and methods should be used to continuously monitor ML 
components deployed in production? 

QUESTION 19: OUTSOURCING 

Does the use of AI generate specific challenges or risks when its development, hosting or 

administration are outsourced? If so, which ones? 

QUESTION 20 : SECURITY 

¶ What is the impact of using ML on IT security? 

¶ Which types of attack against ML models (causative attacks, surrogate model attacks, 
adversarial attacks, etc.) appear the most important to you, both in terms of occurrence 
likelihood and in terms of damage inflicted in case of success? Specify according to the type 
of ML model, the use case, and the environment (dedicated hosting servers or cloud 
services, etc.). 

QUESTION 21: ANALYTICAL EVALUATION 

¶ Which of the following elements are available for evaluating an AI algorithm in the relevant 
organizations: the source code? Its documentation? The resulting models? The training and 
validation data? Specify if the answer depends on the algorithm type, the use case involved, 
or the context of the evaluation (internal validation, external audit, etc.).  

¶ Do you use standardized documentation frameworks such as information sheets describing 
the algorithm, the model, or the data used? 
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QUESTION 23 : EXPLANATORY METHODS 

¶ Which explanatory methods (cf. appendix 11) are currently implemented among the use 
cases of AI to your knowledge?  

¶ Do you know of any explanatory method for AI other than those described in this 
document? If so, which ones? Have they already been implemented and deployed? 

¶ Does the most appropriate explanatory method to use depend on the algorithm type? 

¶ Does it depend on the intended recipients of the explanation, and if so, in what way? 

¶ Does it depend on the level of risk associated with the business process, and if so, in what 
way? 

QUESTION 22: EMPIRICAL EVALUATION 

¶ Which of the empirical evaluation methods suggested in section 5.5.1 (benchmark datasets 
or challenger models) seems more appropriate in your opinion? 

¶ Is the architecture of data processing workflows and AI systems within the relevant 
organizations sufficiently modular and robust to enable this kind of functional testing at the 
data or model level? 

¶ Are the data format and schema sufficiently standardized (or flexible) to support a data 
benchmarking method without incurring data integration costs by the supervisor? 

¶ Analogously, are they sufficiently documented and transparent to support the integration 
of challenger models developed by the supervisor, without this approach being rendered 
unrealistic by an information asymmetry? 
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7. Technical scope 

AI is an extremely broad field whose definition ς based on academic work and industry practices ς 

evolves quickly over time. Within this discussion document, AI is considered solely in its embodiments 

relevant to the financial sector, both in their current form and in their likely evolutions over the near- 

to medium-term horizon. 

7.1. ML vs. AI 

The scope of this document is restricted to ML (Machine Learning), which happens to be probably the 

most intensely studied field within AI. Other forms of AI are not taken into consideration: robotics, 

game theory, optimization under constraints, multi-agent systems, knowledge representation and 

reasoning, or planning automation. 

Among the ML methods used in the financial sector and considered in this document, the following 

categories should be mentioned (without any comprehensiveness): 

- Unsupervised learning methods (in particular clustering techniques), which are commonly 
used in fraud and anomaly detection scenarios. 

- tǊŜŘƛŎǘƛǾŜ ƳƻŘŜƭǎ ǿƘƛŎƘ Ƴŀȅ ōŜ ŎŀƭƭŜŘ άǘǊŀŘƛǘƛƻƴŀƭέΣ ǎǳŎƘ ŀǎ ŘŜcision trees and logistic or 
linear regressions. 

- More sophisticated yet also commonly implemented models such as decision-tree based 
ensemble methods (Random Forests, Gradient Tree Boosting, etc.).  

- NLP (Natural Language Processing), used to classify and analyse all kinds of text data. 
- Deep Learning (deep neural networks), used in various use cases including CV (Computer 

Vision) where they particularly shine ς although a less prominent use case in finance than in 
other sectors. 

7.2. Models vs. algorithms 

Another key point of terminology is the distinction between an AI algorithm and the model produced 

by that algorithm. An ML algorithm (AI being, as indicated above, the field of AI considered in this 

document) is an executable procedure represented as software code, just like any algorithm. Its 

specificity with respect to other types of algorithms is to operate on input data (above all training data 

but also validation data) and to produce an ML model as output. That model is, generally speaking, 

itself composed of a predictive algorithm and of model data. The predictive algorithm is typically an 

optimization procedure which minimizes an error metric for the model on training data. 

A few examples shall illustrate the relations between ML models and algorithms: 

- A linear regression algorithm produces a model composed of a vector of weights. 
- A decision-tree construction algorithm produces a model which is a tree whose internal nodes 

are logical conditions involving predictor variables, and whose leaves are predicted values. 
- A neural network algorithm (based e.g. on a back-propagation method and a gradient descent 

algorithm) produces a model which is a graph structure whose nodes are weight vectors. 

The terms model and algorithm are sometimes used interchangeably within the present document 

when the context is unambiguous, or when the meaning refers both to the model building process 

realized by the algorithm and to the prediction process realized by the already-built model. 
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8. Detailed description of the exploratory works 

This appendix presents, for each exploratory work on the three topics selected: 

- A description of the purpose and relevance of the exercise. 
- The objectives of the algorithm presented by the financial actor involved. 
- A few technical details on the method and the implementation. 
- The validation process adopted by the actor. 
- The governance issues raised by the introduction of AI into the business process. 
- The evaluation methods used and their implications, according to the four evaluation 

principles exposed in this document (appropriate data management, performance, stability, 
explainability). 

- The engineering methodology used to develop the AI system in question. 

The following sections do not in any way constitute an evaluation of the algorithms studied during the 

exploratory works, nor of the business processes in which they are used19. Their goal is to provide 

contextual, factual information to the reader, so as to shed light on the lessons drawn by the ACPR in 

this discussion document. 

8.1. Topic 1: Anti-money laundering and combating the financing of terrorism 
(AML-CFT) 

8.1.1. Regulatory context 

Current AML-CFT regulation requires financial institutions to implement risk management procedures 

enabling them to detect PEPs (Politically exposed persons), the transactions involving individuals tied 

to a high-risk country listed by the FATF (Financial Action Task Force) or the European Commission, as 

ǿŜƭƭ ŀǎ ǘƘŜ ǘǊŀƴǎŀŎǘƛƻƴǎΣ ǿƘƛŎƘ ŀǊŜ ƛƴŎƻƘŜǊŜƴǘ ƻǊ ŀƴƻƳŀƭƻǳǎ ǿƛǘƘ ǊŜǎǇŜŎǘ ǘƻ ǘƘŜ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ 

knowledge of its customers, and may result in a SAR (suspicious activity report, or equivalently 

suspicious transaction report). 

European and national regulations pertaining to freezing of assets also require financial institutions to 

set up a unit dedicated to implementing the relevant measures ς which include, in addition to asset 

freezing, the prohibition of making funds available. 

Those regulations do not require using a computer system to do so, but in practice most organizations 

use software processes due to their size and their activity volume. 

Lastly, those regulations do not contain any provision specific to the use of AI. 

8.1.2. Purpose of the exercise 

The objectives of the primary AML-CFT workshop, augmented with a secondary workshop, were the 

following: 

- Understanding the potential use cases of AI in AML-CFT. 
- Gaining familiarity with the underlying AI techniques. 

                                                           
19 The call for applications published in March 2019 stated that the works envisioned were in no way related to 

ǘƘŜ !/twΩǎ ǎǳǇŜǊǾƛǎƻǊȅ ǇǊƻŎŜŘǳǊŜǎΦ 
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- Thinking about possible adjustments of supervisory processes in view of controlling AI-driven 
AML-CFT processes. 

8.1.3. Objectives of the algorithm 

The main project studied within this topic consists of introducing ML models to aid the filtering of 

transactional messages ς in other words, design algorithms which can assist agents tasked with 

distinguishing, among the list of alerts raised by a rule-based third-party monitoring tool, the false 

positives from the transactions concerning individuals who actually are on embargo or sanction lists. 

In the process prior to introducing AI, operators review alerts issued by the screening mechanism in 

order to determine whether they are physical or moral persons targeted by restrictive measures. These 

operators are organized according to two levels. A level-1 team is in charge of the initial alert 

processing, on the basis of a decision-making matrix. The alerts which are not resolved at level 1 are 

escalated to level-2 teams, which are authorized to release the payment, reject it, or file a homonymy 

case with the administrative authority responsible for the freezing of assets.  

The role of the ML model developed is to assist this decision-making process and to route the 

transactional messages to the appropriate level based on their relevance, i.e. the more sensitive 

messages will be directly processed by level 2, which aims at streamlining and securing the overall 

process. Level-1 teams, no longer in charge of the initial processing of some of the alerts, will then be 

able to absorb a volume increase. This model, developed by the participant to this workshop, was 

dubbed TPA (True Positive Acceleration). 

8.1.4. Technical details 

The ML algorithm is based on a neural network which is fed features with varying levels of complexity: 

message characteristics, phonetic distances between strings, address components (using NER, i.e. 

named entity recognition), and semantic analysis of free-form text. Those variables are extracted from 

transactional messages by the filtering tool and do not contain any personal data (unlike the original 

messages). 

AI contributes to rationalizing the filtering process. Indeed, by quickly and efficiently discriminating 

between heaps of voluminous messages not only frees up the analysts who can focus on tasks with 

higher added-value. The analysis of results produced by the AI also gives them higher accuracy in their 

daily job, since the risk forecasting process gains in precision as the volume of data analysed grows 

over time. A reduced amount of routine, repetitive tasks, along with the opportunity to partake in 

engaging strategic works, should also contribute to employee retention. 

Lastly, the situation can also be considered where AI directly contributes to improving the decision-

making of human analysts by performing a post-hoc analysis of the abandoned or escalated alerts, so 

as to give them a means to adjust their decisions on future alerts. 

8.1.5. Validation process 

The starting point for the participant to this workshop was to build on existing validation methods used 

for risk management models, which could be relevant to internal control procedures. 
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The usual frameworks for such risk management models are organized around a model validation team 

and a model update team. Those two teams are mutually independent: an independent review tends 

ǘƻ ƛƴŎǊŜŀǎŜ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ŜŦŦƛŎŀŎȅ ŀƴŘ ǘƻ ǊŜŘǳŎŜ ƛǘǎ ƻǇŜǊŀǘƛƻƴŀƭ ǊƛǎƪΦ  

The goal is to perform a formal validation once a year and each time the model undergoes significant 

change. Meanwhile, machine or human expert systems might use rule-based procedures in order to 

build a reference dataset, which can then operate as a benchmark against which to compare the model 

under development, so as to identify cases where AI-driven decisions deviate from expected norms. 

The peculiarity of validation processes for ML is the lifecycle of the models: 

- On the one hand, the integration of the ML component in the business process should be 
performed once, according to ǾŀƭƛŘŀǘƛƻƴ ƳŜǘƘƻŘǎ ƛƴ ƭƛƴŜ ǿƛǘƘ ǘƘŜ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ƎƻǾŜǊƴŀƴŎŜ 
framework. 

- On the other hand, the statistical validation of the model should be consistent with the first 
kind of validation, and be repeated over time ς ideally on a continuous basis. 

In other words, the notion of a priori validation should be re-examined, since shorter validation cycles 

are necessary, which makes the dichotomy between initial validation and ongoing review less relevant 

in the case of AI algorithms. 

At any rate, the validation process should be proportional to the risks, in particular in terms of 

regulatory compliance. 

8.1.6. Governance issues 

The governance schema chosen by the actor was to ensure a two-fold human role in the monitoring 

of the algorithm: level-2 analysts are tasked to authorize or reject transactions, but also to guarantee 

ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ǇǊƻǇŜǊ behaviour, while level-1 analysts also annotate transactions in parallel with the 

algorithm, which increases the amount of additional training data available to it. The latter approach 

has not been retained by all actors who introduced AI into their AML-CFT filtering workflows (cf. 

section 8.1.9), however it enables to validate the performance and stability of the algorithm over time, 

even in the presence of major changes in transaction profiles. 

In terms of operational risk, a point of attention is the significant decrease of the level-1 workload (on 

the order of 10%) due to the introduction of the ML model. It is necessary to anticipate the operational 

Ǌƛǎƪ ǘƘŀǘ ǿƻǳƭŘ ǊŜǎǳƭǘ ŜƛǘƘŜǊ ŦǊƻƳ ŀƴ ƛƴǘŜǊǊǳǇǘƛƻƴ ƻŦ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ƻǇŜǊŀǘƛƻƴ ƻǊ ŦǊƻƳ ŀ ƳƻǊŜ ƎŜƴŜǊŀƭ 

system failure: this risk is critical because of its potential ramifications, given that the AI component 

contributes here to a performance obligation. In particular, the organization needs to ensure that the 

level-1 validation teams remain capable of absorbing, if necessary, the entirety of incoming 

transactions without degrading the quality of service provided. 

8.1.7. Evaluation methods and their implications 

Explainability 

The explainability requirements of the algorithm are different from the other workshops (which 

pertain to credit granting models and to the construction of an insurance product). 
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Indeed, there is no requirement to motivate the decisions made by the algorithm which impact an 

individual. Checking the relevance of an alert raised by the algorithm is also relatively simple for an 

analyst: in order to do an efficient job of comparing the alert to a sanction list, the operator does not 

need to know the reasons why the alert was triggered. 

The most important benefit of explainability in this case is its business value: it facilitates the analysis 

of the patterns of filtering behaviour captured by the algorithm (which also constitute its training data). 

This assistance in understanding the operations performed by a human analyst is an additional help 

ŦƻǊ ǘƘŜ ƻƴƎƻƛƴƎ ǊŜǾƛŜǿ ƻŦ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ŜŦŦƛŎŀŎȅΣ ǿƘƛŎƘ ƛǎ ŀ ƪŜȅ ŀǎǎŜǘ ƛƴ ŀ ŘƻƳŀƛƴ ǎǳōƧŜŎted to a 

performance obligation (otherwise put, false negatives are very costly and should be reduced to a strict 

minimum). 

Performance 

The statistical performance of the predictive model, along with its operational impact on the alert 

processing workflow, have been evaluated with the following observations: 

- Statistically speaking, the model exhibits a slight overfitting, which however does not appear 
to induce any functional risk given how the algorithm is integrated in the overall process: in 
the worst case, that process will not be automatically accelerated, nevertheless they will be 
adequately processed by level-2 teams if need be. 

- ¢ƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ƛƳǇŀŎǘ ƻƴ ǘƘŜ business process manifests itself by a significant decrease of the 
volume of alerts to be processed by level-1 teams, and by a marginal increase of the volume 
of alerts to be processed by level-2 teams due to the improved recall of the model. 

Stability 

¢ƘŜ ƳƻŘŜƭΩǎ behaviour appears to be stable over time, insofar as the relative impact of the acceleration 

of message processing on the workload managed by level-1 and level-2 teams is itself stable over time. 

However in this usage scenario, data quality and comprehensiveness are essential, and their 

άŦǊŜǎƘƴŜǎǎέ ƛǎ ƴŜŎŜǎǎŀǊȅ ǘƻ ŜƴǎǳǊƛƴƎ ǘƘŀǘ ǘƘŜ ƳƻŘŜƭ which relies on them is operating properly. Two 

approaches can be used to this aim: 

- Making temporality explicit in the algorithm, since it plays a key role in the semantics of data: 

in particular, datasets used in AML-CFT should be periodically reviewed in order to take into 

account new methods used by malicious individuals. 

- Building generic, time-ƛƴŘŜǇŜƴŘŜƴǘ ǾŀǊƛŀōƭŜǎΥ ŦƻǊ ƛƴǎǘŀƴŎŜΣ ƛƴǎǘŜŀŘ ƻŦ ǳǎƛƴƎ ŀ άŎƻǳƴǘǊȅέ 

variableΣ ǳǎŜ άŎƻǳƴǘǊȅ ōŜƭƻƴƎǎ ǘƻ ŀ ƎƛǾŜƴ ǎŀƴŎǘƛƻƴ ƭƛǎǘέ ǿƘƛŎƘ ƛǎ ŀ ǘƛƳŜ-invariant feature related 

to the issue considered. 

Appropriate data management 

This project directly stems from the compliance department, however as previously indicated, a 

specificity introduced by the use of ML is that the responsibility for the validation process, in addition 

to the compliance team, also lies on domain experts and on technical experts. 

8.1.8. AI engineering methodology 

The project was undertaken according to an agile methodology, and was at the time of the workshop 

still at the experimental stage. As suggested in section 8.1.5, it appears sensible at this stage not to 
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demand ς even on as sensitive a topic as AML-CFT ς an excessively broad or cumbersome validation 

process, which would involve other departments and hinder its deployment in production. 

8.1.9. Secondary workshop 

A secondary workshop on the AML-CFT topic was conducted with another banking group20. This section 

only summarizes the noteworthy differences with the primary workshop. 

Objectives of the algorithm 

The business process in which ML was integrated in this case is the filtering of transactional messages, 

not to screen them against sanction lists (which in the primary workshop led to a potential rejection 

of the payment or the assets being frozen), but to detect suspicious transactions and, when 

appropriate, yield a suspicious activity report (SAR). This function is performed by enterprise software 

specialized in filtering financial transactions, which uses preconfigured business rules: those rules are 

executed on each transaction to produce a suspicion score, which is then used to route transactions 

above a threshold toward teams tasked with the analysis of alerts. Following the standard, those teams 

are broken down into levels 1 and 2: alerts above a first threshold are directed to level 1 (at the level 

of the branch offices) while those above a second, higher threshold are directed to level 2 (the Tracfin21 

correspondents of the banking group). 

In the new approach, an ML model is trained on a training dataset composed of 50% manually issued 

alerts which have been validated and 50% alerts generated by the rule-based software. It should be 

noted that for a significant portion of the manually issued alerts, the suspicion score produced by the 

business rules is zero. 

The integration of ML into the process differs from the primary AML-CFT workshop in that the ML 

model is here introduced as a complement to the enterprise software, with the following features: 

- The function of the ML model in the primary workshop was to escalate some of the alerts 
trigged by business rules from level 1 to level 2. In this case, the ML model produces additional 
alerts which are sent directly to level 2. The AI thus follows a parallel workflow, and not a serial 
one where the execution of business rules would be followed by ML prediction. Thus, rather 
than a classifier for previously-raised alerts, the banking group has deployed a detection tool 
for validated alerts which is applicable to the entire transaction flow. 

- Also, a filter has been introduced so that, when a transaction is assigned a high suspicion score 
by the ML model, an alert will only be generated if no alert was raised by the business rule 
engine on the same customer within the three preceding months. In other words, an alert 
triggered by the ML corresponds to a customer which has been given a high score while having 
ǎǘŀȅŜŘ ōŜƭƻǿ ǘƘŜ ǊǳƭŜ ŜƴƎƛƴŜΩǎ ŘŜǘŜŎǘƛƻƴ ǘƘǊŜǎƘƻƭŘ ŦƻǊ ŀ ǿƘƛƭŜΦ 

- Lastly, contrary to the business rule engine, the ML model takes into account information 
beyond transactional data: statistical features of the transactions are combined with static 
variables (either direct measures such as duration of the customer relationship or asset value, 
or constructed variables such as the types of products and contracts) on a sliding time window. 

                                                           
20 This workshop is presented as a secondary study as it was conducted belatedly, furthermore the use case for 
AI and its technical implementation are relatively similar to the first workshop. 
21 Tracfin ("Traitement du renseignement et action contre les circuits financiers clandestins") is a service of the 
French Ministry of Finances in charge of enforce AML regulation and coordinating its application.  
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Governance issues 

Contrary to the primary AML-CFT workshop, level-1 teams do not annotate the transactions in parallel 

with the ML model so as to detect false negatives: this is because accordiƴƎ ǘƻ ǘƘŜ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ !L 

team, any relevant sample (i.e. having a sufficient number of false negatives) would be too large. Two 

methods could be considered for analysing false negatives ς namely either lowering the alert triggering 

threshold or systematically sending the n most suspicious cases for review ς, both of which would 

likely induce an excessive additional workload for the operators. Besides, some false positives are 

simply due to non-observable variables. 

It should be noted that this way of introducing ML into the business process (i.e. as a complement to 

the enterprise software), along with the routing of ML-generated alerts to level 2, result in additional 

workload for level-2 teams. This is why a new AI project has been initiated with the goal of routing 

certain alerts raised by the enterprise software from level 2 to level 1, in order to reduce that extra 

workload. 

Also in relation with those changes in the business process, the banking group has decided to structure 

the organization of its AML-/C¢ ŜȄǇŜǊǘƛǎŜ ŀǊƻǳƴŘ άŘǳŀƭ ǎƪƛƭƭǎŜǘǎέΣ ƛΦŜΦ ŜƳǇƭƻȅŜŜǎ ǿƘƻ ƳŀǎǘŜǊ ōƻǘƘ a[ 

(including data management issues) and possess business experience (including in risk management). 

Those different governance choices between both AML-CFT workshops are particularly interesting: 

each option is probably suitable for its particular context, and the feedbacks gathered around both 

projects will likely provide valuable know-how regarding the possible trade-offs between the 

predictive power of an ML model, its temporal stability, and the workload dedicated to manual 

annotation of data. 

Explainability 

Explainability requirements are aimed at different types of users. A joint effort within the banking 

group, involving technical teams, the compliance department and IT people, led to proposing 

explainability forms adapted to what each user type wishes to observe and in what context (in line 

ǿƛǘƘ ǘƘŜ ŀǇǇǊƻŀŎƘ ŘŜǎŎǊƛōŜŘ ƛƴ ǎŜŎǘƛƻƴ άRecipients of the explanationέύΥ 

- Technical teams (in particular Data Scientists) rely on the explanations during the model 
construction phase ς not for continuous monitoring. SHAP (Shapley Additive Explanations) 
values are the explanation form used in that case to understand the decision made on a 
particular transaction. 

- Compliance experts use explanations to support their decision to abandon or validate an alert. 
Workshops were organized with these users in order to better define their needs (as simple 
tabular representations of SHAP values were quickly deemed inadequate). This led to the 
development of a GUI (graphical user interface) showing explanations which are still based on 
SHAP values but easier to interpret and more actionable. 

- Lastly, the banking group also aims to provide relevant explanations to internal or external 
auditors, including (as a complement to both previous explanation forms) a documentation 
ensuring proper intelligibility of the algorithm. 

Performance 

The main performance indicator is the rate of alerts generated by the detection system which result 

in a SAR. The introduction of ML according to the aforementioned architecture enabled the doubling 

of this indicator. 
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Stability 

A monitoring tool has been implemented as early as the initial deployment of the ML model, so as to 

detect any operational anomaly or model drift. That tool periodically checks several indicators 

characterizing the model, the input data, the output score distribution, etc.  

Technical teams indicated during the workshop that it was still too early to determine whether drifts 

of the ML model were more or less frequent than the need to reconfigure the enterprise software. 

Updating the ML model would nevertheless be simpler than updating the parameters of the business 

rule engine for several reasons: it is a simple retraining phase without addition of new features, it is 

also fully automatable, and the entirety of model parameters are adjusted without any manual 

intervention. Besides, the ML model update ς from retraining to deployment to production ς would 

not take longer than 2 to 3 days, which is significantly less than a reconfiguration of the enterprise 

software. 

8.2. Topic 2: Internal models in banking and insurance 

The second topic for the exploratory works conducted by the ACPR pertained to internal risk and 

capital requirements models. In fact, candidates on this topic suggested to study use cases in a slightly 

different domain. 

As a consequence, this topic pivoted toward risk credit modelling, considering both granted to 

individuals and to businesses. It consisted of two distinct workshops: 

- A workshop focusing on credit granting models: those models usually compute a credit score. 
The participant to this workshop is a banking group. 

- Another workshop relative to so-called behavioural credit models: those models aim to 
estimate a probability of default on a given time horizon for a current credit. The participant 
to this workshop is a large consulting firm which provides to banking organizations an ML 
model construction platform.  

8.2.1. Regulatory context 

Both workshops shared the following initial observations: 

¶ Classical internal models are generally relatively easy to audit but perform poorly. More 
advanced or more complex models should provide a performance improvement, albeit at the 
cost of explainability. 

¶ Regulatory requirements are identified as hindrances to the implementation of innovative 
algorithms, especially those based on ML: such requirements pertain to stability of the 
resulting models, to their auditability, but also to the transparency and explainability of the 
algorithms. 

¶ Additional challenges related to personal data protection, along with limitations inherent to 
the data (in terms of access or completeness, for example), make it challenging to analyse 
correlations among multiple variables characterizing customers and their behaviour. 

8.3. Workshop on credit scoring 

8.3.1. Purpose of the exercise 

The banking group in question has implemented methodological guidelines for credit scoring models. 
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The workshop aimed to explain how credit modelling teams took into account those guidelines ς which 

had been defined and refined over the course of many years ς so as to build models in accordance. 

8.3.2. Objectives of the algorithm 

This workshop involved the analysis of several credit scoring models, all of which answered a dual 

objective: 

- To reduce the dependency toward third-party data providers (such as Credit Bureau) by 
integrating additional internal data sources into the algorithms: for instance, behavioural data 
in addition to Credit Bureau scores and to traditional internal data such as credit history. 

- A more classical objective was to improve the discriminating power of credit scoring models. 

The three models studies were respectively about credit for enterprises, credit for the purchase of 

used vehicles, and credit for household equipment purchases. 

The Household Equipment model is described in further detail in this section. The other two models 

present similar issues, both at a functional and at a technical level. The business objective of the 

Household Equipment model is to make a decision on the credit request within 5 minutes. 

8.3.3. Technical details 

The project relies on the following data sources: 

- Data on credit applications 
o Individual data on the applicant (and co- applicant when appropriate) 
o Information on the product (amount, credit terms, etc.) 

- Data on contractual risk 
o Data used for computing default states 
o Data used for computing behavioural variables 

- External data 
o Credit Bureau scores 
o Data from central banks 

Data Scientists met during the workshop insist specifically on the importance of enriching internal data 

(which is typically the only kind used in such projects) using external data: the latter will be of various 

types (text, time series, etc.) and sometimes collected from open data sources (obtained via web 

scraping). The strength of ML lies not only in using novel algorithms, but also in leveraging such data 

sources - ƻŦǘŜƴ ŎŀƭƭŜŘ άŀƭǘŜǊƴŀǘƛǾŜέ Řŀǘŀ ǎƻǳǊŎŜǎΦ 

Most models implemented by the teams decided to use a Gradient Tree Boosting algorithm (or variants 

thereof) after comparing it to other algorithms commonly used in the organization (in particular, SVMs 

were too demanding in computing resources, and neural networks were deemed unsuitable for this 

use case). 

8.3.4. Validation process 

The validation process within the banking group for any credit granting model developed using ML 

prior to its deployment in production (whether a new model or a patch on an already-deployed model) 

is as follows: 
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- Credit teams who designed the model (usually located in the same country, or centralized 
teams in cases where sufficient Data Science resources are not available at local entities) send 
the Validation team a dossier comprising a technical documentation along with the entire 
source code. 

- The Validation team inspects the documentation (conceptual validation) and re-runs the 
model generation code (training, test, validation) in order to verify its results and to bring a 
critical look on the methods used. This is only possible because the Validation team possesses 
all necessary skills to evaluate the model according to the principles described in this 
document (data management, performance, stability, explainability). 

- For certain entities of the banking group, credit granting models are used in Basel models (i.e. 
internal risk models in the banking sector): in such cases, the Validation team presents the 
ƳƻŘŜƭ ǘƻ ǘƘŜ ƎǊƻǳǇΩǎ wƛǎƪ /ƻƳƳƛǘǘŜŜ ƛƴ ƻǊŘŜǊ ǘƻ ƎŜǘ ǘƘŜ ǎǘǊŀǘŜƎȅ ŎƘƻƛŎŜ ŀǇǇǊƻǾŜŘ όŜΦƎΦ 
constant risk, decreased risk, hybrid strategy). 

- When appropriate, the dossier ς once validated at the group level ς is sent to the ECB for 
validation of prudential models. 

The validation process thus comprises conceptual phases but also applied phases.  

8.3.5. Governance issues 

This workshop described a scenario where an ML component is introduced as a computer aid to a 

decision-making process (and not as a fully automated process). Indeed, the component is part of a 

multi-step process: 

1. Execution of business rules (related to age, filters, over-indebtedness) previously defined by 
domain experts jointly with the Validation team. 

2. Automatic computation of the credit score (which is given a lower weight than business rules 
in the overall decision-making process). 

3. Possible intervention by a human agent, who can override the decision, both in cases of a high 
score (credit granted by the system) and in cases of a score below the threshold. 

8.3.6. Evaluation methods and their implications 

Explainability 

There are multiple objectives for explanations in this use case: 

- Model designers need to guarantee the proper behaviour of the algorithm and to facilitate the 
validation process.  

- Explanations are also aimed at the teams responsible for continuously monitoring the system.  
- Lastly, they will in the future be useful to agents who need to understand a negative result 

produced by the algorithm before making a decision, i.e. either confirming the credit denial or 
granting the credit through a manual override. 

The SHAP method was retained for the three situations (LIME was also evaluated), for the following 

reasons: 

- Lǘ ŜƴŀōƭŜǎ ōƻǘƘ Ǝƭƻōŀƭ ŜȄǇƭŀƛƴŀōƛƭƛǘȅ όƛΦŜΦ ǿƘƛŎƘ ǘȅǇŜ ƻŦ ƛƴŦƻǊƳŀǘƛƻƴ ǿŜƛƎƘǎ ƻƴ ǘƘŜ ƳƻŘŜƭΩǎ 
decisions) and local explainability (i.e. which values taken by a specific data point impact the 
decision positively or negatively). 

- The form of explanation provided by SHAP has been deemed by users to be the most 
analogous to the traditional (logistic regression) model. 

- The method was easy to implement in each of the three situations. 
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A counterfactual explanatory method (cf. section 11.3.1) is however also being considered: it would 

likely require a significant amount of UI work, especially if a large amount of information needs to be 

presented to users. Besides, the explanation should be as intuitive as possible, which is not 

straightforward in cases where the underlying decision tree has been split on criteria which are not 

ǉǳƛǘŜ ƭƻƎƛŎŀƭ όŜΦƎΦ άage < 23.5 years έύΦ 

Performance 

The main methods and metrics retained to evaluate the model performance are the confusion matrix 

or F1 score to assess recall and precision, the GINI score to evaluate its discriminating power, and the 

Kappa coefficient for comparing the old and new scoring models.  

In particular, a GINI threshold is defined by the guidelines implemented throughout the organization, 

both for all credit models (the current status being that this threshold is achievable for most re-

designed models except on certain population segments such as younger age groups) and for all 

regulatory models (with a higher threshold in that case). 

The GINI gain obtained when going from traditional scoring models to the ML model produced by 

Gradient Tree Boosting is rather small (a few percentage points) in  the case examined during the 

workshop, i.e. the household equipment model. Nevertheless it can reach up to 23 percentage points 

in some models developed by the team, namely those which initially had a low discriminating power. 

Furthermore, even a seemingly marginal GINI gain generally represents a significant decrease in the 

key business metric in this case, namely the expected credit loss. 

Stability 

The main stability metric retained in this project is based on cross-validation results (namely some 

checks on the standard deviation over the different folds).  

Several indicators are also monitored: 

- Mutation rate of the population (using the Population Stability Index). 
- Evolution of the portfolio profile (credit application rate, acceptance rate, number of defaults 

over the previous three months), in accordance with the monitoring practices described in 
section 3.3. 

- Evolution of business performance metrics. 

In case an alert is raised on those indicators, an analysis if performed in order to find probable causes 

for the corresponding statistical anomalies, and a remediation plan is produced, which may in some 

cases include a model redesign. 

Due to lack of hindsight on the operation of the new model thus far (which is done in parallel with the 

traditional model still used in production), the teams were not able to estimate its stability nor its 

appropriate update frequency. 

8.3.7. AI engineering methodology 

The credit granting models developed by the teams are not yet in production. A method to analyse 

corporate credit risk, however, has been implemented and deployed: it leverages (mostly open) data 

ƛƴ ƻǊŘŜǊ ǘƻ ŜǎǘƛƳŀǘŜ ŀ ŎƻƳǇŀƴȅΩǎ ŘŜŦŀǳƭǘ ǊƛǎƪΦ 
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8.4. Workshop on probability of default 

8.4.1. Purpose of the exercise 

A workshop was conducted with the Credit department of a consulting firm, who offers its clients from 

the financial sector an ML engineering solution which is applicable to building models to estimate 

probabilities of default. This workshop was quite complementary to the previous one which focused 

on credit scoring models insofar as it relates to a generic, fully externalized AI solution. It thus 

represents an interesting example of the adoption by a financial actor of an ML product developed by 

a third-party.  

The solution offered by the consulting firm is not an off-the-shelf product operating as a black box, but 

a toolbox which enables to design and build a model while maintaining a constant interaction between 

the solution provider and the customer. In practice, the resulting model is a hybrid one, partly based 

on advanced ML algorithms during the design phase but then translated into simple and explainable 

algorithms for the deployment phase. This choice appears to have been motivated by the necessity to 

deliver a well-documented model, along with an audit track. 

The solution as currently available is designed to support credit scoring and probability of default 

models, however the solution provider is working on applying a similar approach to internal risk 

models, namely leveraging ML to yield corrections and improvements to currently used models in the 

form of business rules. 

8.4.2. Objectives of the algorithm 

The main objectives of the project were the following: 

¶ Increasing the performance of the models used for decision-making. In particular, an improved 
risk discrimination through the identification of non-linear effects between risk factors, an 
improved classification of individuals, and a faster identification of changes in the underlying 
risk portfolio.  

¶ Improving data quality through the use of quality assessment and improvement techniques. 

¶ Refining the estimation of regulatory capital requirements through the use of more accurate 
models. 

¶ Increasing the transparency and auditability of the models. 

Data availability is an essential issue in this case, since the volume of data that can be exploited varies 
greatly with the use case: few data points for consumer credit, far more for housing credit. 
 

8.4.3. Technical details 

The main stages of the nominal behaviour of the solution are commonly encountered when adopting 

advanced ML models, with the exception of the last one which makes the approach original. These 

stages are: 

1. Data quality control and data preparation prior to modelling 
2. /ƻƴǎǘǊǳŎǘƛƻƴ ƻŦ ŀ ǊŜŦŜǊŜƴŎŜ ƳƻŘŜƭ όƻŦ ŀ άǘǊŀŘƛǘƛƻƴŀƭέ ǘȅǇŜύΣ ƛƴ ǇǊŀŎǘƛŎŜ ŀ ƭƻƎƛǎǘƛŎ ǊŜƎǊŜǎǎƛƻƴΦ 
3. /ƻƴǎǘǊǳŎǘƛƻƴ ƻŦ ŀ ŎƘŀƭƭŜƴƎŜǊ ƳƻŘŜƭ όƻŦ ŀƴ άŀŘǾŀƴŎŜŘέ ǘȅǇŜύΥ ƳƻǊŜ ǎƻǇƘƛǎǘƛŎŀǘŜŘΣ ǎǳǇŜǊǾƛǎŜŘ 

ML algorithms are used, typically random forests or neural networks. 
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4. Identification of the margin of improvement of the reference model: in the use case 
considered, 80% of the prediction error can be attributed to 20% of the population, thus the 
goal is to identify population segments which are incorrectly classified by the reference model. 

5. Visual explanation of the decisions made by the ML model: the methods used are classical 
ones (SHAP, LIME). 

6. Extraction of simple, auditable business rules which explain the performance gap between the 
ML model and the reference model: to this aim, population segments which are incorrectly 
classified by the reference model are automatically identified, then business rules are 
extracted by a domain expert (typically from risk management) so as to reduce as much as 
possible that performance gap. 

7. Definition of the final hybrid model, as a combination of the reference model and business 
rules. 

¢ƘŜ ǎƻƭǳǘƛƻƴ ƛǎ ƻŦŦŜǊŜŘ ŀǎ άƳŀƴŀƎŜŘ ǎŜǊǾƛŎŜǎέΥ ōŜǎƛŘŜǎ ǘƘŜ ƘȅōǊƛŘ-model-building workflow described 

above, an information sharing platform enables the customer to review the entire design process 

independently from the execution of that workflow. 

To some extent, the model building approach adopted here relies on challenger models mentioned in 

this document as a possible audit method (cf. section 5.5): several hundreds of model exemplars are 

compared against one another, then the best one is retained, following which the system will minimize 

the performance gap between the reference model ŀƴŘ ǘƘŀǘ άǘƻǇ ŎƘŀƭƭŜƴƎŜǊέΦ Lƴ ŀ ƴǳǘǎƘŜƭƭΣ ǘƘŜ 

strategy is to try to replicate the performance of the best challenger models while remaining inside a 

more controlled operational framework ς which is guaranteed by combining an intrinsically 

explainable model (logistic regression) with a limited number of business rules.  

¢ƘŜ ŎǊŜŀǘƻǊǎ ƻŦ ǘƘŜ a[ ǇƭŀǘŦƻǊƳ ŜȄŀƳƛƴŜŘ ƛƴǎƛǎǘ ǘƘŀǘ ǘƘŜ ŎƘƻƛŎŜ ƻŦ ŀǾƻƛŘƛƴƎ άǇǳǊŜέ a[ ƳƻŘŜƭǎ ǿŀǎ 

made early on in the project, firstly because ML is notoriously difficult to implement in this type of 

scenario, secondly because such a model would hide behaviour inherent to the population considered, 

such as the transition of individuals across population segments over time ς which is essentially 

observed in any credit model. 

8.4.4. Validation process 

Initial functional validation relies on the documentation of the algorithm and on a presentation of its 

results. It is performed by the solution provider in support of the customer, in an iterative mode which 

is more specifically focused on aforementioned stages 4 to 7 (i.e. from the identification of margins of 

improvement to the definition of the resulting hybrid model).  

As for continuous functional validation, it is similar to back-testing which is usually performed for credit 

models, except that frequent monitoring of population segments impacted by business rules is 

required, the goal being to anticipate the detection of model biases. Interestingly, back-testing results 

are presented to the Risk Committee in order to assess the relevance of a model adjustment. 

8.4.5. Governance issues 

The solution design, which ultimately consists of tuning a reference model via business rules (stages 6 

and 7), aims to make it compatible with governance frameworks common to most traditional models. 

In particular, the hybrid model designed by the consulting firm can be assimilated to the classical 

behaviour of credit granting models, which follows an analogous business process: a regression model 
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ς comparable to IRB (Internal Ratings-Based Approach) models ς is first executed, then an override 

όǎƛƳƛƭŀǊ ǘƻ ǘƘŜ άƴƻǘŎƘƛƴƎέ ǇǊŀŎǘƛŎŜŘ ōȅ ŎǊŜŘƛǘ ǊŀǘƛƴƎ ŀƎŜƴŎƛŜǎύ Ŏŀƴ ōŜ ŀǇǇƭƛŜŘ ōȅ ŀ ƘǳƳŀƴ ŀƎŜƴǘ ƛŦ ŀ 

ǿŜŀƪƴŜǎǎ Ƙŀǎ ōŜŜƴ ƛŘŜƴǘƛŦƛŜŘ ƛƴ ǘƘŜ ƳƻŘŜƭΩǎ ƻǳǘǇǳǘΦ .ŜǎƛŘŜǎ ƛǘǎ ŎƻƳǇŀǘƛōƛƭƛǘȅ ǿƛǘƘ ŀ ǘǊƛŜŘ-and-tested 

governance framework, the benefit expected from the approach is a high model explainability (cf. next 

section). The choice of a hybrid model has also been made for various operational reasons: easier 

implementation, stability and robustness. 

Another governance issue raised by this use case is however relatively common, namely the 

outsourcing of the model design and implementation, and also of its maintenance. 

8.4.6. Evaluation methods and their implications 

Explainability 

By choosing a hybrid model based on decision rules, the solution provider has put the emphasis22 on 

the generation of convincing explanations ς local and global ς intended both for users and for 

governance bodies. 

For instance, an essential explainability criterion is that the aforementioned overrides of the model 

decisions must be motivated. In particular, a user of the model (typically an account manager) must 

understand why the model produced a given score. Besides, as explained in section 5.2.3, the 

ƛƴǘŜǊǾŜƴǘƛƻƴ ƻŦ ŀ ƘǳƳŀƴ ŀƎŜƴǘ ƛƴǘǊƻŘǳŎŜǎ ŀ Ǌƛǎƪ ƻŦ άŜȄǇƭŀƴŀǘƻǊȅ ōƛŀǎέ ǿƛǘƘ ǊŜǎǇŜŎǘ ǘƻ ǘƘŜ ƳƻǊŜ 

objective result provided by the model. In the hybrid model, business rules have been pre-selected by 

the algorithm: in essence, the model is first optimized as a logistic regression, then the addition of 

business rules aims to optimize the resulting hybrid model ς in both cases in terms of global 

performance. 

As for local explainability, the use of SHAP enables to provide the reasons for a particular score given 

by the logistic regression model. An explanation of the decision made by the overall hybrid model in 

turn consists of augmenting those SHAP values by the motives of any overrides made by the business 

rules. Those motives are quite simply the membership of the individual considered in one or more 

ǇƻǇǳƭŀǘƛƻƴ ǎŜƎƳŜƴǘǎ ƻƴ ǿƘƛŎƘ ǘƘŜ ƳƻŘŜƭΩǎ ǇǊŜŘƛŎǘƛǾŜ ǇŜǊŦƻǊƳŀƴŎŜ ƘŀŘ ōŜŜƴ ƻǇǘƛƳƛȊŜŘ ōȅ ǘƘŜ 

algorithm. 

Performance 

The following metrics, which combine predictive performance and business efficacy (cf. section 3.2), 

are used to assess the relevance of the overall model construction workflow: 

- As predictive performance metric, the GINI score gain is used (typically on the order of 5% in 
the cases studied). 

- Two business performance indicators are computed: the gain in terms of returns measured 
while keeping the risk appetite constant (around 50%) and the reduction in expected loss 
(which is a standard computation in internal risk models). 

                                                           
22 This concern is also evident in certain technical choices: for example a genetic algorithm was picked for hyper-
parameter tuning rather than e.g. a Bayesian optimization method, because it was deemed easier to explain even 
to laypeople while offering comparable performance. 
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Furthermore, the replicability of the model has been studied: initial runs experienced a problematic 

lack of reproducibility, which was later solved. 

Stability 

Firstly, this workshop illustrated the observation made in section 3.3.1, namely that the temporal drift 

of a predictive model may in most cases be due to a significant change in input data, without even 

considering the impact of the ML algorithm. Thus in the case of credit models, structural modifications 

of the population considered may introduce model biases. Nevertheless the evolution of the client 

database of a banking group, for instance, is rarely taken into account by IRB models. This is why the 

consulting firm which participated to the workshop advocates for the adoption of a portfolio 

monitoring solution by banking institutions, wherein customer portfolios as well as credit and asset 

portfolios are regularly analysed to detect such structural changes. 

Regarding the stability of the predictive model, a sub-project has been undertaken by the solution 

provider in order to provide KPIs as the basis of a monitoring and back-testing protocol of the hybrid 

models, in order to identify deviations of the model itself. 

The stability of the hybrid model in fact only differs from that of the logistic regression model by the 

choice of the business rules embedded in it. That choice is made by the customer in interaction with 

the consulting firm, as both discuss the technical implications together. The customer may also choose 

during a model review to suppress a rule, for example to be more aligned with its risk appetite, or due 

to data quality problems identified on a variable involved in that rule. 

Furthermore, the analysis of the model stability has shown that introducing business rules does not 

make the model less robust, provided those rules are guaranteed to apply only to the population 

segments identified. They also enable a specific monitoring of those population segments. 

Lastly, initial studies suggest that a periodicity of 6 months for model updates would be adequate, both 

for credit scoring and for probability of default models. 

Appropriate data management 

In this kind of outsourced model-building solution, the validation of the resulting models, as well as 

ǘƘŀǘ ƻŦ ǘƘŜ ŀŘŜǉǳŀŎȅ ƻŦ Řŀǘŀ ƳŀƴŀƎŜƳŜƴǘΣ ƛǎ ǳƭǘƛƳŀǘŜƭȅ ǘƘŜ ǊŜǎǇƻƴǎƛōƛƭƛǘȅ ƻŦ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ 

compliance and risk departments. 

There is thus no delegation of responsibility, nevertheless the regulatory requirements imposed to the 

end customer ς particularly when it comes to explaining model predictions ς are reported onto the 

solution provided by the third-party. Interestingly, the workshop participant has indicated that a 

project had been undertaken to set up an Ethics Committee involving large banking institutions among 

its customers, with the ultimate goal of producing an MRM (Model Risk Management) framework. 

8.4.7. AI engineering methodology 

The choice of an iterative model building workflow rather than a fully automated, single-step process 

is deliberate. Indeed, the solution designed by the workshop participant involves human intervention 

in the hybrid model optimization phase: this approach makes end-to-end automation of the build 

process impossible (while providing, according to the solution creators, benefits in terms of 

explainability and stability of the resulting model ς see previous section). 
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Besides this lack of end-to-end automation, the engineering methodology relies on two foundations: 

- On the one hand, the hybrid model building workflow follows a systematic approach and is 
developed according to industry standards. 

- On the other hand, the tooling handed over to the customer will take the form of an 
information (model, data, and results) sharing platform, which enables the customer to be in 
the loop of all the decisions made and all the results obtained during model construction. The 
objective of this platform, still under construction at the time of this writing, is to provide an 
automated audit track of all exchanges with the customer.  

The goal of this architectural choice is to make each stage of the model building traceable even after 

the model has been deployed in production, whether that stage has been automated or is performed 

by a human agent. 

As for the risks induced by outsourcing (cf. section 5.4.2), they call for the following comments: 

- The aforementioned model building method enables both reproducibility and auditability of 
the models produced. 

- ¢ƘŜ ǉǳŀƭƛǘȅ ƻŦ ǎŜǊǾƛŎŜ ƛǎ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ǊŜǎǇƻƴǎƛōƛƭƛǘȅΣ ŀǎ ǘƘŜ ŎǳǎǘƻƳŜǊ ǳƭǘƛƳŀǘŜƭȅ ŘŜŎƛŘŜǎ ǘƻ 
deploy the models and is in charge of their operational maintenance. 

- Continuity of service and reversibility do not raise major difficulties either since the customer 
is able to revert to the regression model at any time, furthermore the evolution of business 
rules can be monitored independently from the model construction having been outsourced. 

- Lastly, the risk of dependency towards the solution provider remains, specifically in its most 
fundamental aspect of technical knowledge: in this kind of situation, the end customer is 
responsible for developing and maintaining its expertise and know-how in order to control 
that risk. 

8.5. Topic 3: Customer protection 

This workshop was conducted with an insurance institution around a project pertaining to sales 

proposals: that project aims to produce prefilled quotes for home insurance. 

8.5.1. Regulatory context 

As mentioned in section 3.1.1, the duty to advise as defined by the IDD (Insurance Distribution 

Directive) imposes to seƭƭ ŀƴ ƛƴǎǳǊŀƴŎŜ ǇǊƻŘǳŎǘ ƛƴ ŀŎŎƻǊŘŀƴŎŜ ǿƛǘƘ ǘƘŜ ŎƭƛŜƴǘΩǎ ōŜǎǘ ƛƴǘŜǊŜǎǘǎΦ 

Therefore, the goal of technological innovation in that domain should be to make an offer consistent 

ǿƛǘƘ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ƴŜŜŘǎ ŀƴŘ ǊŜǉǳƛǊŜƳŜƴǘǎ ς not to contribute to the creation of a demand.  

8.5.2. Purpose of the exercise 

The main challenge of this workshop was to shed light ς by focusing on a specific use case ς on the 

regulatory issues raised by the use of AI in the distribution of insurance products. 

8.5.3. Objectives of the algorithm 

For a customer who already subscribed to a contract, for example for an automobile insurance, the 

ǎȅǎǘŜƳ ƛƳǇƭŜƳŜƴǘŜŘ ŀǘǘŜƳǇǘǎ ǘƻ ǇǊŜŦƛƭƭ ŀ ƘƻƳŜ ƛƴǎǳǊŀƴŎŜ ǉǳƻǘŜΣ ƛƴŎƭǳŘƛƴƎ ŀ άǎǘŀǊǘƛƴƎ ŀǘέ ǇǊƛŎŜΦ 
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8.5.4. Technical details 

The specificity of this use case is its reliance on geographical data directly linked to real-estate 

sociology: 

- Gridded data provided by INSEE (the French National Institute of Statistics and Economic 
Studies), including information such as the ratio of houses vs. apartments, the rate of home 
ownership, the average surface, the average household income (at the neighbourhood and 
commune levels). 

- Data on buildings, acquired from a data provider, which gives the building surface and 
perimeter, from which a building shape is determined, and then a probability of house vs. 
apartment is estimated. 

- The average number of rooms at the commune level. 
- A postal address field, on which text analysis is performed in order to extract discriminating 

features for the house/apartment prediction. 
- An email field, used for the same prediction. 

 
The quote is prefilled with the following target variables, which are predicted iteratively (i.e. the 2nd 

one is predicted using the predicted value for the 1st variable, the 3rd using the first 2 predictions, 

and so on): 

1. Home type: house or apartment 
2. Customer status: owner or tenant 
3. Number of rooms 
4. Optional insurance of valuables 
5. Year of construction  

 

8.5.5. Validation process 

Validation involved mainly the Compliance department, who performs consistency checks between 

the needs expressed by the customer on the one hand, and the risks declared in prefilled (then possibly 

amended) quote on the other hand. 

8.5.6. Governance issues 

The prefilled quote produced by the algorithm examined is leveraged by the insurance institution in 

several use cases: 

- Sending via email a hyperlink to the quote. 
- Processing incoming calls in order to perform portfolio cross-selling. 
- Supporting outgoing telephone marketing campaigns. 

The main governance issue is the respect of compliance requirements related to insurance product 

distribution, notably the duty to advise, which imposes that the motives for offering a particular 

ǇǊƻŘǳŎǘ ōŜ ŜȄǇƻǎŜŘ ǘƻ ǘƘŜ ǇǊƻǎǇŜŎǘƛǾŜ ŎǳǎǘƻƳŜǊΣ ŀǎ ǿŜƭƭ ŀǎ ǘƘŜ ŎƻƴǎƛǎǘŜƴŎȅ ōŜǘǿŜŜƴ ǘƘŜ ǇǊƻŘǳŎǘΩǎ 

ŎƘŀǊŀŎǘŜǊƛǎǘƛŎǎ ŀƴŘ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ƴŜŜŘǎ ŀƴŘ ǊŜǉǳƛǊŜƳŜƴǘǎΦ 
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Particular attention should be focused on the human-machine interactions so that the subscription 

process based on prefilled information does not discourage the customer to express his or her needs23, 

nor to verify the accuracy of the declared risks24. At the same time, regulation requires that any 

amendments (checking or unchecking of an option, or changes indicated by the customer) to the 

prefilled quote be faithfully reflected, as appropriate, in all other documents formalizing the gathering 

of customer needs and requirements and the insurance product offer. 

These governance issues are illustrated by certain measures adopted during the system design and 

development. In order to ensure proper information of the customer, upon opening the prefilled quote 

a popup window explicitly enjoins the prospective customer to verify the information and to correct it 

ƛŦ ƴŜŜŘ ōŜΦ ¢ƘŜ άƛƴǎǳǊŀƴŎŜ ƻŦ ǾŀƭǳŀōƭŜǎέ ƻǇǘƛƻƴ ƛǎ ǇŀǊǘƛŎǳƭŀǊƭȅ ǘŜƭƭƛƴƎΥ ƛǘ ǿŀǎ ƛƴƛǘƛŀƭƭȅ ŎƘŜŎƪŜŘ ƛƴ ŀƭƭ 

quotes produced by the system, but it turned out that 60% of customers unchecked the box. It was 

ǘƘŜǊŜŦƻǊŜ ŘŜŎƛŘŜŘΣ ŀƎŀƛƴ ŦƻǊ ǘƘŜ ǇǳǊǇƻǎŜ ƻŦ ǇǊƻǾƛŘƛƴƎ ŀ ǉǳƻǘŜ ŀǎ ŎƭƻǎŜƭȅ ŀŘƧǳǎǘŜŘ ǘƻ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ 

ƛƴǘŜƴǘƛƻƴǎΣ ǘƻ ŎƘŜŎƪ ƻǊ ǳƴŎƘŜŎƪ ǘƘŜ ōƻȄ ōŀǎŜŘ ƻƴ ǘƘŜ ƳƻŘŜƭ ǇǊŜŘƛŎǘƛƻƴ ƻƴ ǘƘŜ άǾŀƭǳŀōƭŜǎέ ǾŀǊƛŀōƭŜΦ 

8.5.7. Evaluation methods and their implications 

Explainability 

Explaining an individual prediction to the customer does not represent, according to the insurance 

institution, a major issue in the case of predictive models intended for marketing: in the present case, 

rather than an explanation, an explicit validation request should be provided to the customer. 

On the contrary, it seems important to provide an explanation for the model predictions ς and more 

specifically its prediction errors ς to the teams tasked with monitoring the system and with ensuring 

its compliance25. Indeed, a prediction error has a strong impact of the subscription process ς a process 

which must be correctly understood by the customer: indeed, a failure to advice (or even liability) can 

be invoked when an erroneous prediction is not corrected by the insured and thus becomes a false 

declaration (albeit unintentional). Besides, prediction errors to the benefit of the insured generate ς if 

they accumulate ς an additional risk, this one of a financial and operational nature. 

Performance 

The predictive performance of the model is trivial to assess: it is measured as the classification accuracy 

according to each of the aforementioned target variables. By retaining the first three variables (with 

an error margin of one unit on the number of rooms), the model produces 90% of correct predictions. 

Stability 

This use case does not present any stability challenge, since input data are relatively static and the 

predictive power only has a minor business impact. 

                                                           
23 In particular, an algorithm deemed efficient by the users may be endowed by them of a άǇǊŜǎŎǊƛǇǘƛǾŜέ power 
even though it has not been designed to that aim. 
24 At stake here are future poǘŜƴǘƛŀƭ ŘƛǎǇǳǘŜǎ ƛƴ ŎŀǎŜ ƻŦ ŀ άŦŀƭǎŜ ǎǘŀǘŜƳŜƴǘέ whose origin would lie in the quote 
prefilling. 
25 However, the possibility to provide explanations to algorithmic decisions for purposes of internal control or 
external audit has not been explored during this workshop. 



 

61 
 

Appropriate data management 

In terms of data management, the domain of insurance pricing defines forbidden variables. The 

absence of those variables from the resulting models should therefore be guaranteed, as well as the 

practical infeasibility of their inference from other predictor variables used by the model. 

8.5.8. AI engineering methodology 

The predictive models described here are deployed in production. Although they run in a production 

environment, this use of AI is not for an automated decision-making process: predictions are not 

ǇǊƻǾƛŘŜŘ ŎƻƴǘƛƴǳƻǳǎƭȅΣ ƛƴǎǘŜŀŘ ŀ Ƴŀƴǳŀƭ ŎƻƭƭŜŎǘƛƻƴ ǎǘŀƎŜ ƻŦ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ƻǳǘǇǳǘ ƛǎ ƴŜŎŜǎǎŀǊȅΦ 

Thus, once the predictive model has been validated both functionally and technically, it is executed on 

a periodic basis and its results are used in the three situations previously described (email campaigns, 

incoming calls, and outgoing telephone campaigns). 
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9. Explainability vs. interpretability 

The distinction between these two concepts is a frequent topic within the scientific literature, however 

there is no consensus on it. 

Definition without a distinction 

Burrell (2016) insists on the issue of the interpretability of algorithmic results, but without defining the 

terms in question. Doshi-Velez and Been Kim (2018) fail to distinguish the two terms as they define 

them in relation to each other. Nevertheless, their article strives to justify the necessity of categorizing 

various forms of interpretability. Similarly, Biran and Cottonn (2017) use a circular reasoning around 

ōƻǘƘ ŎƻƴŎŜǇǘǎΥ άExplanation is closely related to the concept of interpretability: systems are 

interpretable if their operations can be understood by a human ώΧϐέ. 

While pointing out the lack of any formal definition, Bogroff and Guéguan (2016) define interpretability 

as the ability to explain or present stages using humanly understandable terms. For his part, Tim Miller 

(2018) offers a comprehensive analysis of both concepts. The introduction of the notion of degree 

allows to define interpretabiƭƛǘȅ ŀǎ άthe degree to which an observer can understand the cause of a 

decision.έ ¦ƴŦƻǊǘǳƴŀǘŜƭȅΣ ŜȄǇƭŀƛƴŀōƛƭƛǘȅ ƛǎ ƴƻǘ ŘŜŦƛƴŜŘ ŀŎŎƻǊŘƛƴƎ ǘƻ ǘƘŜ ǎŀƳŜ ƴƻǘƛƻƴΣ ōǳǘ ŀǎ ŀ ǿŀȅ ǘƻ 

ƻōǘŀƛƴ ŀ ƘǳƳŀƴ ŀƎŜƴǘΩǎ understanding. Miller emphasizes the necessity for the reader to observe 

ǎƛƳƛƭŀǊƛǘƛŜǎ ŀƴŘ ŘƛŦŦŜǊŜƴŎŜǎ ōŜǘǿŜŜƴ ǘƘŜ ǘǿƻ ŎƻƴŎŜǇǘǎΧ ōǳǘ ƻƴƭȅ ŀŦǘŜǊ ǎǘŀǘƛƴƎ ŦƛǾŜ ƭƛƴŜǎ ǇǊƛƻǊ ǘƘŀǘ ǘƘŜȅ 

would be used interchangeably. 

Definition through distinction 

Molnar (2019) ƭƛŦǘǎ aƛƭƭŜǊΩǎ ŘŜŦƛƴƛǘƛƻƴ ƻŦ ƛƴǘŜǊǇǊŜǘŀōƛƭƛǘȅ ǎƻ ŀǎ ǘƻ ŀǘǘŜƳǇǘ distinguishing the two terms. 

He defines explainability as explanations of predictions being provided to individuals, and introduces 

ǘƘŜ ǉǳŜǎǘƛƻƴ ƻŦ ŀ άƎƻƻŘ ŜȄǇƭŀƴŀǘƛƻƴέ ƛƴ Ƙƛǎ ōƻƻƪΦ 

Bryce Goodman and Seth Flaxman, in European Union regulations on algorithmic decision-making and 

ŀ ΨΩǊƛƎƘǘ ǘƻ ŜȄǇƭŀƴŀǘƛƻƴΩΩ (2017), ƛƳǇƭƛŎƛǘƭȅ ŘƛǎǘƛƴƎǳƛǎƘ ǘƘŜ ǘǿƻ ŎƻƴŎŜǇǘǎ ƛƴ ǘƘŜƛǊ ǊŜŀŘƛƴƎ ƻŦ D5twΩǎ 

articles 13 to 15. They mention in particular that an algorithm operates by correlation and association, 

so that it performs predictions without providing any explanatory element of those correlations and 

associations. The difficulty that arises is thus that interpretation becomes difficult insofar as the 

algorithm works without having to explain its inner workings. The authors identify a tension between 

the right to access personal information collected (articles 13-15) and the right to collect data (article 

22). Giving article 22 a disproportionate weight ǿƻǳƭŘ ƭŜŀŘ ǘƻ ǘƘŜ ŘŜǾŜƭƻǇƳŜƴǘ ƻŦ ŀ άōƭŀŎƪ-ōƻȄέ ǎƻŎƛŜǘȅ 

(Pasquale, 2015). 

In his intervention at the Institut de Recherche en Informatique de Toulouse (2018), Laurent Serrurier 

links explainability to the technical characteristics of the algorithm, whereas interpretability is related 

to an ethical dimension. Explainability is thus a ǘŜŎƘƴƛŎŀƭ ŦŜŀǘǳǊŜ ƻŦ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ŎƻƳǇƭŜȄ ƴŀǘǳǊŜΣ 

and interpretability refers to its social acceptability. 

Likewise, in a talk given at the ACPR in 2019, Louis Abraham tackles Biran et CottonnΩǎ ŘŜŦƛƴƛǘƛƻƴ ǿƘƛŎƘ 

mixes both concepts όάExplanation is closely related to the concept of interpretability: systems are 

interpretable if their operations can be understood by a human, either through introspection of through 
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ŀ ǇǊƻŘǳŎŜŘ ŜȄǇƭŀƴŀǘƛƻƴΦέύΣ ǊŜƭŀǘŜǎ ƛƴǘŜǊǇǊŜǘŀōƛƭƛǘȅ ǘƻ ǘƘŜ ǉǳŜǎǘƛƻƴ άǿƘȅέ ŀƴŘ ŜȄǇƭŀƛƴŀōƛƭƛǘy to the 

ǉǳŜǎǘƛƻƴ άƘƻǿέΦ 

Aurélien GarivierΩǎ нлму ŀǊǘƛŎƭŜ ά¢ƻǿŀǊŘ ŀ ǊŜǎǇƻƴǎƛōƭŜ ŀǊǘƛŦƛŎƛŀƭ ƛƴǘŜƭƭƛƎŜƴŎŜέ offers an explicit 

distinction when defining the two terms. As per the article άA Berkeley View of Systems Challenges for 

!Lά, a decision rule is said to be interpretable if one can understand how it associates a response to 

observations; it is said to be explainable if one can understand on which elements the decision is 

grounded, possibly by using counterfactual reasoning. 

Sub-distinction within interpretability 

[ƛǇǘƻƴΩǎ нлмт ŀǊǘƛŎƭŜ ƎƛǾŜǎ ǘƘŜ Ƴƻǎǘ ǎŀǘƛǎŦȅƛƴƎ ƳŜŀƴƛƴƎ ǘƻ ǘƘŜ ŎƻƴŎŜǇǘǎ ƻŦ ƛƴǘŜǊǇǊŜǘŀōƛƭƛǘȅ ŀƴŘ 

explainability. Rejecting the understanding of interpretability as a monolithic concept, Lipton 

introduces a continuum based on a number of logical cǊƛǘŜǊƛŀΥ ǘǊǳǎǘ ƛƴ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ǊŜǎǳƭǘǎΣ ŎŀǳǎŀƭƛǘȅΣ 

transferability of knowledge, information contained in the decision, fairness of the decision. This 

framework enables to propose a concrete representation of the continuum between intelligibility and 

explanation. 
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10. Technical aspects of explainability 

10.1. Trade-offs 

This appendix describes the technical choices which arise after the appropriate level of explainability 

has been selected upon the introduction of AI in a business process. This description has a generic 

scope since the elements considered are not restricted to the financial sector. Two trade-offs are 

presented: between simplicity and efficacy of the ML algorithm on the one hand, between sobriety 

and fidelity of the chosen explanatory method on the other hand. 

10.1.1. Simplicity/efficacy trade-off 

A given type of ML algorithm may be more or less complex, in the sense of lending itself to an 

inspection of its inner workings. They can also vary in efficacy, measured as previously indicated using 

predictive performance or business performance metrics.  

The following diagram attempts to illustrate the simplicity/efficacy trade-off among the most common 

ML algorithms: 

 

Among the numerous simplifications and approximations operated by this diagram, the following 

points should be underlined. 

Simplicity and efficacy metrics 

On the one hand, ordering ML algorithm types in terms of their simplicity is highly subjective. Indeed, 

the size and structure of a model have a more significant impact on its explainability than the model 

type does, because understanding only part of the model is useless: thus a random forest comprising 

thousands of trees will typically be much more difficult to understand than a single-layer neural 

network composed of a dozen neurons. 
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On the other hand, the deterministic or stochastic nature of an algorithm is another essential criterion 

to take into account when assessing its efficacy. For instance, the results of a fundamentally stochastic 

algorithm depend on random sampling - not only for building training and evaluation datasets, but also 

within its procedure itself (for example, bootstrap methods contain re-sampling stages). 

Lastly, it should be noted that the efficacy of a given algorithm type cannot be evaluated on a single-

dimension scale either, since it depends on the use case considered (nature and volume of the data, 

choice of parameters, etc.) 

Non-comprehensive taxonomy 

It should also be emphasized that the representation of ML algorithms in the previous diagram does 

not pretend to be comprehensive. In particular, categories such as Reinforcement Learning have been 

excluded upfront because they are ς to the best of our current knowledge ς absent from solutions 

deployed as of today on the market. 

On the other hand, unsupervised learning algorithms cannot be ignored. For example, graph analysis 

based on factoring company features allows to model the interdependency network generated by 

SMBs partaking in a P2P lending platform. The factoring technique used may be e.g. SVD (Singular 

Value Decomposition) or Latent Factor Model, and in any case that type of modelling demonstrated 

not only its descriptive value, but also its value as a predictor of credit default risk on such platforms 

(Ahelegbey, 2019). Furthermore, credit default risk is not easily amenable to traditional, non-ML-based 

model. 

Decoupling between design and modelling 

Lastly, the design of an algorithm can generally be decoupled from the structure of the resulting model: 

this is the strength and the innovation brought by hybrid models such as the one described in the 

workshop on probability of default (section 8.4).  

This approach consists of building a simple, intuitive model through iterative optimization by 

comparing it with a more efficient, often more complex model. The resulting model combines the best 

of both worlds, namely the performance (e.g. in terms of recall and precision) of a complex algorithm 

and the explainability (in terms of its interpretability and limited size) of the final predictive model.  

10.1.2. Sobriety/fidelity trade-off 

The explainability requirement induced by the introduction of ML into a business process is not limited 

to a simplicity/efficacy trade-off pertaining to the algorithm: the explanation should itself be intelligible 

and convincing to its intended recipients, suitable for the use case considered, and proportionate to 

the risk associated to the business process. 

A trade-off ƛǎ ŀǘ Ǉƭŀȅ ƘŜǊŜ ŀǎ ǿŜƭƭΦ hƴ ǘƘŜ ƻƴŜ ƘŀƴŘΣ ǘƘŜ ŜȄǇƭŀƴŀǘƛƻƴΩǎ ŦƛŘŜƭƛǘȅ όǿƛǘƘ ǊŜǎǇŜŎǘ ǘƻ ǘƘŜ 

algorithm which produced a given prediction) is imperfecǘ ǎƛƴŎŜ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ behaviour is 

necessarily simplified when its output is explained in terms of certain characteristics of the individual 

or transaction considered. On the other hand, the sobriety of the explanation, that is its intuitiveness 

and intelligibility by a layperson, is both subjective and constrained in practice. 

The following diagram attempts to represent the sobriety/fidelity trade-off for an explanation 

ŀŎŎƻǊŘƛƴƎ ǘƻ ǘƘŜ ǘȅǇŜ ƻŦ a[ ŀƭƎƻǊƛǘƘƳ ŀƴŘ ǘƘŜ ǘȅǇŜ ƻŦ ŜȄǇƭŀƴŀǘƻǊȅ ƳŜǘƘƻŘΦ ! ŦŜǿ άŎƻǊǊƛŘƻǊǎέ ŀǊŜ 
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drawn to show that for a given algorithm type, some explanatory methods will deviate slightly from 

the general trends. 

 

10.2. Reaching a high explanation level 

10.2.1. Feasibility of replication 

Lǘ ǎƘƻǳƭŘ ōŜ ƴƻǘŜŘ ǘƘŀǘ ŜȄǇƭŀƴŀǘƛƻƴ ƭŜǾŜƭ п όǊŜǇƭƛŎŀǘƛƻƴύ ŀƛƳǎ ǘƻ ƛŘŜƴǘƛŎŀƭƭȅ ǊŜǇǊƻŘǳŎŜ ǘƘŜ ƳƻŘŜƭΩǎ 

behaviour, and not to understand its inner workings in their fullest detail ς which may prove impossible 

for certain models, typically deep neural networks. 

Interestingly, some of the financial actors met during the exploratory works led by the ACPR 

implemented a replication method as early as the design and initial validation phases of their 

algorithms, hence upstream from the internal control or audit procedures. More specifically, they 

opted for implementing their ML algorithms in multiple (in some cases three) languages, which is a 

software engineering technique classically used for particularly critical components of a system. 

10.2.2. The problem of software dependencies 

Besides, a problem arises whenever a code review is in order (i.e. for levels 3 and 4). This problem is 

not specific to AI algorithms and comes up in virtually any well-conceived software audit mission: 

multiple external software libraries, tools and components are invoked by the code analysed, and their 

review ranges from difficult (in the case of open source software) to impossible (in the case of closed-

source code). Even a simple logistic or linear regression algorithm uses several third-party libraries, 

and the problem is amplified for sophisticated algorithms, which incidentally also require a higher 

explanation level. 

In conclusion, reaching a level-3 or level-4 explanation is challenging in most situations, and the 

challenge is made more difficult under certain circumstances: when the algorithm relies on third-party 
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libraries or products, and when the audit mission needs to cover the entire model building workflow 

and not just the resulting model. 

An approach sometimes mentioned to facilitate this kind of in-depth analysis consists of setting up a 

certification process of off-the-shelf ML components, similarly e.g. to how software security 

components must be tried-and-tested and officially approved prior to being embedded into critical 

applications. At any rate, the detailed code analysis suggested for level-4 explanations (replication) 

should also focus on the use of such off-the-shelf libraries, with a crucial point being the hyper-

ǇŀǊŀƳŜǘŜǊ ƻǇǘƛƳƛȊŀǘƛƻƴ ǎǘŀƎŜ ƛƴǎƻŦŀǊ ŀǎ ƛǘ ǎƛƎƴƛŦƛŎŀƴǘƭȅ ƛƳǇŀŎǘǎ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ŀŎŎǳǊŀŎȅΦ 
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11. Review of explanatory methods in AI 

This review does not pretend to be comprehensive: it is limited to the use of AI in the financial sector, 

besides it aims to paint a picture of the use cases which are deployed in practice ς whether currently 

in production or simply at an experimental stage. 

The frame of reference here is an ML algorithm. Explanatory algorithms can be classically grouped into 

ǘƘǊŜŜ ŎŀǘŜƎƻǊƛŜǎ ŀŎŎƻǊŘƛƴƎ ǘƻ ǿƘŜǊŜ ǘƘŜȅ ŎƻƳŜ ǳǇ ǿƛǘƘƛƴ ǘƘŜ ƳƻŘŜƭΩǎ ƭƛŦŜŎȅŎƭŜΥ 

1. Pre-modelling explanatory methods aim to describe the data used when building the models. 
2. Explainable modelling contributes to the production of intrinsically more explainable models. 
3. Lastly, post-modelling explanatory methods attempt to yield satisfactory explanations from 

previously built and trained models. 

11.1. Pre-modelling explanatory methods 

Upstream from the learning stage of an ML model, a somewhat limited form of explainability can be 

provided, whose goal is to illustrate the data used by the algorithm. The most common methods used 

for this purpose are the following. 

Exploratory data analysis 

Exploratory data analysis often relies on data visualization, which enables to reveal characteristics of 

the data ς even when they are potentially hidden from descriptive statistics. 

These methods are both model- and domain-agnostic. Within the financial sector, they are particularly 

useful for detecting and mitigating undesired biases (cf. section 3.1.2). Potential sources of such 

problematic biases are numerous (Kamishima, 2012): direct, indirect or latent dependency on sensitive 

variables, sampling biases (the most difficult case to detect) or labelling biases in the training data, or 

imperfect convergence of the training stage.  

Dataset documentation 

Several dataset documentation standards have been suggested, either applicable to AI models 

(Mitchell, 2019) or to associated services (Hind, 2018).  

This kind of approach, based on a thorough, concise and formal documentation of the datasets and 

services, is suitable for level-1 explanations as described in this document (cf. section 3.4.4). 

However, the technical focus of the standards proposed thus far makes them ill-suited for the 

customers and end users of AI algorithms: instead, they are intended for the creators of those tools, 

or even for the individuals in charge of monitoring their operational behaviour. This standardization 

effort is nevertheless recent and likely to evolve in a near future. 

Dataset summarization methods 

In order to facilitate the mental representation and the interpretation of datasets, particularly the 

voluminous and heterogeneous ones, certain dataset summarization methods may be used, ideally as 

a complement to the aforementioned exploratory analysis and documentation methods. 

Examples of dataset summarization methods are: 

- For textual data, automatic document summarization and classification. 
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- For images, visual scene synthesis. 
- For any data type, the extraction of representative (or typical) exemplars from a dataset, and 

of particularly atypical exemplars as well (respectively called prototypes and criticisms: Kim, 
2016). 

Explainable feature engineering 

This last type of pre-modelling explanatory method stems from the observation that an explanation 

for a predictive model is only as good as the predictive features it relies on. Therefore, particular care 

must be taken to the feature engineering stage when designing an ML system, i.e. to the construction 

of predictor variables from original variables in order to adequately re-structure the training data for 

the algorithm. 

Two such methods should be mentioned (Murdoch, 2019): 

- The intervention of domain experts, who are sufficiently knowledgeable about the source data 
to extract variables (combination of other variables, intermediate computation results, etc.) 
ǿƘƛŎƘ ƛƴŎǊŜŀǎŜ ŀ ƳƻŘŜƭΩǎ ǇǊŜŘƛŎǘƛǾŜ ŀŎŎǳǊŀŎȅ ǿƘƛƭŜ ƳŀƛƴǘŀƛƴƛƴƎ ǘƘŜ ƛƴǘŜǊǇǊŜǘŀōƛƭƛǘȅ ƻŦ ƛǘǎ 
results. In other words, human expertise enables in certain cases to sidestep the usually 
inevitable trade-off between efficacy and explainability of an ML model (cf. section 10.1.1). 

- A modelling-based, automated approach: usual data analysis techniques are then used, such 
as dimensionality reduction and clustering, so as to extract predictor variables as compact and 
representative as possible. 

11.2. Explainable modelling 

Some methods enable simultaneously training the predictive model and building an associated 

explanatory model. This category of explanatory method is referred to as explainable modelling. 

Such methods are however far less frequently implemented than pre- and even more post-modelling   

explanatory approaches, for several reasons:  

- Explainable modelling requires access to the source code which produces the predictive 
model, and the possibility to modify the algorithm. On the contrary, access to the model itself 
is sufficient for post-modelling explanatory methods, which makes them much more widely 
applicable. 

- Explainable modelling is useful when explanations are necessary as early as the design phase 
of the ML algorithm, which demands a more mature engineering methodology and adequate 
planning during the introduction of AI into a business process. 

- Lastly, explainable modelling is not very suitable for audit, all the more so when the predictive 
model is only available as a black box, without a documentation of the algorithm itself. 

The primary, highly ambitious goal of explainable modelling is to avoid as much as possible the already 

mentioned trade-off between efficacy and explainability, as they strive to provide additional 

explainability without necessarily sacrificing predictive accuracy. 

A few methods for explainable modelling are described in what follows. 

Intrinsically explainable models 

An intrinsically explainable model can be chosen from the outset, for example linear models or 

decision-tree-based models. This is the most trivial kind of explainable modelling approach, assuming 

that the simplicity/efficacy trade-off is kept in mind, and that the specific model produced by the 
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algorithm is actually explainable. The latter point is not always guaranteed: in some cases, adopting an 

explainable family of models is not sufficient since it may lead to a model with too many dimensions 

to remain intelligible. 

Hybrid explainable models 

Hybrid explainable models are only applicable to a specific model type, namely neural networks. The 

following types of models belong to this category: 

- Deep k-NN (Papernot and McDaniel, 2018) extracts the internal representation of a neural 
network within each of its layers in order to illustrate how the final result is obtained (in the 
last layer). A variant of this approach is the Deep Weighted Averaging Classifier. 

- SENN (Self-Explaining Neural Networks: Alvarez-Melis, 2018) uses neural networks to 
simultaneously train the predictor variables, the weights, and the aggregation method of a 
linear model. A variant is the Contextual Explanation Network (Al-Shedivat, 2018). 

Joint prediction and explanation 

This approach consists of training the model to produce both a prediction and an explanation for this 

prediction. It has recently received considerable attention, despite two major limitations. Firstly, not 

only does the ML algorithm need to be modified, but explanations must be provided for the entire 

training dataset, which is often unrealistic. Secondly, the explanations produced are only as accurate 

and relevant as the information provided by human agents for training the hybrid model, they do not 

necessarily justify the genuine, internal workings of the predictive model. 

The following methods fall under this joint prediction/explanation approach: 

- TED (Teaching Explanations for Decisions: Hind, 2019) associated to each training data point 
the motive behind the resulting prediction. A variant is the generation of multimodal 
explanations (Park, 2018). 

- Data-type-specific methods: these include Visual Explanations (Hendricks, 2016) for object 
recognition in images, or the generation of concise explanations in natural language (e.g. 
English) for a predictive model using textual source data (Lei, 2016). 

Architectural adjustment methods 

Methods relying on architectural adjustments are mostly specific to Deep Learning (which is as of today 

relatively infrequent in the financial sector). 

A few of them are nonetheless worth mentioning, such as Attention-Based Models which aim to 

identify the most important feature groups within input data, be they images, textual data, or ς more 

relevantly in the financial sector ς time series. Some studies (Jain, 2019) however illustrate the limits 

of this approach in terms of performance of the resulting model. 

Regularization methods 

Regularization methods are typically used to enhance the performance of an ML model, however some 

kinds of regularization enable to improve model explainability. 

For example, the decision boundary of a model may be constrained during training to be approachable 

by a decision tree, which makes future predictions easily comprehensible by a human (Wu, 2017).  

Another example are methods which orient model training to assign more weight to the predictor 

variables labelled as most important by a domain expert (Ross, 2017). 
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Training/modelling decoupling 

Of particular note are specialized approaches which decouple the training stage of an ML algorithm 

from the structure of the resulting model. 

An example of such approach is the hybrid method described in the workshop on probability of default 

(section 8.4). An advanced model, with low explainability by nature, is trained to achieve high 

predictive accuracy, after which domain experts extract a number of business rules to augment an 

intrinsically explainable model (e.g. a decision tree) ǿƛǘƘ ŀ ƴǳƳōŜǊ ƻŦ άƻǾŜǊǊƛŘŜǎέ. The resulting system 

thus benefits both from the accuracy of a complex algorithm and from the explainability of a simple 

predictive model. 

11.3. Post-modelling explanatory methods 

Methods operating on previously-trained ML models are de facto the most commonly intended 

meaning for explanatory methods in general. Their goal is to provide post-hoc explanation which justify 

or illustrate a given result (or a set of results) produced by an ML model. The model is thus considered 

as the object studied, on which changes can not be made (contrary to explainable modelling 

approaches from section 11.2) and whose data can not be manipulated (contrary to pre-modelling 

approaches from section 11.1). 

Two main criteria are used to distinguish post-modelling explanatory methods. Firstly, their local or 

global scope: 

- Local explanatory methods provide an explanation for a decision made on a particular input 
data point (for instance, why a given credit application was granted to the applicant). 

- Global explanatory methods attempt to simultaneously explain the entirety of possible 
decisions (in this case, what are the general characteristics of the respective outcomes ς 
acceptance or denial ς of credit applications). 

The second criterion is whether a method is applicable to any type of ML model (model-agnostic 

methods) or only to specific type of model or algorithm (model-specific methods). 

11.3.1. Local explanatory methods 

Black-box methods 

Black-box methods, also called model-agnostic, are applicable to any type of model. They may consist 

of a simple classifier (for example a Bayesian classifier trained on Parzen windows), or be more 

sophisticated (a number of them operate by perturbing the model then observing the influence of 

predictor variables). 

The following techniques are among the most common model-agnostic explanatory methods: 

- Naive Bayes Models, which are often crude in comparison to the next ones. 
- LIME (Locally Interpretable Model-Agnostic Explanations) works by constructing an 
ƛƴǘŜǊƳŜŘƛŀǘŜ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴ ŘƻƳŀƛƴ ōŜǘǿŜŜƴ ǘƘŜ a[ ƳƻŘŜƭ ŀƴŘ ǘƘŜ άǊŜŀƭ-ǿƻǊƭŘέ ƳƻŘŜƭ ǎƻ ŀǎ 
to find the optimal trade-off between fidelity of the model explanations and simplicity of the 
explanations (whose purpose is to be intelligible by domain experts who are not necessarily 
technically savvy). 
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- SHAP combines game theory (Shapley values) with the optimization of credit allocation in 
order to explain the influence of each predictor variable on the predicted values, also in a 
model-agnostic manner (Lundberg, 2017). 

- Variants of the SHAP method, for example adapted to data structured as a network (Chen, 
2019). 

- Causal interpretation methods, which compute the marginal influence of each predictor 
variable and the joint influence of variable pairs (Datta, 2016). 

- SLIM (Supersparse Linear Integer Models) which selects decision rules so as to optimize the 
accuracy of a binary classifier under constraints on the number of variables and their relative 
weights. 

It should be noted that even the most commonly used local explanatory methods, such as LIME and 

SHAP which are both based on model perturbations, encounter practical limitations in terms of 

security (Dylan, 2020). In particular, they are vulnerable to adversarial attacks (cf. appendix 12) which 

can produce models including discriminatory biases on which the explanations generated are 

reassuring or even indistinguishable from the explanations produced on an unbiased model. 

Some black-box explanatory methods are also specific to models operating on NLP, and generally 

provide either numeric explanations or explanations in the form of a textual example: 

- An adaptation of the LIME method to NLP (Ribeiro, 2016) provides explanations as the degree 
of importance of each predictor variable. 

- A generative method (Liu, 2018) provides explanations as a simple textual example. 

Model-specific methods  

A number of local explanatory methods are specific to a type of ML model.  

It should first be noted that some models are directly interpretable:  

- Logistic regressions. 
- Linear regressions and variants such as GLM (Generalized Linear Models), provided their 

density is limited. 
- Additive models such as GAM (Generalized Additive Models). 
- Decision trees and random forests, at least when they are limited in depth and volume. 

A number of explanatory methods are specific to Deep Learning models: 

- Explanations in the form of surrogate models, particularly decision trees which approximate 
the neural network (Craven, 1995). 

- Explanations based on attention mechanisms (Choi, 2016). 
- Explanations which attribute decisions of the neural network to certain predictor variables 

(Shrikumar, 2017). 

Lastly, the following methods are domain-specific: 

- Explanations for NLP algorithms based on Recurrent Neural Networks (Strobelt, 2018). 
- Explanations for CV algorithms, for example Interpretable Units (Bau, 2017), Uncertainty Maps 

(Kendall, 2017), or Saliency Maps (Adebayo, 2018). 
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Counterfactual explanations 

Counterfactual explanations have their own place among methods aiming to explain an ML algorithm, 

insofar as they are the only ones involving causal relations26 (and not just explanations grounded in 

statistics or inferences generalized from large data volumes). 

More precisely, a counterfactual explanation to prediction Y, generated by a model from input data X, 

is given by input data Xô as close as possible to X which would have resulted in prediction Yô different 

from Y. In general, Y is an unfavourable outcome (prediction or decision), for example a low credit 

score computed from X resulting in the credit application being denied. A relevant explanation (to the 

creator of the system, to an auditor, but above all to an individual impacted by the outcome, in this 

case the applicant who requested the credit) should then answer the question: what change as 

minimal as possible in the credit application would have led to its acceptance? Thus, rather than a local 

explanation which quantifies the influence of various predictor variables (age, income, credit history, 

etc.) on the negative outcome, a far more useful, practical and simple explanation is obtained, for 

ŜȄŀƳǇƭŜ άif the household income had been this much instead of that much, the credit would have been 

granted.έ  

Certain methods for generating counterfactual explanations even goes beyond this definition 

(McGrath, 2018): 

- Some methods produce positive counterfactual explanations, i.e. which apply in cases where 
the original decision Y is favourable to the individual considered. Using the previous example, 
Yô corresponds to the credit application being denied, thus the counterfactual explanation 
indicates a safety margin for the favourable outcome. This kind of explanation may be useful 
to make an informed decision e.g. to request another credit in the future given that the initial 
application has been accepted. 

- Another enhancement is achieved by weighing explanatory factors based on their variability. 
Using yet again the credit scoring example, if the individual has proven to be better able to 
reduce their personal expenditures than to increase their revenue, then this enhancement 
method would produce an explanation such as άƛŦ ƳƻƴǘƘƭȅ ŜȄǇŜƴǎŜǎ ƘŀŘ ōŜŜƴ Ŏǳǘ ōȅ ƘŀƭŦΣ ǘƘŜƴ 
the credit would have been granǘŜŘΦέ This specific explanation is indeed more useful than one 
involving other features such as the household income, in that it is more directly actionable. 

Ideally, counterfactual explanatory methods should be applicable to algorithms studies as black boxes. 

Certain methods do in fact satisfy this condition under well-determined situations (Wachter, 2018). 

11.3.2. Global explanatory methods 

Global explanatory methods provide an explanation to the entirety of decisions made by an ML model: 

for example, what is the ŎƻƴǘǊƛōǳǘƛƻƴ ƻŦ ǘƘŜ άŀƎŜέ ǾŀǊƛŀōƭŜ ǘƻ ǘƘŜ ŘŜŎƛǎƛƻƴǎ ǘƻ ŀŎŎŜǇǘ ƻǊ ŘŜƴȅ ŎǊŜŘƛǘ 

applications over the set of all applications. 

Global explanatory methods may be useful to internal control teams or to an auditor in order to obtain 

an understanding of the general behaviour of an algorithm, however they usually show their 

                                                           
26 This ability to tackle causality is very promising for the deployment of AI in general, and within the financial 
sector in particular. For example, the explainability of internal risk models implemented by banking institutions 
would be reinforced if those models enabled to assess causal relations. Causal inference is de facto at the core 
of the concerns in empirical economy since at least 25 years. Nevertheless it is missing from commonly-used AI 
models, as well as from the more classical models currently deployed by banks. 
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limitations when compared to the study of a single, concrete use case (using a local explanation) or 

several concrete use cases (for example to compare the algorithmic results on two individuals and 

detect a potential inequality of treatment). 

Global explanatory methods are also very difficult to materialize in practice. Such methods exist for 

specific model types: for example it is possible to extract from deep neural networks a set of decision 

rules which is easy to interpret and, according to the situation, relatively faithful to the Deep Learning 

model considered (DeepRED : Zilke, 2016). 

In addition, few methods are able to provide a global explanation independently from the type of the 

model being studied. This is however the case of Partial Dependence Plots (PDP), which show the 

marginal effect of a given variable on the model predictions (Friedman, 2001). 
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12. Review of potential attacks against an ML model 

ML security if a very recent field of study, but important enough to have been the object of a taxonomy. 

This taxonomy is nevertheless in constant evolution, given the changing nature of the field (Papernot, 

2018). Among the most notorious attacks against ML models, the following categories can be 

distinguished (with an example scenario is given for each type): 

¶ Causative attacks (a.k.a. Data Poisoning): training data are altered (modified feature values, new 

features created, etc.) 

o Causative integrity attacks are a subcategory of causative attacks. They are used e.g. to 

grant generous loans or low insurance premiums to malicious individuals. 

o Causative availability attacks are another subcategory of causative attacks. They are used 

e.g. to discriminate against a population group by denying them the same benefits as the 

rest of the population. 

¶ Watermark Attacks:  a malicious actor modifies the code of the ML algorithm. 

o Watermark integrity attacks: for example, conditions are introduced on certain input data 

features so as to trigger advantageous outcomes in chosen cases. 

o Watermark availability attacks: for example, rules are injected into the code in order to 

suppress favourable outcomes for the target population group. 

¶ Surrogate Models Attacks 

o Inversion attacks are the equivalent of reverse engineering for ML model. 

o Membership tests are another type of surrogate model attacks which operate by inferring 

whether input data points belong to the original training set. 

¶ Adversarial attacks construct synthetic examples in order to avoid a detrimental outcome ς or 

alternatively to obtain a favourable outcome. 

¶ Impersonation Attacks work by injecting data corresponding to a real identity (or a composite of 

several real identities) in order to usurp that identity. 

 

A particularly interesting aspect of ML security is that defences against them tend to have a beneficial 

side effect (Hall, 2019), namely that they bring the ML model closer to satisfying the four design and 

development principles mentioned in this document (section 3): appropriate data management, 

performance, stability, and explainability. 

To give but one example, a defence against data poisoning attacks is the RONI method (Reject On 

Negative Impact). It works by rejecting training data which decreases the model accuracy (Barreno, 

2010), hence it also protects against degrading the model performance due to training data drift. As 

an illustration, a facial recognition algorithm secured by RONI will exclude from its training set a series 

of pictures, each associated to an ID document, which would significantly lower its precision: this 

contributes to ensuring the integrity but also the performance of the model, which could for example 

be used by a banking institution to remotely identify new customers (a use case commonly known as 

άY¸/ ŀǘ ŀ ŘƛǎǘŀƴŎŜέύΦ 
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