

Efficient Risk and Bank Regulation

Behzad Diba Olivier Loisel Georgetown University CREST

Séminaire Chaire ACPR 6 October 2015

• The recent crisis has revived concerns that banks may take too much risk

- **•** The standard model that can account for too much risk taking is based on
	- inefficient risk (on average, the risky technology pays less than the safe one)
	- risk shifting (typically due to limited liability and deposit insurance)
- **Charter value** mitigates but does not overturn the result
- **•** However, empirical evidence is consistent with efficient risk: "countries that have experienced financial crises have, on average, grown faster than countries with stable financial conditions" (Rancière, Tornell, and Westermann, 2008)
- • So what are the positive and normative implications of efficient risk?

- We show that, when risk is efficient, banks may take not only too much risk, but also **too little risk** (without owner/manager agency problems)
- We build a model with
	- limited liability and deposit insurance
	- charter value arising from illiquid long-term assets
- We depart from the literature by making two key assumptions:
	- **e** efficient risk (necessary to get too little risk taking)
	- risk aversion (necessary to get too much risk taking when risk is efficient)
- **Too much risk** taking arises from limited liability and deposit insurance
- **Too little risk** taking arises from the charter value, which is lost to shareholders but not society in case of bank failure

- **1** Banks may take not only too much risk, but also too little risk
- ² Capital requirements, however high they are, may be unable to prevent crises
- ³ Capital requirements may have non-monotonous effects on risk taking and welfare
- **4** Banks with the same observable characteristics may behave differently (due to a new last-bank-standing effect)

1 Introduction

² Environment

³ Equilibrium

⁴ Extension

5 Conclusion

• Two periods: 1, 2

• Three agents:

- representative household H (depositor, shareholder, taxpayer)
- ex ante identical banks $(\mathsf{B}_i)_{i \in [0,1]}$ owned by H
- prudential authority P

A Main sources of distortion:

- Bs' limited liability
- deposit insurance (taken as institutional feature)
- • resolution policy (no compensation for shareholders in case of bank failure)
- **Risk aversion**: H's utility is $u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}$ with $\gamma > 0$, where c is consumption in Period 2.

• H has access to a safe **storage technology** (gross return 1)

- **Bs** have access to
	- a safe technology (gross return $R^x > 1$)
	- a risky technology (gross return *θ*)
- The shock *θ* takes the value (common across banks)
	- 0 with probability *π*
	- R^y with probability 1π

 \bullet The risky technology pays more on average than the safe one ("efficient risk"):

$$
(1-\pi)R^{\mathsf{y}} > R^{\mathsf{x}}
$$

H starts with endowment *ω* and decides how much to

- deposit (d) at the safe gross return R^d
- \bullet invest in the storage technology (h)

to maximize $\mathbb{E}\{u(c)\}\$ subject to its **budget constraint** $h + d \leq \omega$

 \bullet B_i starts with equity e and long-term assets z and decides how much to

- issue deposits (d) at the safe gross return R^d
- invest in the safe technology (x_i)
- invest in the risky technology (y_i)

to maximize $\mathbb{E}\{u'(c).dividends\}$ subject to

- its balance-sheet identity $x_i + y_i + z = e + d$
- the capital requirement (CR) $e \ge \kappa (x_i + y_i)$
- **•** P chooses κ and imposes CR on each B_i (observing $x_i + y_i$ but not x_i nor y_i)

- ¹ Shock *θ* is realized
- ² Deposits are redeemed to H by
	- non-failing banks (those with $R^\times x_i + \theta y_i \geq R^d d_i)$
	- deposit-insurance fund (financed by lump-sum taxation on H)
- \bullet Failing banks (those with $R^\times x_i + \theta y_i < R^d d_i)$ are closed and their long-term assets are "seized" by P
- \bullet Long-term assets mature (safe gross return R^z) and are redistributed to H
	- as dividends by non-failing B_is (together with $R^\times x_i + \theta y_i R^d d_i)$
	- in a lump-sum way by P (assets seized from failing Bs)

• H consumes
$$
(c = h + R^x \int_0^1 x_i di + \theta \int_0^1 y_i di + R^z z)
$$

- **•** The resolution policy amounts to **bank nationalization** and implies no compensation for shareholders
- What matters for the too-little-risk result, though, is merely that shareholders of an illiquid bank lose more than taxpayers (as under Bagehotian lending of last resort)
- Some other assumptions are not necessary for most of the results:
	- complete illiquidity of long-term assets
	- absence of an interbank market during a crisis
- These assumptions are relaxed later in the extension

- **Problem**: choose x and y to maximize $\mathbb{E}\{u(c)\} = \mathbb{E}\{u(h + R^x x + \theta y + R^z z)\}\$ subject to the resource constraint $x + y \le \Omega \equiv (\omega - h) + (e - z)$
- **First-order condition** (FOC): $\mathbb{E}\{u'(c)\theta\} = \mathbb{E}\{u'(c)R^x\}$
- **a** Interior solution:

$$
x = \frac{R^y}{\Psi^* R^x + R^y} \left[\Omega + \frac{h + R^z z}{R^x} \right] - \frac{h + R^z z}{R^x}
$$

$$
y = \frac{\Psi^* R^x}{\Psi^* R^x + R^y} \left[\Omega + \frac{h + R^z z}{R^x} \right]
$$

where $\Psi^* \equiv \left[\frac{(1 - \pi)(R^y - R^x)}{\pi R^x} \right]^{\frac{1}{\gamma}} - 1 > 0$

• Corner solution: $x = 0$ and $y = \Omega$

• Rewritten problem: choose

- $\widetilde{x} \equiv x + \frac{h + R^z z}{R^x}$: quantity of goods obtained **certainly**, divided by R^x
- y: quantity of goods obtained **possibly**, divided by R^y

to maximize $\mathbb{E}\{u(c)\} = \mathbb{E}\{u(R^x\tilde{x} + \theta y)\}\$ subject to $\tilde{x} + y = \Omega + \frac{h + R^z z}{R^x}$

. Interior solution:

\n- \n
$$
\widetilde{x} = \phi_x \left(\Omega + \frac{h + R^z z}{R^x} \right)
$$
, where $\phi_x \equiv \frac{R^y}{\Psi^* R^x + R^y}$ increases with risk aversion γ \n
\n- \n
$$
y = \phi_y \left(\Omega + \frac{h + R^z z}{R^x} \right)
$$
, where $\phi_y \equiv \frac{\Psi^* R^x}{\Psi^* R^x + R^y}$ decreases with risk aversion γ \n
\n

 \bullet Unconstrained planner's allocation: $h = 0$

- \bullet "Vulnerable/non-vulnerable bank" (VB/NB) \equiv bank that fails/does not fail when $\theta = 0$
- For each value of (ω, e, z, κ) , there are five alternative **candidate equilibria**:
	- only non-vulnerable banks
		- unconstrained (OUN)
		- constrained (OCN)
	- both non-vulnerable banks and vulnerable banks
		- complete specialization (CS)
		- partial specialization (PS)
	- only vulnerable banks (OV)
- \bullet In this presentation, I focus on the case $h > 0$, which implies that
	- $R^d=1$ (indifference of H between storage and deposits)
	- CR is binding (finite demand of deposits by Bs at the price $R^d = 1$)

(while the alternative case $h=0$ implies that $R^d\in\{R^\times,R^\gamma\}$ and CR is lax)

Candidate equilibria II

• Problem of NB: choose d , x , and y to maximize

$$
\mathbb{E}\left\{u'\left(c\right)\left[R^{x}x+\theta y-d+R^{z}z\right]\right\}
$$

subject to $e \ge \kappa (x + y)$ and $e = x + y + z - d$

- $\mathsf{FOC}\colon \mathbb{E}\{u'(c)\theta\} = \mathbb{E}\{u'(c)R^\times\}$ as in the constrained-planner problem
- So the solution coincides with the constrained-planner allocation:

$$
y = \frac{\Psi_{\text{oun}} R^x}{\Psi_{\text{oun}} R^x + R^y} \left[\Omega + \frac{h + R^z z}{R^x}\right] \text{ where } \Psi_{\text{oun}} = \Psi^* \text{ and } \Omega = \frac{e}{\kappa}
$$

• So, at this equilibrium, there is the optimal amount of risk:

- limited liability plays no role when there are only NBs
- shareholders' interests coincide with taxpayers' interests
- Bs have the same risk-taking incentives as the constrained planner
- Condition for no deviation from NB to VB to be profitable:

 $d < R^z z$

(when $\theta = 0$, the deviating bank saves d but loses its charter value $R^z z$)

- Now consider the **candidate equilibrium** with $NB(x)$ and $VB(y)$
- The condition for indifference between NB and VB gives

$$
\int_0^1 y_i di = \frac{\Psi_{cs} R^x}{\Psi_{cs} R^x + R^y} \left[\Omega + \frac{h + R^z z}{R^x} \right]
$$

where
$$
\Psi_{cs} \equiv \left[\frac{(1-\pi)(R^y - R^x)}{\pi (R^x - \alpha_{cs})} \right]^{\frac{1}{\gamma}} - 1
$$

\n $\alpha_{cs} \equiv \frac{\kappa}{e} \left[\frac{1-\kappa}{\kappa} e + z - R^z z \right] = \frac{d - R^z z}{\Omega}$
\n $\Omega = \frac{e}{\kappa}$

[Introduction](#page-1-0) **[Environment](#page-5-0) [Conclusion](#page-30-0) [Equilibrium](#page-12-0)** [Extension](#page-27-0) Extension Conclusion Complete specialization II

• Condition for **no deviation** from $NB(x)$ to $NB(x, y)$ to be profitable:

 $\mathbb{E}\{u'(c)\theta\} < \mathbb{E}\{u'(c)R^x\} \Longleftrightarrow \Psi_{cs} > \Psi^* \Longleftrightarrow \alpha_{cs} > 0 \Longleftrightarrow d > R^z z$

• So, at this equilibrium, there is too much risk:

- VBs take too much risk as they do not internalize the cost for taxpayers
- in response, NBs best serve their shareholders' interests by holding only x
- the number of NBs (or equivalently of VBs) adjusts so that, for the shareholders of an individual bank, the gain of moving from VB to NB (due to $\mathbb{E}\{u'(c)\theta\} < \mathbb{E}\{u'(c)R^\times\}$) exactly offsets the loss (due to $d > R^z z)$

- **•** Aggregate risk and risk aversion introduce strategic substitutability into banks' risk-taking decisions
- **This creates a last-bank-standing effect**, based on preferences, not market structure (Perotti and Suarez, 2002) nor technology (Martinez-Miera and Suarez, 2013)
- Thus, in our model the equilibrium may be asymmetric across banks even though banks are ex ante identical

• Now consider the **candidate equilibrium** with $NB(x,y)$ and $VB(y)$

At this equilibrium, the non-vulnerability constraint is binding for NBs:

$$
R^x x = d \text{ for each NB} \text{ and } \mathbb{E}\{u'(c)\theta\} > \mathbb{E}\{u'(c)R^x\}
$$

• The condition for indifference between NB and VB gives

$$
\int_0^1 y_i di = \frac{\Psi_{ps} R^x}{\Psi_{ps} R^x + R^y} \left[\Omega + \frac{h + R^z z}{R^x} \right]
$$

where
$$
\Psi_{ps} \equiv \left[\frac{(1-\pi)(R^y - R^x) \alpha_{ps}}{\pi R^x} \right]^{\frac{1}{\gamma}} - 1
$$

\n $\alpha_{ps} \equiv \frac{\frac{1-\kappa}{\kappa} e + z}{R^2 z} = \frac{d}{R^2 z}$
\n $\Omega = \frac{e}{\kappa}$

• Condition for the non-vulnerability constraint to be binding for NBs:

 $\mathbb{E}\{u'(c)\theta\} > \mathbb{E}\{u'(c)R^{\times}\} \Longleftrightarrow \Psi_{ps} < \Psi^* \Longleftrightarrow \alpha_{ps} < 1 \Longleftrightarrow d < R^z z$

• So, at this equilibrium, there is too little risk:

- Bs take too little risk as they internalize the loss $R^z z d > 0$ for VBs' shareholders when $\theta = 0$ but not the corresponding taxpayers' gain
- \bullet in response to excessively low aggregate risk, NBs hold as much y as they can
- the number of NBs (or equivalently of VBs) adjusts so that, for the shareholders of an individual bank, the gain of moving from VB to NB (due to $d < R^z z$) exactly offsets the loss (due to $\mathbb{E}\{u'(c)\theta\} > \mathbb{E}\{u'(c)R^x\}$)

Only constrained non-vulnerable banks

• The condition for the non-vulnerability constraint to be binding for NBs

$$
R^x x = d \quad \text{and} \quad \mathbb{E}\{u'(c)\theta\} > \mathbb{E}\{u'(c)R^x\}
$$

implies that $\Psi_{ocn} < \Psi^*$, where Ψ_{ocn} is implicitly defined by

$$
\int_0^1 y_i di = \frac{\Psi_{ocn} R^x}{\Psi_{ocn} R^x + R^y} \left[\Omega + \frac{h + R^z z}{R^x} \right]
$$

- So, at this equilibrium, there is too little risk, for the same reason as in the PS case
- Unlike in the PS case, a condition for no deviation from NB to VB to be profitable has to be satisfied

• The condition for all Bs to be vulnerable

 $x = 0$

allows for $\Psi_{ov} \ge \Psi^*$, where Ψ_{ov} is implicitly defined by

$$
\int_0^1 y_i di = \frac{\Psi_{ov} R^x}{\Psi_{ov} R^x + R^y} \left[\Omega + \frac{h + R^z z}{R^x} \right]
$$

• So, at this equilibrium, there may be

- **too much risk**, for the same reason as in the CS case
- \bullet the (constrained) optimal amount of risk, when z and h are large enough

- **•** The conditions on (ω, e, z, κ) for existence of each equilibrium involve only $\frac{d}{R^2 z} = \frac{1}{R^2 z} \left[\frac{e}{\kappa} - (e - z) \right]$, $\frac{e - z}{R^2 z}$, and $\frac{\omega}{R^2 z}$
- So the set of values of (ω, e, z, κ) for which each equilibrium exists can be represented as an area of the $(\frac{d}{R^2z}, \frac{e-z}{R^2z})$ plane, with the borderlines between areas depending only on $\frac{\omega}{R^z z}$
- **In the generic case** $\gamma \neq 1$, some of the equations characterizing these borderlines are linear, but the others cannot be easily studied analytically
- **•** In the specific case $\gamma = 1$, these equations are either linear or quadratic

For a range of values of $\frac{e-z}{R^z z}$, the function $\Psi(\frac{d}{R^z z})$ looks like this:

so that capital requirements have a non-monotonous effect on risk

Since welfare depends continuously on $\Psi(\frac{d}{R^z z})$ and $h=\omega-d$, capital requirements have a non-monotonous effect on welfare too

- So far, long-term assets have been assumed to be completely illiquid
- **•** Assume now that they can be liquidated at cost $0 < \delta < 1$: a fraction δ of liquidated assets is lost
- This gives rise to three possible kinds of banks:
	- **Iiquid banks** can redeem deposits when $\theta = 0$ without liquidating assets
	- **illiquid banks** can redeem deposits when $\theta = 0$ only by liquidating assets
	- **insolvent banks** cannot redeem deposits when $\theta = 0$, even by liq. assets
- \bullet In terms of resolution policy, assume that P leaves banks liquidate assets and closes insolvent banks when $\theta = 0$

- Define Ψ∗∗ as the value of Ψ that would be chosen by a planner constrained to
	- invest as many goods in the storage technology as in equilibrium (h)
	- **•** throw away as many goods when $\theta = 0$ as are lost in eq. because of liquidation
- We still get that banks may take too little or too much risk (in the weaker sense that $\Psi \leqslant \Psi^{**}$), whether there is or is not an interbank market when $\theta = 0$
- **•** The presence of an **interbank market** when $\theta = 0$ provides an additional source of strategic substitutability (as the gross interbank rate may be higher than one)

- We investigate the consequences of efficient risk in a risk-shifting model
- **O** We obtain that
	- banks may take not only too much risk, but also too little risk
	- capital requirements, however high they are, may be unable to prevent crises
	- capital requirements may have non-monotonous effects on risk and welfare
	- banks with the same observable characteristics may behave differently

- **•** For a range of values of (ω, z, κ) , we have
	- $\Psi > \Psi^*$ for relatively high values of ϵ
	- $\Psi < \Psi^*$ for relatively low values of e
- This result suggests that, in a dynamic setting, we could get
	- too much risk in "good times" (high values of e)
	- \bullet too little risk in "bad times" (low values of e)

under constant capital requirements (as in Basel II)

• This would provide a new justification for the "countercyclical capital buffer" of Basel III, based on risk cycles, not credit cycles (as in Gersbach and Rochet, 2013)

- **Policy objective**: representative agent's ex ante utility $E\{u(c)\}\$
- **Policy instruments**: capital requirement *κ* and lending of last resort (LLR)
- Policy trade-offs: in areas with $\Psi > \Psi^*$,
	- the higher κ , the lower Ψ (+) and the higher h (-)
	- the more LLR, the lower liquidation costs $(+)$ and the higher $\Psi(-)$
	- (+: positive effect on welfare; −: negative effect on welfare)
- So the unconstrained-planner allocation may or may not be implementable depending on (*ω*, e, z)