		Equilibrium	Conclusion
0000	0000000	000000000000000000000000000000000000000	

Efficient Risk and Bank Regulation

Behzad Diba Olivier Loisel Georgetown University

Crest

Séminaire Chaire ACPR 6 October 2015

Introduction		Equilibrium		Conclusion
0000	0000000	0000000000000000000	000	000
Motivation				

- The recent crisis has revived concerns that banks may take too much risk
- The standard model that can account for too much risk taking is based on
 - inefficient risk (on average, the risky technology pays less than the safe one)
 - risk shifting (typically due to limited liability and deposit insurance)
- Charter value mitigates but does not overturn the result
- However, empirical evidence is consistent with efficient risk: "countries that have experienced financial crises have, on average, grown faster than countries with stable financial conditions" (Rancière, Tornell, and Westermann, 2008)
- So what are the positive and normative implications of efficient risk?

Introduction		Equilibrium		Conclusion
0000	0000000	0000000000000000000	000	000
Contribution				

- We show that, when risk is efficient, banks may take not only too much risk, but also **too little risk** (without owner/manager agency problems)
- We build a model with
 - limited liability and deposit insurance
 - charter value arising from illiquid long-term assets
- We depart from the literature by making two key assumptions:
 - efficient risk (necessary to get too little risk taking)
 - risk aversion (necessary to get too much risk taking when risk is efficient)
- Too much risk taking arises from limited liability and deposit insurance
- **Too little risk** taking arises from the charter value, which is lost to shareholders but not society in case of bank failure

Introduction		Equilibrium		Conclusion
0000	0000000	0000000000000000000	000	000
Main results				

- Banks may take not only too much risk, but also too little risk
- 2 Capital requirements, however high they are, may be unable to prevent crises
- Sepital requirements may have non-monotonous effects on risk taking and welfare
- Banks with the same observable characteristics may behave differently (due to a new last-bank-standing effect)

Introduction		Equilibrium		Conclusion
0000	000000	0000000000000000	000	000
Outline o	f the presentat	ion		

Introduction

- 2 Environment
- Equilibrium
- Extension

Onclusion

	Environment	Equilibrium		Conclusion
0000	000000	000000000000000000000000000000000000000	000	000
Overview				

• Two periods: 1, 2

• Three agents:

- representative household H (depositor, shareholder, taxpayer)
- ex ante identical banks $(B_i)_{i \in [0,1]}$ owned by H
- prudential authority P

• Main sources of distortion:

- Bs' limited liability
- deposit insurance (taken as institutional feature)
- resolution policy (no compensation for shareholders in case of bank failure)
- **Risk aversion**: H's utility is $u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}$ with $\gamma > 0$, where c is consumption in Period 2.

	Environment	Equilibrium		Conclusion
0000	000000	0000000000000000	000	000
Technologies	available in F	Period 1		

• H has access to a safe storage technology (gross return 1)

- Bs have access to
 - a safe technology (gross return $R^{\times} > 1$)
 - a risky technology (gross return θ)
- The shock θ takes the value (common across banks)
 - 0 with probability π
 - R^{y} with probability 1π

• The risky technology pays more on average than the safe one ("efficient risk"):

$$(1-\pi)R^y > R^x$$

	Environment	Equilibrium		Conclusion
0000	000000	000000000000000	000	000
Period 1				

 $\bullet\,$ H starts with endowment ω and decides how much to

- deposit (d) at the safe gross return R^d
- invest in the storage technology (h)

to maximize $\mathbb{E}\{u(c)\}$ subject to its **budget constraint** $h+d \leq \omega$

• B_i starts with equity e and long-term assets z and decides how much to

- issue deposits (d) at the safe gross return R^d
- invest in the safe technology (x_i)
- invest in the risky technology (y_i)

to maximize $\mathbb{E}\{u'(c).dividends\}$ subject to

- its balance-sheet identity $x_i + y_i + z = e + d$
- the capital requirement (CR) $e \ge \kappa (x_i + y_i)$
- P chooses κ and imposes CR on each B_i (observing $x_i + y_i$ but not x_i nor y_i)

	Environment	Equilibrium		Conclusion
0000	0000000	0000000000000000000	000	000
Period 2				

- Shock θ is realized
- Opposits are redeemed to H by
 - non-failing banks (those with $R^{x}x_{i} + \theta y_{i} \ge R^{d}d_{i}$)
 - deposit-insurance fund (financed by lump-sum taxation on H)
- Sailing banks (those with R^xx_i + θy_i < R^dd_i) are closed and their long-term assets are "seized" by P
- Solution Long-term assets mature (safe gross return R^z) and are redistributed to H
 - as dividends by non-failing B_i s (together with $R^x x_i + \theta y_i R^d d_i$)
 - in a lump-sum way by P (assets seized from failing Bs)

• H consumes
$$(c = h + R^x \int_0^1 x_i di + \theta \int_0^1 y_i di + R^z z)$$

Introduction	Environment	Equilibrium	Extension	Conclusion
0000		000000000000000000000000000000000000	000	000
Discussion of	assumptions			

- The resolution policy amounts to **bank nationalization** and implies no compensation for shareholders
- What matters for the too-little-risk result, though, is merely that shareholders of an illiquid bank lose more than taxpayers (as under **Bagehotian lending of last resort**)
- Some other assumptions are not necessary for most of the results:
 - complete illiquidity of long-term assets
 - absence of an interbank market during a crisis
- These assumptions are relaxed later in the extension

- **Problem**: choose x and y to maximize $\mathbb{E}\{u(c)\} = \mathbb{E}\{u(h+R^xx+\theta y+R^z z)\}$ subject to the resource constraint $x + y \le \Omega \equiv (\omega - h) + (e - z)$
- First-order condition (FOC): $\mathbb{E}\{u'(c)\theta\} = \mathbb{E}\{u'(c)R^x\}$
- Interior solution:

$$\begin{aligned} x &= \frac{R^{y}}{\Psi^{*}R^{x} + R^{y}} \left[\Omega + \frac{h + R^{z}z}{R^{x}} \right] - \frac{h + R^{z}z}{R^{x}} \\ y &= \frac{\Psi^{*}R^{x}}{\Psi^{*}R^{x} + R^{y}} \left[\Omega + \frac{h + R^{z}z}{R^{x}} \right] \\ \Psi^{*} &\equiv \left[\frac{(1-\pi)(R^{y} - R^{x})}{\pi R^{x}} \right]^{\frac{1}{\gamma}} - 1 > 0 \end{aligned}$$

• Corner solution: x = 0 and $y = \Omega$

where

	Environment	Equilibrium	Conclusion
	0000000		
Interpretation	า		

• Rewritten problem: choose

- $\tilde{x} \equiv x + \frac{h + R^z z}{R^x}$: quantity of goods obtained **certainly**, divided by R^x
- y: quantity of goods obtained **possibly**, divided by R^y

to maximize $\mathbb{E}\{u(c)\} = \mathbb{E}\{u(R^{x}\tilde{x} + \theta y)\}$ subject to $\tilde{x} + y = \Omega + \frac{h+R^{z}z}{R^{x}}$

Interior solution:

•
$$\widetilde{x} = \phi_x \left(\Omega + \frac{h+R^z z}{R^x}\right)$$
, where $\phi_x \equiv \frac{R^y}{\Psi^* R^x + R^y}$ increases with risk aversion γ
• $y = \phi_y \left(\Omega + \frac{h+R^z z}{R^x}\right)$, where $\phi_y \equiv \frac{\Psi^* R^x}{\Psi^* R^x + R^y}$ decreases with risk aversion γ

• Unconstrained planner's allocation: h = 0

		Equilibrium	Conclusion
		000000000000000	
Candidate	equilibria I		

- "Vulnerable/non-vulnerable bank" (VB/NB) \equiv bank that fails/does not fail when $\theta = 0$
- For each value of (ω, e, z, κ) , there are five alternative **candidate equilibria**:
 - only non-vulnerable banks
 - unconstrained (OUN)
 - constrained (OCN)
 - both non-vulnerable banks and vulnerable banks
 - complete specialization (CS)
 - partial specialization (PS)
 - only vulnerable banks (OV)
- In this presentation, I focus on the case h > 0, which implies that
 - $R^d = 1$ (indifference of H between storage and deposits)
 - CR is binding (finite demand of deposits by Bs at the price $R^d = 1$)

(while the alternative case h = 0 implies that $R^d \in \{R^x, R^y\}$ and CR is lax)

Candidate equilibria II

• **Problem** of NB: choose *d*, *x*, and *y* to maximize

$$\mathbb{E}\left\{u'\left(c\right)\left[R^{x}x+\theta y-d+R^{z}z\right]\right\}$$

subject to $e \ge \kappa (x + y)$ and e = x + y + z - d

- FOC: $\mathbb{E}\{u'(c)\theta\} = \mathbb{E}\{u'(c)R^x\}$ as in the constrained-planner problem
- So the solution coincides with the constrained-planner allocation:

$$y = \frac{\Psi_{oun} R^{x}}{\Psi_{oun} R^{x} + R^{y}} \left[\Omega + \frac{h + R^{z}z}{R^{x}} \right] \text{ where } \Psi_{oun} = \Psi^{*} \text{ and } \Omega = \frac{e}{\kappa}$$

Only unco	Only unconstrained non vulnerable banks II						
0000	0000000	000000000000000000000000000000000000000	000	000			
		Equilibrium		Conclusion			

- So, at this equilibrium, there is the optimal amount of risk:
 - limited liability plays no role when there are only NBs
 - shareholders' interests coincide with taxpayers' interests
 - Bs have the same risk-taking incentives as the constrained planner
- Condition for **no deviation** from NB to VB to be profitable:

 $d < R^z z$

(when $\theta = 0$, the deviating bank saves d but loses its charter value $R^{z}z$)

Introduction	Environment	Equilibrium	Extension	Conclusion
0000	0000000	000000000000000000000000000000000000000	000	000
Complete sp	ecialization I			

- Now consider the candidate equilibrium with NB(x) and VB(y)
- The condition for indifference between NB and VB gives

$$\int_{0}^{1} y_{i} di = \frac{\Psi_{cs} R^{x}}{\Psi_{cs} R^{x} + R^{y}} \left[\Omega + \frac{h + R^{z} z}{R^{x}} \right]$$

where
$$\Psi_{cs} \equiv \left[\frac{(1-\pi)(R^{y}-R^{x})}{\pi(R^{x}-\alpha_{cs})}\right]^{\frac{1}{\gamma}} - 1$$

 $\alpha_{cs} \equiv \frac{\kappa}{e} \left[\frac{1-\kappa}{\kappa}e + z - R^{z}z\right] = \frac{d-R^{z}z}{\Omega}$
 $\Omega = \frac{e}{\kappa}$

Introduction	Environment	Equilibrium	Extension	Conclusion
0000	0000000	○○○○○●○○○○○○○○○	000	
Complete sp	ecialization II			

• Condition for **no deviation** from NB(x) to NB(x,y) to be profitable:

 $\mathbb{E}\{u'(c)\theta\} < \mathbb{E}\{u'(c)R^x\} \Longleftrightarrow \Psi_{cs} > \Psi^* \Longleftrightarrow \alpha_{cs} > 0 \Longleftrightarrow d > R^z z$

• So, at this equilibrium, there is too much risk:

- VBs take too much risk as they do not internalize the cost for taxpayers
- in response, NBs best serve their shareholders' interests by holding only x
- the number of NBs (or equivalently of VBs) adjusts so that, for the shareholders of an individual bank, the gain of moving from VB to NB (due to E{u'(c)θ} < E{u'(c)R^x}) exactly offsets the loss (due to d > R^zz)

		Equilibrium	Conclusion
		000000000000000000	
Complete	specialization II	l	

- Aggregate risk and risk aversion introduce **strategic substitutability** into banks' risk-taking decisions
- This creates a last-bank-standing effect, based on preferences, not market structure (Perotti and Suarez, 2002) nor technology (Martinez-Miera and Suarez, 2013)
- Thus, in our model the equilibrium may be asymmetric across banks even though banks are ex ante identical

		Equilibrium	Conclusion
		000000000000000	
Partial speci	alization I		

- Now consider the candidate equilibrium with NB(x,y) and VB(y)
- At this equilibrium, the non-vulnerability constraint is binding for NBs:

$$R^{x}x = d$$
 for each NB and $\mathbb{E}\{u'(c)\theta\} > \mathbb{E}\{u'(c)R^{x}\}$

• The condition for indifference between NB and VB gives

$$\int_0^1 y_i di = \frac{\Psi_{ps} R^x}{\Psi_{ps} R^x + R^y} \left[\Omega + \frac{h + R^z z}{R^x} \right]$$

where
$$\Psi_{ps} \equiv \left[\frac{(1-\pi)(R^{y}-R^{x})\alpha_{ps}}{\pi R^{x}}\right]^{\frac{1}{\gamma}} - 1$$

 $\alpha_{ps} \equiv \frac{\frac{1-\kappa}{\kappa}e+z}{R^{z}z} = \frac{d}{R^{z}z}$
 $\Omega = \frac{e}{\kappa}$

Introduction	Environment	Equilibrium	Extension	Conclusion
0000	0000000	○○○○○○○●○○○○○○	000	
Partial spec	ialization II			

• Condition for the non-vulnerability constraint to be binding for NBs:

 $\mathbb{E}\{u'(c)\theta\} > \mathbb{E}\{u'(c)R^x\} \Longleftrightarrow \Psi_{ps} < \Psi^* \Longleftrightarrow \alpha_{ps} < 1 \Longleftrightarrow d < R^z z$

• So, at this equilibrium, there is too little risk:

- Bs take too little risk as they internalize the loss $R^z z d > 0$ for VBs' shareholders when $\theta = 0$ but not the corresponding taxpayers' gain
- in response to excessively low aggregate risk, NBs hold as much y as they can
- the number of NBs (or equivalently of VBs) adjusts so that, for the shareholders of an individual bank, the gain of moving from VB to NB (due to d < R^zz) exactly offsets the loss (due to E{u'(c)θ} > E{u'(c)R^x})

Only constrained non-vulnerable banks

• The condition for the non-vulnerability constraint to be binding for NBs

$$R^{x}x = d$$
 and $\mathbb{E}\{u'(c)\theta\} > \mathbb{E}\{u'(c)R^{x}\}$

implies that $\Psi_{\mathit{ocn}} < \Psi^*,$ where Ψ_{ocn} is implicitly defined by

$$\int_{0}^{1} y_{i} di = \frac{\Psi_{ocn} R^{x}}{\Psi_{ocn} R^{x} + R^{y}} \left[\Omega + \frac{h + R^{z} z}{R^{x}} \right]$$

- So, at this equilibrium, there is too little risk, for the same reason as in the PS case
- Unlike in the PS case, a condition for **no deviation** from NB to VB to be profitable has to be satisfied

Introduction	Environment 0000000	Equilibrium	Extension 000	Conclusion 000
Only vulnera	ble banks			

• The condition for all Bs to be vulnerable

x = 0

allows for $\Psi_{\textit{ov}} \geq \Psi^*$, where $\Psi_{\textit{ov}}$ is implicitly defined by

$$\int_{0}^{1} y_{i} di = \frac{\Psi_{ov} R^{x}}{\Psi_{ov} R^{x} + R^{y}} \left[\Omega + \frac{h + R^{z} z}{R^{x}} \right]$$

• So, at this equilibrium, there may be

- too much risk, for the same reason as in the CS case
- the (constrained) optimal amount of risk, when z and h are large enough

		Equilibrium		Conclusion
0000	0000000	0000000000000000	000	000

Taking stock

- The conditions on (ω, e, z, κ) for existence of each equilibrium involve only $\frac{d}{R^2 z} = \frac{1}{R^2 z} \left[\frac{e}{\kappa} (e z)\right]$, $\frac{e z}{R^2 z}$, and $\frac{\omega}{R^2 z}$
- So the set of values of (ω, e, z, κ) for which each equilibrium exists can be represented as an area of the $(\frac{d}{R^z z}, \frac{e-z}{R^z z})$ plane, with the borderlines between areas depending only on $\frac{\omega}{R^z z}$
- In the generic case $\gamma \neq 1$, some of the equations characterizing these borderlines are linear, but the others cannot be easily studied analytically
- In the specific case $\gamma = 1$, these equations are either linear or quadratic

• For a range of values of $\frac{e-z}{R^2 z}$, the function $\Psi(\frac{d}{R^2 z})$ looks like this:

so that capital requirements have a non-monotonous effect on risk

• Since welfare depends continuously on $\Psi(\frac{d}{R^2z})$ and $h = \omega - d$, capital requirements have a non-monotonous effect on welfare too

Introduction	Environment	Equilibrium	Extension	Conclusion
0000	0000000	000000000000000000000000000000000000	●○○	000
Some alterna	tive assumptic	ons		

- So far, long-term assets have been assumed to be completely illiquid
- Assume now that they can be liquidated at cost 0 $<\delta<$ 1: a fraction δ of liquidated assets is lost
- This gives rise to three possible kinds of banks:
 - liquid banks can redeem deposits when $\theta = 0$ without liquidating assets
 - illiquid banks can redeem deposits when $\theta = 0$ only by liquidating assets
 - insolvent banks cannot redeem deposits when $\theta = 0$, even by liq. assets
- In terms of resolution policy, assume that P leaves banks liquidate assets and closes insolvent banks when $\theta = 0$

		Equilibrium	Extension	Conclusion
0000	0000000	0000000000000000000	000	000
and their	implications			

- Define Ψ^{**} as the value of Ψ that would be chosen by a planner constrained to
 - invest as many goods in the storage technology as in equilibrium (h)
 - throw away as many goods when heta=0 as are lost in eq. because of liquidation
- We still get that banks may take too little or too much risk (in the weaker sense that Ψ ≤ Ψ**), whether there is or is not an interbank market when θ = 0
- The presence of an interbank market when θ = 0 provides an additional source of strategic substitutability (as the gross interbank rate may be higher than one)

Equilibria in the absence of an interbank market

		Equilibrium		Conclusion
0000	0000000	000000000000000	000	000
Summary				

- We investigate the consequences of efficient risk in a risk-shifting model
- We obtain that
 - banks may take not only too much risk, but also too little risk
 - capital requirements, however high they are, may be unable to prevent crises
 - capital requirements may have non-monotonous effects on risk and welfare
 - banks with the same observable characteristics may behave differently

Introduction	Environment	Equilibrium	Extension	Conclusion
0000	0000000	000000000000000000000000000000000000000	000	000
Towards r	risk cycles			

- For a range of values of (ω, z, κ) , we have
 - $\Psi > \Psi^*$ for relatively high values of e
 - $\Psi < \Psi^*$ for relatively low values of e
- This result suggests that, in a dynamic setting, we could get
 - too much risk in "good times" (high values of e)
 - too little risk in "bad times" (low values of e)

under constant capital requirements (as in Basel II)

• This would provide a new justification for the "countercyclical capital buffer" of Basel III, based on risk cycles, not credit cycles (as in Gersbach and Rochet, 2013)

Towards o	ontimal-policy	analysis		
	OOOOOO			
Introduction	Environment	Equilibrium	Extension	Conclusio

- **Policy objective**: representative agent's ex ante utility $\mathbb{E}{u(c)}$
- Policy instruments: capital requirement κ and lending of last resort (LLR)
- Policy trade-offs: in areas with $\Psi > \Psi^*$,
 - the higher κ , the lower Ψ (+) and the higher h (-)
 - $\bullet\,$ the more LLR, the lower liquidation costs (+) and the higher $\Psi\,\,(-)$
 - (+: positive effect on welfare; -: negative effect on welfare)
- So the unconstrained-planner allocation may or may not be implementable depending on (ω, e, z)