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Abstract

We analyze the role of benchmarks in over-the-counter markets subject to search frictions. The

publication of a benchmark can, under conditions, raise total social surplus by (i) increasing

the volume of beneficial trade, (ii) facilitating more efficient trade matching between dealers

and customers, and (iii) reducing total search costs. Although the improvement in market

transparency caused by benchmarks may lower dealer profit margins on each trade, dealers

may nevertheless introduce a benchmark such as LIBOR in order to encourage greater market

participation by investors. In some cases, low-cost dealers may introduce a benchmark in order

to increase their market share through reducing entry by high-cost dealers, a further source

of efficiency gain.
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1 Introduction

An enormous quantity of transactions in over-the-counter (OTC) markets are negotiated

on the basis of benchmark prices. This paper explains how benchmarks affect pricing

and trading behavior by reducing market opaqueness, characterizes the welfare impact

of benchmarks, and shows how the incentives of regulators and dealers to support

benchmarks depend on market structure.

Trillions of dollars in loans are negotiated at a spread to LIBOR or EURIBOR,

benchmark interbank borrowing rates.1 The WM/Reuters daily fixings are the dom-

inant benchmarks in the foreign exchange market, which covers over $5 trillion per

day in transactions.2 There are popular benchmarks for a range of commodities in-

cluding silver, gold, oil, and natural gas, among others.3 Benchmarks are also used

to provide price transparency for manufactured products such as pharmaceuticals and

automobiles.4

Among other roles, benchmarks mitigate search frictions by lowering the informa-

tional asymmetry between dealers and their “buy-side” customers. We consider a mar-

ket for an asset in which dealers offer price quotes to customers who are relatively unin-

formed about the typical cost to dealers of providing the asset. Customers must engage

in costly search in order to observe the quotes. We provide conditions under which

adding a benchmark to an opaque OTC market can improve efficiency by encouraging

entry by customers, improving matching efficiency, and reducing total search costs.

1LIBOR is the London Interbank Offered Rate. EURIBOR is the Euro Interbank Offered Rate.
For U.S. dollar Libor alone, the Market Participants Group on Reference Rate Reform (2014) (chaired
by one of the authors of this paper) reports that over 3 trillion dollars in syndicated loans and over 1
trillion dollars in variable-rate bonds are negotiated relative to LIBOR. The MPG report lists many
other fixed-income products that are negotiated at a spread to the “interbank offered rates” known
as LIBOR, EURIBOR, and TIBOR, across five major currencies. As of the end of 2013, Bank for
International Settlements (2014) report a total notional outstanding of interest rate derivatives of 583
trillion U.S. dollars, the vast majority of which reference LIBOR or EURIBOR. These swap contracts
and many other derivatives reference benchmarks, but are not themselves benchmark products. Other
extremely popular benchmarks for overnight interest rates include SONIA, the Sterling OverNight
Index Average, and EONIA, the Euro OverNight Index Average.

2See Foreign Exchange Benchmark Group (2014), which reports that 160 currencies are covered by
the WM/Reuters benchmarks. These benchmarks are fixed at least daily, and by currency pair within
the 21 major “trade” currencies.

3The London Bullion Market Association provides benchmarks for gold and silver. Platts provides
benchmarks for oil, refined fuels, and iron ore (IODEX). Another major oil price benchmark is ICE
Brent. ICIS Heren provides a widely used price benchmark for natural gas.

4For a discussion of the Average Wholesale Price (AWP) drug-price benchmarks, see Gencarelli
(2005). The Kelly Blue Book publishes the “Fair Purchase Price” of automobiles, based on the average
transaction price by model and location.
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Recent major scandals over the manipulation of benchmarks for interest rates, for-

eign currencies, and other assets have made the robustness of benchmarks a major

concern of international investigators and policymakers. This paper offers a theoretical

foundation for public-policy support of transparent financial benchmarks. Section 6

discusses the manipulation of benchmarks in more detail.

Our model works roughly as follows. In an over-the-counter market with a finite

number of dealers and a continuum of investors that we call “traders,” the cost to a

dealer of providing the asset to a trader is the sum of a dealer-specific (idiosyncratic)

component and a component that is common to all dealers. (In practice the clients of

financial intermediaries may be buying or selling the asset. We take the case in which

traders wish to buy. The opposite case is effectively the same, up to sign changes.)

The existence of a benchmark is taken to mean that the common cost component is

publicly announced. Each trader observes, privately, whether her search cost is high or

low. Traders are searching for a good price, and dealers offer them price quotes that

depend endogenously on the presence of a benchmark. Each dealer posts an offer price,

available for execution by any trader, anonymously. Traders, who have a commonly

known value for acquiring the asset, contact the dealers sequentially, expending a costly

search effort, or costly delay, with each successive dealer contacted. At each point in

time the trader, given all of the information available to her at that time (including past

price offers and, if published, the benchmark) decides whether to buy, keep searching,

or exit the market. All market participants maximize their conditional expected net

payoffs, at all times, in a perfect Bayesian equilibrium.

Under natural parameter assumptions, which vary with the specific result, we show

that publishing the benchmark is socially efficient because of the following effects. First,

the publication of the benchmark encourages efficient entry by traders, thus increasing

the realized gains from trade. The benchmark improves the information available to

traders about the likely price terms they will face. This assists traders in deciding

whether to participate in the market, based on whether there is a sufficiently large

conditional expected gain from trade. The increased transparency of prices created

by the benchmark causes dealers to compete more aggressively in their quotes. In

this sense, the benchmark is a commitment device that mitigates the hold-up problem

arising from the incentive of dealers to quote less attractive prices once the search costs

of traders have been sunk.
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Second, benchmarks can improve matching efficiency, leading to proportionately

more sales by low-cost dealers. When the benchmark is not observed by traders, high-

cost dealers exploit the ignorance of traders about the cost of providing the asset and

may conduct sales despite the presence of more efficient competitors. The benchmark

allows traders to decompose a price offer into a common-cost component and the margin

charged by the dealer. As a result, if search costs are sufficiently small, customers trade

with the most efficient dealers. Third, benchmarks help avoid wasteful search by (i)

alerting traders that gains from trade are too small to justify entry, and (ii) helping

them correctly infer that they should stop searching when they encounter a low-cost

dealer.

We also characterize cases in which introduction of a benchmark lowers the expected

social surplus.

Although a benchmark reduces dealers’ informational advantage over traders, deal-

ers may sometimes prefer to commit to a benchmark, assuming they are able to co-

ordinate among themselves to do so. Typically, by reducing market opaqueness, a

benchmark also reduces the local monopoly power of a dealer when facing a customer,

and hence decreases the dealer’s average profit margin. Thus, dealers prefer to intro-

duce a benchmark only when the resulting reduction in profit margin is more than offset

by increased volume of trade. We provide supporting conditions on model parameters.

In the simplest version of our model in which dealers have homogeneous costs, we

demonstrate that dealers never want to introduce the benchmark when doing so would

reduce social surplus. On the other hand, there are cases in which benchmarks are

welfare-enhancing but dealers lack the incentives to introduce them. Thus, there may

be scope for regulators to promote benchmarks in order to improve market efficiency.

Finally, we analyze how the incentives to commit to a benchmark differ across

different types of dealers. Given the improvement in matching efficiency caused by

benchmarks, the most efficient dealers might use the benchmark as a signaling device.

By committing to more transparent prices, low-cost dealers credibly signal their ability

to provide the asset to traders at more attractive terms. Thus, a benchmark can be a

“price transparency weapon,” used to drive inefficient competitors out of the market

and draw trades to dealers in the “benchmark club.” Our findings may help explain

why benchmarks such as LIBOR are introduced voluntarily by dealers or banks, without

direct support by regulators.5

5See Hou and Skeie (2013).
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Benchmarks serve purposes beyond those considered in this paper. As discussed by

Duffie and Stein (2014), the existence of a benchmark makes it possible to contract in

advance for the exchange of an asset at a formulaic price that depends on the bench-

mark. For example, a lender and borrower can commit to a floating-rate loan whose

future interest payments are at a fixed spread to LIBOR. A benchmark also permits

investors to monitor the effectiveness of trade execution by agents acting as their asset

managers.

Our analysis draws upon techniques first used in search-based models of labor mar-

kets, in a literature surveyed by Rogerson, Shimer and Wright (2005). The framework

that we consider features endogenous pricing (as in Varian 1980, Burdett and Judd

1983, and Stahl 1989, among others) and uncertainty about the distribution of prices

(as in Rothschild 1974). Our model builds on Janssen, Pichler and Weidenholzer (2011),

with the crucial difference that we allow endogenous entry and heterogeneity in deal-

ers’ costs. This enables us to study a range of issues related to welfare and matching

efficiency. Section 4 of our paper is related to Benabou and Gertner (1993), who an-

alyze the influence of inflationary uncertainty (similar in spirit to cost uncertainty in

our model) on welfare and the split of surplus between consumers and firms. The re-

lation between their approach and ours with regard to uncertainty can be described as

“local” versus “global.” Benabou and Gertner (1993) analyze the marginal effect on

welfare when uncertainty is reduced slightly, while the introduction of a benchmark in

our setting reduces this source of uncertainty significantly. A limitation of their model

is its restriction to only two sellers.

The remainder of the paper is organized as follows. Section 2 states the model.

In Section 3 we analyze the role of benchmarks in markets with relatively high search

costs, focusing on how benchmarks encourage market participation by traders. Section 4

tackles the case in which search costs are relatively small, and characterizes the effect

of a benchmark on matching efficiency. In Section 5 we show that dealers may have

a total-profit incentive to commit to a benchmark, and we analyze a setting in which

benchmarks are endogenously introduced by dealers. Section 6 addresses benchmark

manipulation. Section 7 concludes. All proofs are relegated to appendices, which also

contain supplementary supporting results and examples.
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2 Model

This section describes our search-based model of an over-the-counter market, beginning

with the primitive definitions of the market participants and then turning to the trading

protocol and definition of market equilibrium.

Our market participants include a finite number N ≥ 2 of dealers and an infinite

number of traders, distributed uniformly on the interval [0, 1]. For concreteness, we

suppose that a dealer sells and a trader buys. The model can be equivalently formulated

with the buying and selling roles reversed. The important distinction between the two

types of agents is that dealers make markets by offering executable price quotes, whereas

traders contact dealers sequentially and accept their quotes or not, in a manner to be

described.

All trades are for a unit amount of a given asset. Dealer i can supply the asset at

a per-unit cost of ci = c + εi, where c is common to all dealers and εi is idiosyncratic.

The common cost component c has a cumulative distribution function G with support

[c, c̄], for some c ≥ 0, with c < c̄ < ∞. The idiosyncratic component εi determines the

type of a dealer. High-cost dealers are those whose outcome for εi is a constant ∆ > 0.

Low-cost dealers are those with εi = 0. The common probability of a low-cost type is

γ > 0. The cost components c, ε1, . . . , εN are independent. Dealer i observes c and εi,

but does not observe the cost type εj of any other dealer j.

All traders assign a commonly known constant value v > 0 to acquiring the asset.

Traders have no information concerning which dealers are low-cost. Trader j ∈ [0, 1]

incurs a search cost of sj for making each contact with a new dealer. For tractability, we

suppose that sj = 0 with some probability µ in (0, 1), and that sj = s with probability

1− µ, for some constant s > 0. Search costs are independent across almost every pair

of traders. By the exact law of large numbers of Sun (2006), µ is also the fraction of

traders with zero search cost, almost surely.6 The presence of some traders with zero

search cost overcomes the usual Diamond paradox.7

Because search costs in practice often arise from delay costs, we refer for simplicity

and concreteness to traders with zero search cost as “fast traders,” and to those with

6We adopt throughout Sun’s construction of the agent space and probability space, and the mea-
surable subsets of the product of these two spaces, so as to allow without further comment various
applications of the exact law of large numbers for a continuum of essentially pairwise-independent
random variables.

7The Diamond paradox (Diamond 1971) refers to cases in which all dealers charge the monopoly
price in a unique equilibrium with no search.
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non-zero search cost as “slow traders.”

For the reader’s convenience, Appendix H provides a glossary of the primitive model

parameters (N,G,∆, γ, µ, s, v) and the key derived variables.

The presence of a benchmark is taken to mean the publication of the common

component c of the dealers’ costs. We will compare two market designs: the benchmark

case and the no-benchmark case.

The game proceeds as follows. If there is a benchmark, its value c is first revealed.

Each dealer i posts a price pi that constitutes a binding offer to sell one unit of the

asset at this price to any trader. This offer price is observed only by those traders who

contact the dealer.8

Traders (without yet having observed the quotes of any dealers) make entry de-

cisions. A failure to enter the market ends the game for the trader. With entry, a

trader contacts one of the dealers, with equal likelihood across the N dealers. Upon

observing a dealer’s offer, the trader can accept that offer or the offer of any previously

contacted dealer, in which case the corresponding transaction is made and the trader

leaves the market. A trader may alternatively continue searching by contacting another

randomly selected dealer, again with the uniform distribution over the yet-to-be-visited

dealers. The order of dealer contacts is independent across traders. A trader may exit

the market at any point without trading, even after having contacted all N dealers.

Dealers observe neither the price offers posted by other dealers, nor the order in which

the traders contact dealers. Traders observe nothing about the searches or transactions

of other traders.

In many over-the-counter financial markets, traders are not anonymous and dealers’

quotes are good only when offered. In Appendix A, we discuss the implications of this

alternative protocol.

A (mixed) strategy for dealer i is a measurable function mapping the dealer’s cost

type εi and the common cost component c to a probability distribution over price offers.

In the absence of a benchmark, a strategy for trader j maps the trader’s search cost sj

and any prior history of observed offers to a choice from: (i) accept one of the observed

offers, (ii) continue searching, or (iii) exit. (If the trader has not visited any dealer, the

decision to continue searching is equivalent to the decision to enter the market.) In the

presence of a benchmark, the strategy of a trader may also depend on the benchmark,

that is, the common cost component c. The payoff of dealer i is (pi − ci)Qi, where Qi

8In OTC financial markets, this trade protocol is sometimes called “click to trade.”



3 With High Search Costs, Benchmarks Improve Entry Efficiency 7

is the total quantity of sales9 by dealer i. If trader j successfully conducts a purchase,

say from dealer i, then her payoff is v − pi − sjKj, where Kj is the number of dealers

that she contacted. If she does not purchase the asset, then her payoff is −sjKj.

An equilibrium is a collection of strategies for the respective agents, possibly mixed

(that is, allowing randomization), with the property that each agent’s strategy maxi-

mizes at each time that agent’s expected payoff conditional on the information available

to the agent at that time, and given the strategies of the other agents. We focus on

symmetric perfect Bayesian equilibria. We also assume, essentially without loss of

generality, that fast traders play their weakly dominant strategy of always entering the

market and contacting all dealers.10 As is conventional in the literature for search-based

markets, we restrict attention to reservation-price equilibria unless otherwise indicated.

These are equilibria in which a trader’s decision to continue searching can be based at

any time on a cutoff for the best offer to that point.

3 With High Search Costs, Benchmarks Improve Entry Efficiency

This section considers how benchmarks affect the efficiency of entry by traders. We

thus focus on cases in which search costs are relatively high compared to gains from

trade.11 In particular, we maintain throughout this section that gains from trade may

fail to exist for sufficiently high cost realizations, in that c̄ ≥ v.

The results include conditions under which having the benchmark dominates the

no-benchmark case in terms of expected total social surplus, defined as the expected

sum of the payoffs of all agents, both dealers and traders, net of costs.

In order to simplify and isolate the effect of a benchmark on entry decisions, we

also assume throughout this section that γ = 1, that is, all dealers have supply cost c.

Appendix G proves a version of the main result of this section without that assumption.

The general case adds technical complications but does not offer any additional insights

9That is, Qi =
´ 1
0

1(i,j) dj, where 1(i,j) has outcome 1 if trader j accepts the offer of dealer i, and
otherwise has outcome 0.

10This assumption is without loss of generality in that for every equilibrium in which fast traders
do not play this strategy, there exists a payoff-equivalent equilibrium in which they do. The only
exception is the degenerate Diamond-paradox equilibrium, in which all dealers quote the price v, fast
traders contact no more than one dealer, and slow traders do not enter.

11A note on terminology: When we say “gains from trade” we refer to the random variable (v−c)+ ≡
max(v−c, 0), representing the “potential” or “maximal” gains from trade. Unless the meaning is clear
from the context, we use the term “realized gains from trade” to refer to gains that are generated in
the actual equilibrium of the game.
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when it comes to entry. Later, in Section 4, we consider the general case in which the

dealers’ costs are heterogeneous and explain how the introduction of a benchmark can

improve the efficiency with which traders are matched to low-cost dealers.

3.1 The benchmark case

We first characterize equilibrium in the benchmark case. A considerable part of the

analysis here draws upon the work of Janssen, Pichler and Weidenholzer (2011). We

sketch the equilibrium construction below, leaving technical details to Appendix C.

In the event that c > v, there are no gains from trade, and in light of the benchmark

information, slow traders do not enter. Obviously, there can be no trade in equilibrium.

If v− s ≤ c ≤ v, because dealers never quote prices below their costs, slow traders still

do not enter. Fast traders enter and buy from the dealer that offers the lowest price.

It is easy to show that the only equilibrium is one in which all dealers quote a price

of c, amounting to Bertrand competition among dealers. From this point we therefore

concentrate on the interesting case, the event in which c < v − s.
We fix some candidate probability λc of entry by slow traders, conditional on the

observed benchmark c. This entry probability will be determined in equilibrium. A slow

trader faces what is known as the Pandora Problem,12 whose solution is characterized

by Weitzman (1979). The optimal policy for a slow trader is to search until she contacts

a dealer whose offer is no higher than a certain cutoff rc, which depends neither on the

history of received offers nor on the number dealers that remain to be visited.

A standard search-theory argument—found, for example, in Varian (1980) and elab-

orated in Appendix C—implies that the only possible equilibrium response of dealers

is a mixed strategy in which offers are drawn from a continuous distribution whose

support has rc as its maximum. This in turn implies that, on the equilibrium path, a

slow trader buys from the first dealer that she contacts.

In order to determine the probability distribution of dealers’ offers, we first note that

upon being contacted, a dealer updates his belief that he faces a fast trader. Because,

on the equilibrium path, a fast trader contacts all dealers and a slow trader contacts

12Pandora has N boxes to open. Each box contains a reward of unknown value coming from a
known distribution. The values of rewards are independent. Pandora opens the boxes sequentially,
paying a fixed cost each time she opens a new box. The problem consists in finding the optimal
stopping rule.
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only one dealer, the posterior probability of facing a fast trader is

q(λc) =
µ

µ+ 1
N
λc(1− µ)

. (3.1)

Let Fc( · ) be the equilibrium cumulative distribution function of a dealer’s price

offer. Any price p ≤ rc is accepted by a slow trader for sure and is accepted by a

fast trader with probability (1 − Fc(p))N−1. Because, in equilibrium, dealers must be

indifferent between all price offers in the support [p
c
, rc] of the distribution, we have[

1− q(λc) + q(λc) (1− Fc(p))N−1
]

(p− c) = [1− q(λc)] (rc − c) (3.2)

for every p ∈ [ p
c
, rc]. The equilibrium distribution of the prices is thus

Fc(p) = 1−
[
λc(1− µ)

Nµ

rc − p
p− c

] 1
N−1

, (3.3)

and p
c

is determined by setting Fc(pc) = 0.

We can now calculate the optimal reservation price r?c of traders. Because traders

value the asset at v, it must be that r?c ≤ v. Using the optimality condition that after

observing a quote of p = r?c a trader must be indifferent between immediately accepting

the offer and continuing to search, we arrive at the equation

v − r?c = −s+ v −
ˆ r?c

p
c

p dFc(p). (3.4)

Plugging in the previously computed solution for Fc(p), a change of variables yields

r?c = c+
1

1− α(λc)
s, (3.5)

where

α(λc) =

ˆ 1

0

(
1 +

Nµ

λc(1− µ)
zN−1

)−1

dz < 1. (3.6)

The expected offer, conditional on c, is (1− α(λc))c+ α(λc)r
?
c , as shown in Lemma

4 of Appendix C.

Equation (3.5) states that the maximum price that a slow trader is willing to accept

is the cost of the asset plus a dealer profit margin equal to the trader’s search cost

s multiplied by a proportionality factor that reflects an entry externality, represented
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through the function α. The entry externality arises as follows. If the slow-trader entry

probability λc is low, the market consists mainly of fast traders, and competition among

dealers pushes the expected profit margins of dealers to zero, in that limλ→0 α(λ) = 0.

(That is, the trading protocol converges to an auction run by fast traders.) On the

other hand, if λc is close to 1, then slow traders constitute a considerable part of the

market, and the existence of search frictions allows dealers to exert their local monopoly

power and sell at prices bounded away from their costs.

To complete the description of equilibrium, we must specify the optimal entry de-

cisions of slow traders. Holding the entry probability λc fixed, the expected payoff of a

slow trader conditional on c and on entry is

π(λc) = v − s−
ˆ r?c

p
c

p dFc(p) = v − 1

1− α(λc)
s− c.

It can be verified that π(λc) is strictly decreasing in λc through the role of α(λc).

If π(λc) is strictly positive at λc = 1, then the equilibrium slow-trader entry prob-

ability λ?c must be 1. Because α is maximized at λc = 1, this happens if and only

if

c ≤ v − 1

1− ᾱ
s,

where

ᾱ = α(1) =

ˆ 1

0

(
1 +

Nµ

1− µ
zN−1

)−1

dz. (3.7)

If the profit π(λc) is negative at λc = 0, then there is no entry by slow traders, that

is, λ?c = 0. Since α(0) = 0, this happens when c > v − s.
Finally, if c ∈ (v−s, v−s/(1− ᾱ)), then we have “interior entry,” in that λ?c ∈ (0, 1)

is uniquely determined by the equation

s = (1− α(λ?c))(v − c). (3.8)

We summarize these results in the following proposition.

Proposition 1. In the benchmark case, the equilibrium payoffs are unique, and there

exists a reservation-price equilibrium in which the following properties hold.

1. Entry. In the event that c ≥ v − s, no slow traders enter. If

v − s

1− ᾱ
< c < v − s,



3 With High Search Costs, Benchmarks Improve Entry Efficiency 11

then slow traders enter with the conditional probability λ?c ∈ (0, 1) determined by

equation (3.8). If c ≤ v − s/(1− ᾱ), then slow traders enter with conditional

probability 1.

2. Prices. In the event that c > v, dealers quote arbitrary offers no lower than c. If

c ∈ [v − s, v], then dealers quote offers equal to c. If c < v − s, then every dealer

quotes offers drawn with the conditional probability distribution function Fc given

by (3.3).

3. Traders’ reservation prices. In the event that c < v − s, conditional on entry, a

slow trader’s reservation price r?c is given by (3.5).

4. Social surplus. The conditional expected total social surplus given c is

λ?c(1− µ) (v − c− s) + µ(v − c)+,

where (v − c)+ ≡ max(v − c, 0), and the conditional expected profit of each dealer

is
λ?c(1− µ)

N

s

1− α(λ?c)
.

An immediate implication of Proposition 1 is that entry is not fully efficient. In

the event that c ∈ (v − s/(1− ᾱ), v − s), the gains from trade for slow traders are

larger than the search cost, but we do not observe full entry. This inefficiency can be

understood as a hold-up problem. Once traders enter, search costs are sunk and dealers

make higher-than-efficient price offers. Because of the negative externality that slow

traders exert on other traders by entering, the equilibrium level of entry must be low

enough to keep the profits of slow traders from being negative.

Even before analyzing the no-benchmark case, we can already isolate one source of

welfare advantage of a benchmark. We define the expected gain from trade

X = G(v) [v − E (c | c ≤ v)] , (3.9)

that is, the probability of a positive gain from trade multiplied by the expected gain

given that it is positive.

Proposition 2. If v− c > s ≥ X, then the expected social surplus is strictly larger with

the benchmark than in any equilibrium without the benchmark.
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Proposition 2 describes an important role of a benchmark as a device to signal gains

from trade. In markets with relatively low expected gains from trade and relatively high

search costs (that is, with s ≥ X), the absence of a benchmark leads to a total failure by

slow traders to participate in the market. Although this situation is extreme, it may be

considered realistic for markets in an early stage of development. The introduction of a

benchmark in this setting encourages the participation of slow traders by providing them

with information about the conditional expected gains from trade. The probability of

entry becomes strictly positive as the benchmark cost c gets low enough. This improves

market efficiency.

In order to further develop our comparison of the benchmark and no-benchmark

cases, we now characterize equilibria in the absence of a benchmark.

3.2 The no-benchmark case

When the absence of a benchmark prevents traders from observing the common com-

ponent c, traders make complicated Bayesian inferences based on the observed price

offers in order to assess the attractiveness of these offers. To keep the model tractable

we restrict attention to equilibria in which traders, when on the equilibrium path, fol-

low a reservation-price strategy. That is, in the k-th round of search a slow trader

has a reservation price of the form rk−1(p1, p2, . . . , pk−1), where (p1, p2, . . . , pk−1) is

the history of prior price offers. According to this reservation-price strategy, any

offer pk > rk−1(p1, p2, . . . , pk−1) is not immediately accepted and any offer pk <

rk−1(p1, p2, . . . , pk−1) is immediately accepted. An offer pk = rk−1(p1, p2, . . . , pk−1)

is accepted with some (mixing) probability that is determined in equilibrium. For

simplicity, from this point we describe an offer that is not immediately accepted as

“rejected,” bearing in mind that the trader retains the option to later accept the offer.

We first characterize reservation-price equilibria, assuming one exists. Then we

provide conditions under which a reservation-price equilibrium does exist. The following

lemma is an important step in characterizing a reservation-price equilibrium.

Lemma 1. In every reservation-price equilibrium in which slow traders enter with

strictly positive probability, (i) the first-round reservation price r?0 is equal to v and (ii)

for each outcome of c strictly below v, the upper limit of the support of the conditional

distribution of price offers is v.

Without the benchmark the first-round reservation price of a slow trader cannot

depend on c. The trader’s ignorance about the common component c of dealers’ costs
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makes it more difficult for her to evaluate the attractiveness of price offers. Lemma 1

states that this information asymmetry must result in the slow trader accepting any

price offer below her value v for the asset, in a reservation-price equilibrium. Thus, only

two things can happen if a positive mass of slow traders enter. If c ≤ v, a slow trader

buys from the first dealer that she contacts. If c > v, however, then a slow trader will

observe a price offer above her value for the asset, conclude that there is no gain from

trade, and exit the market. This outcome—slow traders entering only to discover that

there is no gain from trade—is a waste of costly search that would be avoided if there

were a benchmark. With a benchmark, as seen in Proposition 1, slow traders do not

enter unless the conditional expected gain from trade exceeds the cost s of entering the

market and making contact with a dealer.

Using Lemma 1, we can describe the reservation-price equilibrium without the

benchmark, analogously with Proposition 1. Let λ? denote the equilibrium probability

of entry by slow traders.

Proposition 3. In the no-benchmark case, if a reservation-price equilibrium exists, it

must satisfy the following properties:

1. Entry. If s ≥ X, no slow traders enter, that is, λ? = 0. If s ∈ ((1− ᾱ)X, X), the

fraction λ? of entering slow traders solves

s = (1− α(λ?))X. (3.10)

If s ≤ (1− ᾱ)X, all slow traders enter with probability λ? = 1.

2. Prices. In the event that c > v, dealers quote an arbitrary price offer no lower than

c. If c ≤ v, dealers quote prices drawn with a cumulative distribution function Fc

given by

Fc(p) = 1−
[
λ∗(1− µ)

Nµ

v − p
p− c

] 1
N−1

, (3.11)

for

p ∈
[
λ?(1− µ)v +Nµc

λ?(1− µ) +Nµ
, v

]
.

3. Traders’ reservation prices. Conditional on entry, a slow trader has a reservation

price of v at her first dealer contact. If this first dealer’s price offer is no more

than v, the slow trader accepts it. Otherwise the slow trader rejects it and exits

the market.
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4. Surplus. The expected total social surplus is λ?(1 − µ)(X − s) + µX, and the

expected profit of each dealer is λ?(1− µ)X/N .

The markets with and without benchmarks, characterized by Propositions 1 and 3,

respectively, share some common features. In both, dealers’ strategies depend on the

realization of the benchmark c, and slow traders never contact more than one dealer,

on the equilibrium path. The distribution of quoted prices and the entry probability of

slow traders are characterized by functions whose forms, with and without a benchmark,

are similar.

That said, there are two crucial differences. First, slow traders’ entry decisions in

the presence of the benchmark depend on the realization (through publication of the

benchmark) of the gains from trade. By contrast, without a benchmark, entry depends

only on the (unconditional) expected gain from trade. Second, with the benchmark, the

reservation price of slow traders (and hence the upper limit of the price-offer distribu-

tion) depends on the realization of the benchmark c. Absent the benchmark, however,

a slow trader’s reservation price is always v, so that an offer of v is in the support of

price offers regardless of the outcome of c.

Existence of reservation-price equilibria in the no-benchmark case

Before comparing welfare with and without the benchmark, it remains to characterize

conditions under which a reservation-price equilibrium exists without the benchmark.

Providing general conditions for the existence of reservation-price equilibria with learn-

ing and equilibrium pricing seems a challenging task. While significant progress has

been made by Janssen, Pichler and Weidenholzer (2011), their results are not applicable

in our setting because they assume a sufficiently large trader value13 v. Benabou and

Gertner (1993) also provide partial results for the case of two dealers.

Appendix C provides a necessary and sufficient condition for the existence of reservation-

price equilibrium in the case of two dealers, and an explicit sufficient condition for

existence with N > 2 dealers. The main conclusion is summarized as follows.

Proposition 4. There exists some s < X such that for any search cost s greater than

s, a reservation-price equilibrium in the no-benchmark case exists and is payoff-unique.

13Janssen, Pichler and Weidenholzer (2011) assume that v is large enough (sufficiently larger than
c̄) that it does not influence the equilibrium at all. We cannot make this assumption because it is not
separable from our assumptions on the size of gains from trade (which play a key role in the analysis
of entry).
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Proposition 4 states that the equilibrium described in Proposition 3 exists if the

search cost is sufficiently large. The condition s < X ensures that there exists an

equilibrium with strictly positive probability of entry by slow traders. If s ≥ X there

exists a trivial reservation-price equilibrium in which slow traders do not enter.

3.3 Welfare comparison

We now show that if search costs are sufficiently high relative to the expected gain

from trade, then introducing the benchmark raises the social surplus by encouraging

the entry of slow traders.

As noted above, entry may be inefficiently low under search frictions due to the

hold-up problem and the negative externality in the entry decisions of slow traders.

Because a search cost is sunk once a slow trader has visited a dealer, a dealer can use its

local monopoly power to charge high prices. Expecting this outcome, slow traders may

refrain from entry despite the positive expected gains from trade. The hold-up problem

is more severe when more slow traders enter (because this raises the posterior belief of

a dealer that he faces a high-search-cost trader). These effects apply both with and

without the benchmark. The question is whether benchmarks alleviate or exacerbate

this situation. We now state the main result of this section, giving conditions under

which adding the benchmark improves welfare by encouraging entry. Proposition 5

provides sufficient conditions for the reverse conclusion.

Theorem 1. Suppose that (i) s ≥ (1 − ᾱ)(v − c) or (ii) s ≥ (1 − ψ)X holds, where

ψ ∈ (0, ᾱ) is a constant that depends14 only on µ and N . Then a reservation-price

equilibrium in the no-benchmark case (if it exists) yields a lower social surplus than the

equilibrium in the benchmark case. Condition (i) holds if there are sufficiently many

dealers or if the fraction µ of fast traders is small enough.

There are two key sources of intuition behind Theorem 1. First, the presence of a

benchmark allows slow traders to make their entry decisions contingent on the magni-

tude of gains from trade. In equilibrium with the benchmark, entry is high precisely

when gains from trade are large. In other words, if the unconditional probability of

entry were the same across the two settings, then social surplus would be higher in the

benchmark case because, in the equilibrium with the benchmark, volume is positively

14We have ψ = 1
2

[√
(1− ᾱ+ ᾱβ)2 + 4ᾱ(1− ᾱ)− (1− ᾱ+ ᾱβ)

]
, where β = Nµ/(1− µ), and ᾱ is

defined by equation (3.7).
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correlated with gains from trade. Second, adding the benchmark reduces the informa-

tion asymmetry between dealers and traders. Without the benchmark, a slow trader

is not sure whether an unexpectedly high price offer is due to a high outcome for the

common cost c of dealers, or is due to an unlucky draw from the dealer’s offer distri-

bution. Dealers exploit this informational advantage, which exacerbates the hold-up

problem. By providing additional information about dealers costs, benchmarks give

more bargaining power to slow traders, which further encourages entry and thus adds

to total realized gains from trade. We separate and further examine these two effects

in the next subsection.

Fig. 3.1: Conditional expected social surplus given the realized gain x from each trade.
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The proof of the theorem is illustrated in Figure 3.1, which depicts the dependence

of the benchmark-market social welfare function Wb(x) on the realized gain from trade

x = max{v − c, 0}. The proof first shows that the expected social surplus in the no-

benchmark case is actually equal to Wb[E(x)]. We thus want to show that E[Wb(x)] ≥
Wb(E(x)). Because slow traders increase their entry probability when the benchmark-

implied gain from trade is large, we can prove that Wb( · ) is convex over the set of x for

which the entry probability is interior. Condition (i) ensures the convexity of Wb( · )
on its entire domain, allowing an application of Jensen’s Inequality. The alternative

condition (ii) ensures that Wb( · ) is subdifferentiable at X = E(x), yielding the same

comparison. Both conditions require that the search cost s is sufficiently high.
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The condition of Theorem 1 that gains from trade are not too large relative to

search costs cannot be dispensed with. Without the benchmark, the incentives of slow

traders to enter are pooled as they calculate an expectation over all possible realizations

of dealers’ costs and of their gains from trade. If their expected gains from trade are

sufficiently large relative to their search costs, then without the benchmark all of the

slow traders may enter. In the presence of the benchmark, however, slow-trader entry

may be low in the event of high realizations of c (but still allowing gains from trade).

In other words, adding the benchmark need not increase welfare if the entry of slow

traders is already nearly efficient without the benchmark. We confirm this intuition in

the following proposition.

Proposition 5. Suppose that the equilibrium described by Proposition 3 exists. If (i)

(1 − ᾱ)(v − c̄) < s, (ii) s ≤ (1 − ᾱ)X, and (iii) G(v − s) is sufficiently close to one,

then the expected social surplus is strictly higher without the benchmark than with the

benchmark.

The three conditions of Proposition 5 are strong but none can be discarded. The

condition s ≤ (1 − ᾱ)X ensures that there is full entry without the benchmark. (By

Theorem 1, this condition fails if µ is small enough or N is large enough.) The condition

that s > (1 − ᾱ)(v − c̄) ensures that there are cost realizations for which we do not

have full entry with the benchmark. Finally, the condition that G(v − s) is close to

one ensures that the entry of slow traders is indeed socially desirable for nearly all cost

realizations.

The conditions of Proposition 5 are easily interpreted in Figure 3.1. If X > s/(1−ᾱ)

(condition (ii)) and if we can safely ignore the region [0, s] (condition (iii)), then we

can place a hyperplane above the graph of Wb( · ), tangent to it at X. That is, we get

super-differentiability rather than sub-differentiability, reversing the welfare inequality.

Condition (i) guarantees that the inequality is strict.

Appendix C.8 shows a numerical example of social surplus and entry decisions that

illustrates the intuition outlined above.

3.4 Separating the two entry-promoting roles of a benchmark

As argued in our discussion of Theorem 1, introducing a benchmark encourages entry

through two channels: (i) signaling when gains from trade are high and (ii) increas-

ing the slow traders’ share of gains from trade by reducing the informational advan-

tage of dealers concerning the cost of the asset. In order to distinguish between these
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two effects, we study an intermediate “costly-benchmark-observation” setting in which

traders observe the benchmark only upon making their first contact with a dealer (after

making the entry decision but before accepting or rejecting an offer). Essentially, this

means that slow traders must pay the search cost s to learn the outcome of the bench-

mark. This artificial costly-benchmark-observation setting allows us to characterize in

the next proposition the specific entry screening effect (ii) of benchmarks, while keeping

the other entry effect (i) “switched off.”

Proposition 6. A reservation-price equilibrium always exists (and is payoff-unique)

in the costly-benchmark-observation setting. Moreover, under the condition that (1 −
ᾱ)X < s < X, the equilibrium in the costly-benchmark-observation setting has a strictly

higher expected social surplus than that of the reservation-price equilibrium without the

benchmark.

The proposition states that channel (ii), reducing information asymmetry between

dealers and traders, always works in favor of introducing a benchmark. By providing

slow traders with information about the market-wide cost of the asset to dealers, the

presence of a benchmark increases traders’ expected payoffs off the equilibrium path,

thus encouraging their entry and raising total social surplus on the equilibrium path.

The next result states that role (i) of a benchmark, signaling when there are high

gains from trade, is also relevant.

Proposition 7. There exists s < X such that for any search cost s ∈ (s, v − c)

the expected social surplus is strictly higher in the benchmark case than in the costly-

benchmark-observation case.

4 When Do Benchmarks Improve Matching?

In this section we explore the matching-efficiency role of benchmarks in search-based

markets. For this purpose, we must analyze the full-fledged model in which dealers’

costs are heterogeneous. So, from this point, we assume that the probability γ that a

dealer has a low cost for providing the asset is in (0, 1). Throughout this section we

maintain the following two assumptions.15

Assumption A.1. Search is socially optimal, that is, s < γ∆.

15Appendix D provides the supporting analysis when Assumption A.1 fails. In that case, there will
be no search in the equilibrium with the benchmark. While the absence of search is socially optimal
in this case, this is not the case in which we are most interested.
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Assumption A.2. Gains from trade exist with probability 1, that is, c̄ < v −∆.

Together, these conditions imply full entry by slow traders in equilibrium, with the

benchmark. This allows us to separately identify the welfare effect of matching effi-

ciency. Assumption A.2 is adopted for expositional purposes only. We give generalized

statements (weakening Assumption A.2) of the results of this section in Appendix D.

We will show that if search costs are relatively low then adding a benchmark raises

social surplus by making it easier for traders to find efficient (that is, low-cost) dealers.

Having a low search cost is important because contacting a low-cost dealer is socially

optimal only if the search cost is lower than the potential improvement in matching

efficiency, that is, under Assumption A.1.

The benchmark case. In the presence of a benchmark, the key intuition for the equi-

librium construction from Section 3 carries over to this setting, but the supporting

arguments are more complicated, and several cases need to be considered. For that

reason, we focus here on parameter regions that are relevant for social-surplus compar-

isons, and relegate a full characterization to Appendix D. We begin with the following

result.

Proposition 8. In the presence of a benchmark, the equilibrium is payoff-unique and

slow traders use a reservation-price strategy.

Proposition 8 is not surprising given the analysis of Section 3.1. There is, however,

a subtle but important difference. Under a reservation-price strategy, a trader is typ-

ically indifferent between accepting and continuing to search when she sees an offer

equal to her reservation price. In the setting of Section 3 it does not matter whether

traders accept such an offer or not because this event has zero probability. With id-

iosyncratic costs, however, there are parameter regions in which the only equilibrium

requires traders who face an offer at their reservation price to mix between accepting

and continuing to search. The mixing probabilities are important when there is an atom

in the probability distribution of offers located at a trader’s reservation price. In equi-

librium, these atoms may arise if high-cost dealers make offers equal to the reservation

price of slow traders. This affects the inference made by dealers when they calculate

the probability of facing a fast trader.

To account for heterogeneity in dealers’ costs, we need to adjust the probability that

a dealer’s counterparty is fast (as opposed to slow), from that given by equation (3.1).
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This probability now depends on both the entry probability λc and the c-conditional

probability, denoted θc, that a slow trader rejects an offer from a high-cost dealer.16 As

θc gets larger, slow traders search more, and the posterior probability that a dealer is

facing a fast trader falls. We will denote by q(λc, θc) the probability that a contacting

trader is fast. Accordingly, the definition of the function α(λc) from equation (3.6) is

generalized to a two-argument function α(λc, θc) with values in (0, 1). Explicit formulas

are provided by equations (D.5) and (D.6) in Appendix D. The role of α(λc, θc) is

analogous to that of α(λc) in Section 3. Here, α(λc, θc) is strictly increasing in both

arguments. As λc and θc increase, the probability that a counterparty is slow rises,

leading dealers to quote higher prices in equilibrium. The constant α(1, 1) is an analogue

of ᾱ in Section 3, and bounds α(λc, θc) from above. For the sake of simplifying upcoming

expressions, we denote

α̂ = α(1, 1).

We can now state one of the main results of this section.

Proposition 9. If s ≤ (1 − α̂)γ∆, then the equilibrium in the benchmark case leads

to efficient matching. That is, slow traders always enter, and all traders buy from a

low-cost dealer, in the event that there is at least one such dealer present in the market.

Additionally, if s ≥ κ(1 − α̂)γ∆, where κ < 1 is a constant17 depending only on γ, µ,

and N , the equilibrium with the benchmark achieves the second best, in the sense that

each slow trader buys from the first low-cost dealer that she contacts, thus minimizing

search costs subject to matching efficiency.

In order to understand how benchmarks lead to efficient matching and second best,

consider first the case in which the search cost s is in the interval

(κ(1− α̂)γ∆, (1− α̂)γ∆).

In equilibrium, slow traders follow a reservation-price strategy with a reservation price

r?c that is below c + ∆. Low-cost dealers quote prices according to a continuous prob-

ability distribution whose support is below this reservation price. Thus, if there are

any low-cost dealers in the market, slow traders buy from the first low-cost dealer that

they contact. In the unlikely event that there are only high-cost dealers in the market,

16We emphasize that θc is not part of the trader’s strategy, as traders do not observe the types of
dealers.

17We have κ = (1− γ)N−1/
[
µ(1− γ)N−1 + (1− µ)[1− (1− γ)N ]/(Nγ)

]
.
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which happens with probability (1 − γ)N , slow traders search the entire market and

then trade with one of the high-cost dealers. This second-best equilibrium outcome is

therefore fully efficient at matching.

The key role of the benchmark in this case is to introduce enough transparency to

permit traders to distinguish between efficient and inefficient dealers. The benchmark

not only ensures that traders ultimately transact with the “right” sort of counterparty,

but also ensures that no search cost is wasted while looking for this transaction. This

last conclusion is true under the weaker condition that s ≥ κ(1− α̂)γ∆.

If s < κ(1 − α̂)γ∆, however, slow traders may search excessively, for reasons that

we explain below. Adding the benchmark makes it possible for slow traders to identify

low-cost dealers. If the search cost is too small, however, then low-cost dealers simply

do not want to be identified. As search costs get small, the equilibrium reservation-

price r?c also gets small (close to c), and low-cost dealers are forced to quote very low

prices if they want to sell at the first contact of any slow trader. Because of their

cost advantage, low-cost dealers always have the “outside option” of trying head-on

competition by quoting a price above the reservation price (and just below c + ∆),

hoping that all other dealers have high costs (in which case low-cost dealers win the

resulting effective auction, making positive profits). It turns out that low-cost dealers

prefer this strategy when s < κ(1 − α̂)γ∆. In the resulting equilibrium, which we

describe in Appendix D, matching remains efficient but we do not achieve the second

best, because of the higher-than-efficient amount of search.

The intuition sketched above indicates that a low-cost dealer’s incentive to quote a

high price should disappear as the numberN of dealers gets large. Indeed, asN becomes

large the probability that all other dealers have high costs goes to zero quickly. We

confirm in Appendix D.3 that an upper bound on the potential surplus loss (compared

to first best) goes to zero exponentially fast with N when s < κ(1 − α̂)γ∆. In sharp

contrast, surplus losses are potentially unbounded in N when s is close to (1 − α̂)γ∆.

Hence, for practical purposes, it is natural to focus on the case s ≥ κ(1− α̂)γ∆.

The no-benchmark case. We now show that without the benchmark, it is impossible

to achieve the second best.
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Proposition 10. In the absence of a benchmark, if c̄ > c + ∆ there does not exist an

equilibrium that achieves the second best.

The proof of the proposition explores the simple idea that when there is no bench-

mark for traders to observe, they cannot recognize a low-cost dealer when they contact

one. In the absence of a benchmark, traders can rely only on Bayesian inference based

on the observed price quotes. This Bayesian inference, however, can be relatively in-

effective. With low realizations of the common cost component c, high-cost dealers

may make offers that “imitate” the offers that low-cost dealers would make at higher

realizations of c. As a result, slow traders buy from inefficient dealers or engage in

socially wasteful search. The benchmark adds enough transparency to allow traders

to distinguish between high offers from low-cost dealers and low offers from high-cost

dealers.

Welfare comparison. As a corollary of Propositions 9 and 10, we obtain the following

main result, providing conditions under which adding a benchmark improves welfare.

Theorem 2. If (i) κ(1− α̂)γ∆ ≤ s ≤ (1− α̂)γ∆ and (ii) c̄ > c+ ∆ both hold, then the

equilibrium in the benchmark case yields a strictly higher expected social surplus than

that of any equilibrium in the no-benchmark case.

The theorem provides a sufficient condition and does not cover the entire search-cost

space. We discuss the remaining cases in Appendix B.1, where we show in particular

that the second best is not achieved if s > (1−α̂)γ∆, even if the benchmark is present.18

The analysis of the no-benchmark case in this section is not based on an explicit

construction of an equilibrium because of technical difficulties that arise when dealers’

costs are heterogeneous and search costs are small. In such a setting, traders search

multiple times, and their posterior beliefs about c become intractable. However, for the

special case of only two dealers we can provide a full characterization of reservation-price

equilibria (analogous to Lemma 1 and Proposition 3 for the homogeneous case). Under

the condition s ≥ κ(1−α̂)γ∆, we show that matching is more efficient with a benchmark

than without, provided that traders use a reservation-price strategy in equilibrium.

Because the details are complicated, we relegate the discussion to Appendix B.2.

18Nonetheless, with a benchmark, if search costs are not too large, partial efficiency applies to the
matching of traders to low-cost dealers. The (unique) equilibrium supporting this outcome has an
interesting structure. High-cost dealers post a price c + ∆ equal to the reservation price r?c of slow
traders. Slow traders accept that price with some nontrivial (mixing) probability that is determined
in equilibrium.
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5 Incentives of Dealers to Introduce a Benchmark

To this point we have taken the presence or absence of a benchmark as given. In

practice, benchmarks are often introduced by market participants, such as dealers in

OTC financial markets. In this section we explicitly explore the incentives of dealers

to introduce a benchmark.

5.1 Introducing benchmarks to encourage entry

As we have seen in previous sections, the introduction of a benchmark reduces the

informational advantage of dealers relative to traders, and increases the expected payoffs

of slow traders (whether on or off the equilibrium path). It might superficially seem

that dealers have no incentive to introduce the benchmark. In this subsection we show

that the contrary can be true. Under certain conditions dealers want to introduce a

benchmark in order to increase their volume of trade. We assume that dealers are able

to commit to a mechanism leading to truthful revelation of c, so the question of whether

they prefer to have the benchmark boils down to comparing dealers’ profits with and

without the benchmark. We address the implementability of adding a benchmark in

Section 6.

For simplicity of exposition we concentrate on the effects of entry on dealers’ profits

in the setting in which dealers have homogeneous costs for supplying the asset, that

is, with γ = 1. We discuss in Appendix E.3 and show formally in Appendix G that

the same conclusions hold if dealers’ costs are heterogeneous. (Just as in Section 3, the

heterogeneity of dealers’ costs does not “interact” with the effects of entry.)

Theorem 3. Suppose that (i) s ≥ (1− ᾱ)(v− c) or (ii) s ≥ (1− η)X, where η ∈ (0, ᾱ)

is a constant that depends only on N and µ. If all dealers have the same supply cost

(that is, γ = 1), then a reservation-price equilibrium in the no-benchmark case19 yields

a lower expected profit for dealers than in the setting with the benchmark. Condition (i)

holds if there are sufficiently many dealers or if the fraction µ of fast traders is small

enough.

The benchmark raises the profits of dealers by encouraging the entry of slow traders.

If search costs are large relative to gains from trade (assumption (i) or (ii) of Theorem

3), dealers benefit from the increased volume of trade arising from the introduction of

19Whenever it exists, see Proposition 4 and Section 3.
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the benchmark. In order for dealers’ total profits to rise with the introduction of a

benchmark, entry by slow traders must be sufficiently low without the benchmark, for

otherwise the benchmark-induced gain in trade volume does not compensate for the

dealers’ drop in profit margin on each trade.

A benchmark can be viewed as a commitment device, by which dealers promise

higher expected payoffs to traders in order to encourage entry. In particular, a bench-

mark partially solves the hold-up problem by reducing market opaqueness and hence

by giving more bargaining power to traders.

It can be shown that the conclusion of Theorem 3 implies the conclusion of Theorem

1. That is, whenever dealers would opt for the benchmark, it must be the case that the

introduction of the benchmark raises social surplus. The opposite is not true. There

generally exists a range of search costs in which the benchmark raises social surplus but

dealers would have no incentive to commit to it. This is intuitive. Whenever the gain

from trade v− c exceeds the search cost s, any increase in entry probability is welfare-

enhancing. If, however, this increase is too small to compensate for the reduction in

dealers’ profit margins, they may not wish to introduce the benchmark.

Theorem 3 and the above discussion are illustrated with a numerical example found

in Appendix E.2.

5.2 Low-cost dealers may compete by introducing a benchmark

This subsection analyzes the incentives of low-cost dealers to introduce a benchmark on

their own—despite opposition from high-cost dealers—as a powerful device to compete

for business. We show that under certain conditions the collective decision of low-cost

dealers to add a benchmark drives high-cost dealers’ profits to zero and forces them out

of the market. As a result, low-cost dealers make more profits, and the market becomes

more efficient overall. This may explain why emergent “benchmark clubs” are often

able to quickly attract the bulk of trades in some OTC markets, as was the case with

LIBOR.

In order to explain how “benchmark clubs” may emerge, we augment our search-

market game of the previous sections with an earlier stage in which dealers decide

whether to introduce a benchmark and, after calculating their expected profits, whether

to enter the market themselves. To simplify the modeling, we suppose that there are

two types of environments, with respect to the cross-sectional distribution of dealer cost

efficiency. With some probability Γ ∈ (0, 1), there is a relatively low-cost environment
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in which the number L of low-cost dealers is at least 2. Otherwise, there are no low-cost

dealers (L = 0). We rule out the case in which there is exactly one low-cost dealer in

the market, because, for a high enough cost difference ∆, the low-cost dealer would

in that case be an effective monopolist, severely complicating the analysis. A formal

description of the game follows:

1. Pre-trade stage: the introduction of a benchmark and entry by dealers.

(a) Nature chooses the dealer-cost environment, whose outcome is not observed.

With probability 1− Γ, all dealers have high costs. With probability Γ, the

number L of low-cost dealers is drawn from a truncated binomial distribution

with parameters (N, γ), where the truncation restricts the support to the set

{2, 3, . . . , N}. Conditional on L, the identities of dealers with low costs are

drawn independently of L and symmetrically.20 The idiosyncratic component

εi of dealer i is the private information of dealer i.

(b) Dealers simultaneously vote whether to have a benchmark or not. If there

are at least two votes in favor, the benchmark is introduced by those in

favor. (We explain in Section 6 how dealers could implement a benchmark,

provided that there are at least two of them.) In this case, c immediately

becomes common knowledge. If the number of votes in favor is zero or one,

the benchmark is not introduced.

(c) Dealers make entry decisions. For simplicity, we adopt a tie-breaking rule

that dealers enter if and only if their expected trading profits are strictly

positive.

(d) After dealers’ entry decisions, the number of dealers that enter, denoted M ,

becomes common knowledge among dealers and traders.

2. Trading stage. The game proceeds according to the baseline model described in

Section 2, but with N replaced by M .

We denote by

X∆ = G(v −∆)E (v − c−∆ | c ≤ v −∆)

20This implies that ε1, . . . , εN are no longer i.i.d. Our results would hold under more general
distributions of dealer types. The only properties required of the unconditional distribution of L are
(i) symmetry with respect to dealer identities, (ii) that the events L = 0 and L ≥ 2 both have positive
probability, and (iii) that the event L = 1 has zero probability.
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the expected gain from trade with high-cost dealers. The following theorem establishes

conditions that are sufficient to induce low-cost dealers to collectively introduce the

benchmark and drive their high-cost competitors out of the market.

Theorem 4. Suppose that s < (1− ᾱ)(v − c̄). Then there exists ∆? such that for any

dealer cost difference ∆ ≥ ∆? the following hold.

• There exists an equilibrium of the extended game in which low-cost dealers al-

ways vote in favor of the benchmark and high-cost dealers always vote against it.

Moreover, there are no profitable group deviations in the voting stage.

• If the environment is competitive (that is, L ≥ 2), the benchmark is introduced,

all high-cost dealers stay out of the market, all low-cost dealers enter the market,

and all traders enter the market.

• If the environment is uncompetitive (L = 0), the benchmark is not introduced,

and high-cost dealers enter the market if and only if X∆ > s.

A proof of the theorem is provided in Appendix E. Here, we explain the intuition

of the result.

To start, we note that the theorem makes economically significant predictions about

the role of the benchmark only in the case X∆ > s. We can show that this case arises if

s is sufficiently small. (The proof provides the detailed argument.) In the opposite case

of X∆ < s, high-cost dealers earn zero profits regardless of whether the benchmark is

introduced, so they are indifferent between voting in favor of, or against, the benchmark,

and they never enter. In the discussion below, we focus on the interesting case of

X∆ > s, in which high-cost dealers can make positive profits and strictly prefer not to

introduce the benchmark.

The benchmark serves as a signaling device for low-cost dealers to announce to

traders that the environment is competitive. The signal is credible because traders,

expecting low prices conditional on introducing the benchmark, set a low reservation

price in equilibrium. Therefore, high-cost dealers cannot imitate low-cost dealers by

deviating and announcing the benchmark. Instead, they prefer to trade in opaque

markets without the benchmark and with low participation by slow traders, which

allows them to make positive profits.

Low-cost dealers have two distinct incentives to add the benchmark. First, adding

the benchmark encourages the entry of slow traders. In addition to the intuition con-

veyed in Section 3, in the setting of this section the benchmark plays the additional role
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of signaling the types of active dealers, because the benchmark is added endogenously.

On the equilibrium path, once a benchmark is introduced, slow traders believe with

probability one that all active dealers have low costs. If a benchmark is not introduced,

slow traders believe that all dealers have high costs. As a consequence, the (correctly)

perceived gains from trade by slow traders goes up considerably if a benchmark is

added. This channel encourages entry. In particular, the condition s < (1− ᾱ)(v − c̄)
ensures full entry by traders if the benchmark is introduced.

Second, low-cost dealers capture additional volumes of trades by adding the bench-

mark. With a large enough dealer cost difference ∆, the expected gains from trade

are small if the benchmark is not introduced. As a result, we show that slow traders

who enter will set a reservation price r? equal to v in the trading-stage subgame, and

high-cost dealers inevitably capture a large proportion of trades with slow traders. If,

however, the benchmark is introduced, a sufficiently large ∆ makes high-cost dealers’

quotes highly uncompetitive, which drives trades to low-cost dealers. Thus, although

low-cost dealers’ profit per trade may be lower with the benchmark, they capture an

additional amount of trade. In fact, in equilibrium, if the environment is competi-

tive, high-cost dealers drop out completely because they cannot make any profit, and

low-cost dealers handle all of the trades.

6 Benchmark Manipulation and Implementation

Recent scandals involving the manipulation of interest-rate benchmarks such as LI-

BOR and EURIBOR, as well as currency price fixings provided by WM/Reuters, have

shaken investor confidence in financial benchmarks. Serious manipulation problems or

allegations have also been reported for other major benchmarks, including those for

term swap rates, gold, silver, oil, and pharmaceuticals.21 Major banks are now more

reluctant to support these benchmarks in the face of potential regulatory penalties

and private litigation. For example, of the 44 banks contributing to EURIBOR before

the initial reports of manipulation, 18 have already dropped out of the participating

panel.22 Regulators have responded not only with sanctions,23 but also by taking action

to support more robust benchmarks. The Financial Stability Board has set up several

international working groups charged with recommending reforms to interest-rate and

21See, respectively, Patterson and Burne (2013), Vaughn (2014), Hurtado (2014), Scheck and Gross
(2013), and Gencarelli (2002).

22See Brundsen (2014).
23See Finch and Larkin (2014).
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foreign-exchange benchmarks that would reduce their susceptibility to manipulation

while maintaining their usefulness in promoting market efficiency.24 The United King-

dom is preparing a comprehensive regulatory framework for benchmarks.25

In Section 5, we assumed that dealers have the ability to credibly commit to the

truthful revelation of c. As demonstrated in Appendix F, however, the dealers that we

model have an incentive to manipulate traders’ conditional distributions of the common

cost component c. In particular, if the true cost c is large, dealers would under-report

c in order to increase market participation by slow traders. If the true cost c is small,

dealers would over-report c in order to increase their profit margins.

Appendix F includes a demonstration that in our simple setting there exists a mech-

anism that truthfully implements a benchmark, provided that dealers can designate a

benchmark administrator who can impose transfers. In the mechanism, dealers re-

port the common component c to the administrator, and are punished if the reports

disagree.26 However, we also show that any mechanism that can achieve truthful re-

porting in one equilibrium is prone to collusion by dealers in a different equilibrium.

That is, the benchmark is not robust to joint manipulation by several dealers.

Coulter and Shapiro (2014) and Duffie and Dworczak (2014) offer more explicit

models of benchmark manipulation.

7 Concluding Remarks

Benchmarks underlie a significant fraction of transactions in financial and non-financial

markets, particularly those with an over-the-counter structure that rules out a common

trading venue and a publicly announced market-clearing price. This paper provides

a theory of the effectiveness and endogenous introduction of benchmarks in search-

based markets that are opaque in the absence of a benchmark. Our focus is the role of

benchmarks in improving market transparency, lowering the informational asymmetry

24See Official Sector Steering Group (2014), Market Participants Group on Reference Rate Reform
(2014), and Foreign Exchange Benchmark Group (2014).

25See Bank of England (2014). The report provides a list of over-the-counter-market benchmarks
“that should be brought into the regulatory framework originally implemented in the wake of the
LIBOR misconduct scandal.” (See page 3 of the report.) A table listing the benchmarks that are
recommended for regulatory treatment is found on page 15. In addition to LIBOR, which is already
regulated in the United Kingdom, these are the overnight interest rate benchmarks known as SONIA
and RONIA, the ISDAFix interest-rate-swap index, the WM/Reuters 4pm closing foreign exchange
price indices (which cover many currency pairs), the London Gold Fixing, the LBMA Silver Price, and
ICE Brent (a major oil price benchmark).

26Clearly, at least two dealers are needed for truthful reporting to be implementable.
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between dealers and their customers regarding the true cost to dealers of providing the

underlying asset.

In the absence of a benchmark, traders have no information other than their own

search costs and what they learn individually by “shopping around” for an accept-

able quote. Dealers exploit this market opaqueness in their price quotes. Adding a

benchmark alleviates information asymmetry between dealers and their customers. We

provide conditions under which the publication of a benchmark raises expected total

social surplus by encouraging greater market participation by the customers, improving

the efficiency of matching, and reducing wasteful search costs.

In some cases, dealers have an incentive to introduce benchmarks despite the as-

sociated loss of local monopoly advantage, because of a more-than-offsetting increase

in the volume of trade achieved through greater customer participation. When deal-

ers have heterogeneous costs for providing the asset, those who are more cost-effective

may introduce the benchmarks themselves, in order to improve their market share by

potentially driving out higher-cost competitors.

It follows that which markets have a benchmark is not an accident of chance, but

rather is likely to be an outcome of conscious decisions by dealers, case by case, when

trading off the costs and benefits of the additional market transparency afforded by

a benchmark. Our analysis also suggests that there may be a public-welfare role for

regulators regarding which markets should have a benchmark, and also with respect to

the robustness of benchmarks to manipulation.
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Appendix

A Supplementary Notes

This appendix offers some supplementary discussions of our modeling approaches and

results.

1. Although we maintain the assumption that the distribution of c has full support

[c, c̄], many of our results do not depend on this assumption. In particular, when

the benchmark is present, the distribution G plays no rule in the construction of

equilibrium. Without the benchmark, as becomes apparent from the proofs in the

appendices, the full support assumption is only used to get uniqueness results for

the equilibria that we construct.

2. We abstract from a more realistic but less tractable formulation of a benchmark, by

which dealers disclose the realized average cost, rather than the common component

c. In our model, knowing c is the same as knowing the conditional expected average

dealer cost c+ ∆(1− γ), and this is close to the realized average cost if N is large.

3. In a primary goods market, one may view ∆ as a production cost disadvantage of

high-cost dealers. For applications to financial markets, one could also view ∆ as

the incremental intermediation cost of a high-cost dealer. In that sense of market

making, if we were to consider the parallel set of encounters in which traders with

a low valuation for the asset wish to sell to a dealer, a high-cost dealer’s value for

acquiring the asset from a trader would be c−∆.

4. In some the search literature, for example, Janssen, Pichler and Weidenholzer (2011),

the two types of traders that we call “fast” and “slow” are referred to as “shoppers”

and “non-shoppers.” These labels do not fit as well to OTC financial markets.

5. Although all equilibria are of the reservation-price form in the presence of a bench-

mark, without a benchmark, there might exist other equilibria that are known to be

inherently intractable in a setting with learning and equilibrium pricing.

6. We assumed a uniform distribution of contacts over the yet-to-be-visited dealers.

This is the standard assumption of undirected search that is used in the literature.

If, instead, certain dealers are more likely to be visited than others, the infrequently-

visited dealers would update their belief about the frequently-visited dealers’ offers
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upon the contacts by the traders. This asymmetric, strategic inference is modeled

by Zhu (2012) in a setting with one investor and multiple dealers. In our model with

multiple traders and entry decisions, this asymmetry is orthogonal to the effect of

benchmarks we model, and adding it would substantially complicate the analysis.

7. In the discussion of Theorem 1 we asserted that the benchmark raises profits of

slow traders by reducing information asymmetry. The profit of a slow trader in an

interior-entry equilibrium is zero both with and without the benchmark but what

matters is the off-equilibrium-path profit which determines the probability of en-

try on equilibrium path, according to equations (3.8) and (3.10). This is further

explained in Section 3.4.

8. In Section 4 we alluded to the equilibrium that arises when s < κ(1 − α̂)γ∆. The

details of the equilibrium construction are relegated to Appendix D but here we

summarize the structure of that equilibrium. Low-cost dealers randomize their offers

within two disjoint intervals. The lower interval has the upper limit r?c , and the higher

interval has the upper limit c+∆. High-cost dealer quote prices equal to their costs,

c+ ∆. Because a low-cost dealer quotes a price above r?c with a positive probability,

a slow trader might not buy from him on the first visit, implying extra search costs.

9. In the extended game considered in Section 5.2, the trading stage above can be ex-

tended to multiple “rounds” of trading. In each round the one-shot baseline game

of Section 2 repeats itself, with an i.i.d. draw of the common cost component c.

This extension is natural because the introduction of a benchmark is a long-term or

permanent decision, whereas the realization of common cost components are time-

varying as market conditions change. What is important, though, is that the id-

iosyncratic costs are sufficiently persistent, so that the benefit to low-cost dealers of

introducing a benchmark is unlikely to “flip” to a cost in the near future. For the

simplicity of exposition but at no cost of economic intuition, we have assumed that

the idiosyncratic cost types are permanent and that the search game is played only

“once.”

10. In Section 5.2, to be conservative, we assumed that dealers remain anonymous, that

is, the identities of dealers who voted for introducing the benchmark are unobserved

by the traders, and traders cannot “direct” their search towards those dealers. If

dealers who vote for benchmarks were able to direct search to themselves, the incen-

tives for introducing the benchmark would likely be stronger.
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11. Theorem 4 asserts that in the equilibrium that we construct there are no profitable

group deviations in the voting stage. In the usual Nash equilibrium of the voting

game, if everyone is voting against or in favor, the individual vote of a dealer is never

pivotal, and thus each outcome may be supported in equilibrium. By showing that

group deviations are not profitable we make sure that in equilibrium every type of

dealer votes in favor of the setting that yields higher profits for that type.

12. Our model assumes that dealers’ price offers remain valid at any time, the “recall”

assumption often used in models of search markets. A more realistic alternative is

the good-only-when-offered protocol, in which dealers are allowed to quote a new

price upon the second (and any subsequent) visit by the same trader. As shown

by Zhu (2012), revisiting a dealer constitutes a negative signal about the trader’s

outside option and tends to worsen the dealer’s quote.

Suppose that slow traders cannot recall earlier offers, but fast traders still can. This

change is inconsequential if slow traders search only once, on the equilibrium path,

when recall is available. When dealers’ costs are homogeneous, slow traders indeed

search only once, and thus our conclusions from Section 3 and Section 5.1 continue

to hold without adjustment. However, when dealers’ costs are heterogeneous (and

search costs are low enough), slow traders may search multiple times on the equi-

librium path when recall is available. For instance, if an unlucky slow trader keeps

meeting high-cost dealers, his optimal strategy is to keep searching for a low-cost

dealer. In this case relaxing the recall assumption can change the equilibrium out-

come by changing the bargaining power of dealers. In particular, because a dealer

knows that with a positive probability he is the last to be visited, he can quote a

higher price, profiting from the slow trader’s inability to recall an earlier offer. This

dealer incentive does not apply to the homogenous-cost setting, in which a slow

trader only meets one dealer on equilibrium path.

Suppose, instead, that no trader, fast or slow, can recall earlier offers. In this case,

fast traders can no longer use the strategy of visiting all dealers and accepting the

lowest offer. This alternative model would run into the Diamond paradox and is no

longer suitable for the analysis of benchmarks.

Overall, although relaxing the recall assumption may change search and pricing

behaviors in some cases, we have no reasons to expect this to change our main con-

clusions concerning benchmarks, as the role of benchmarks and recall are related to
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distinct types of frictions. Building a general and tractable framework that incor-

porates the good-only-when-offered protocol is a desirable research direction that is

outside the scope of this paper.

B Additional Results on Matching Efficiency

This appendix presents results that extend those of Section 4, by (i) considering cases

not covered in the main body of the paper, and (ii) obtaining sharper predictions about

matching efficiency when only two dealers are present in the market.

B.1 Additional analysis of matching efficiency

This subsection extends our analysis of matching efficiency. We maintain the assump-

tions of Section 4.

We begin with a result concerning partial matching efficiency.

Proposition 11. Suppose that (1− α̂)γ∆ < s < (1−α(1, 0))γ∆. Then the equilibrium

in the benchmark case has the following properties.

1. Slow traders enter with probability one.

2. High-cost dealers always quote the price c + ∆, and low-cost dealers make offers

in an interval whose upper limit is c + ∆.

3. Slow traders set a reservation price of r?c = c + ∆. The price r?c is rejected

by a slow trader with probability θ, where θ ∈ (0, 1) solves the equation s =

(1 − α(1, θ))γ∆. An offer strictly below r?c is accepted by a slow trader with

probability one.

Proof. This follows directly from the derivation in the proof of Proposition 8, found in

Section D.1 (case 2.2.1 (b)).

Under the parameter restrictions of the Proposition, the equilibrium resembles that

of Proposition 9 for the case of s ≥ κ(1 − α̂)γ∆, but has an unexpected twist. Slow

traders follow a reservation-price strategy with r?c = c+∆, and high-cost dealers always

offer to sell at c + ∆. Upon seeing a price offer of r?c , slow traders randomize between

accepting and rejecting. The equilibrium rejection probability θ does not depend on c

and changes continuously from 1 to 0 as s increases from (1− α̂)γ∆ to (1−α(1, 0))γ∆.
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Surprisingly, the unique reservation-price equilibrium involves non-trivial randomiza-

tion at the reservation price. As a consequence, we get partial efficiency in the matching

of slow traders to low-cost dealers.

If s > (1−α(1, 0))γ∆, then all dealers, including high-cost dealers, sell the asset in a

benchmark-based equilibrium. (See the analysis in Section D.1 and Figure D.1.) Thus,

a sufficiently low search cost is necessary to match slow traders to low-cost dealers.

The equilibrium under the benchmark in the case s < κ(1 − α̂)γ∆ is described

in Section D.1. Because it does not achieve the second best, Proposition 10 alone is

insufficient to provide a welfare comparison to the no-benchmark case. Moreover, as

shown in Section B.2, a reservation-price equilibrium fails to exist in the no-benchmark

case if search costs are very low. Given the economic insignificance of the region s <

κ(1− α̂)γ∆ (as explained in Section D.3) and the intractability of non-reservation-price

equilibria, we leave open the question of welfare comparison in this parameter range.

B.2 Equilibrium in the no-benchmark case with two dealers

In this subsection we explore the special case of two dealers (N = 2). Otherwise, we

maintain the same assumptions as in Section 4. Proofs of the results of this subsection

are provided in Section D.6.

If there are two dealers, traders update their beliefs at most once, so the continuation

conditional expected payoff of a slow trader after rejecting the first dealer’s offer is easy

to calculate. Benabou and Gertner (1993) characterize reservation-price equilibria in

their model with two dealers. Our model has a different cost structure for dealers; thus,

their results, although fairly general, cannot be applied.

The following result is an analogue of Lemma 1 for the case of two dealers with

idiosyncratic costs, ε1 and ε2, for supplying the asset.

Lemma 2. With no benchmark and two dealers, if there exists a reservation-price

equilibrium, then the first-round reservation price is either c+ ∆ or v. If

s < (1− α(1, 0))γ∆,

then the first-round reservation price is c+ ∆.

We briefly characterize pricing strategies of dealers in the two equilibria. Remaining

details can be found in the proof of the Lemma in Section D.6.1.
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In the equilibrium with r? = c + ∆, because c + ∆ exceeds r?, high-cost dealers

cannot sell immediately when they are the first dealer contacted by a trader. As a

consequence, it can be shown that they post a price offer equal to their cost c + ∆

and make zero profits. Low-cost dealers always use a continuous distribution, but there

are three regions for the outcome of the cost c that lead to qualitatively different offer

distributions, as illustrated in the three diagrams (counting from the right) in Figure

B.1. When the cost c is very low, all offers lie below r?. For the middle range of c,

the support of prices consists of two intervals, one below r?, and one above r?. Thus,

a low-cost dealer sells to a slow trader upon the trader’s first contact if and only if

an offer from the lower interval is drawn. Finally, when c is high, all offers lie above

r?. Conditional on this outcome of c, traders never buy from the dealer on their first

contact.

In the equilibrium with r? = v, we can distinguish two qualitatively different regions

of cost c. (See the two diagrams (counting from the left) in Figure B.1.) When c <

v − ∆, which is always the case under Assumption A.2, both high-cost and low-cost

dealers make positive profits, and quote prices according to continuous distributions

with adjacent supports lying below r?. (In the opposite case of c > v −∆, which does

not satisfy Assumption A.2 but is nonetheless interesting, there are no gains from trade

between traders and high-cost dealers. Low-cost dealers use a continuous distribution

with upper limit r?.)

Although the proof of Lemma 2 assumes N = 2 dealers, the equilibrium with

reservation price r? = v is easy to characterize even if N is arbitrary. Because each

slow trader contacts at most one dealer in equilibrium, the only difference is that we

need to correctly adjust the posterior probability of a fast trader. Using arguments

along the lines of the proof of Proposition 4, we can also show existence of reservation-

price equilibrium if search costs are sufficiently high.

In line with the objective of Section 4, which analyzes matching efficiency when

search costs are low, in the remainder of this appendix we focus on the equilibrium

with r? = c+ ∆.

We let Ψ(p; r?) denote the expected benefit of an additional search (that is, the

expected benefit of visiting the second dealer), before considering the search cost, after

observing a price offer of p, based on assumed reservation price r?. In the proofs of

Lemma 2 and Proposition 12 we give a closed-form expression for Ψ(p; r?) and show

that Ψ(p; r?) is continuous in p on [pl
c
, r?) and on (r?, v]. Moreover, for r? = c + ∆,

Ψ(p; r?) jumps up at p = r?. This implies that the incentives to search adjust in the
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Fig. B.1: Supports of the distributions of prices (as a function of c)
(Low-cost dealers: blue. High-cost dealers: red. A dot denotes an atom.)

“correct” direction “locally” around r?. Define s = sup
{

Ψ(p; r?) : p ∈ [pl
c
, r?)

}
and

s̄ = inf {Ψ(p; r?) : p ∈ (r?, v]}. We have the following result.

Proposition 12. Suppose that s < (1−α(1, 0))γ∆. Then, a reservation-price equilib-

rium in the no-benchmark case exists if and only if the search cost s is in the interval

[s, s̄]. Moreover, s̄ ≤ (1− α(1, 1))γ∆.27

While the constants s and s̄ are directly computable, the associated analytic formu-

las are complicated. It can be shown, however, that the interval [s, s̄] is not empty if the

distribution G of costs is uniform and γ is not too large. It is also easy to find examples

(similar to an example considered by Janssen, Pichler and Weidenholzer 2011) when

the interval is empty.

Proposition 12, together with Lemma 2, implies that there is no reservation-price

equilibrium when the search cost s is in the interval

((1− α(1, 1))γ∆, (1− α(1, 0))γ∆) .

27We interpret the interval [a, b] as the empty set when a > b, and as the singleton {a} when a = b.
The proof that we provide also implies that for s ≤ (1−α(1, 1))γ∆ we cannot have a reservation-price
equilibrium with r? = c+ ∆ (even if we allow s ≥ (1− α(1, 0))γ∆).
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Moreover, and perhaps surprisingly, a reservation-price equilibrium fails to exist when

the search cost s is sufficiently small.

The above analysis implies the following Corollary.

Corollary 1. Fix a search cost s ≥ κ(1− α̂)γ∆, and suppose that in all equilibria (with

and without the benchmark) there is full entry. If introducing the benchmark does not

increase welfare, it must be the case that the equilibrium in the no-benchmark case is

not a reservation-price equilibrium.

Proof. This follows directly from Proposition 9, Lemma 2, and Proposition 12.

The Corollary can be interpreted as saying that the no-benchmark setting cannot

lead to a better matching efficiency than the benchmark setting if slow traders are using

reservation-price strategies in equilibrium.

With two dealers and a search cost s in the interval [s, s̄], the social cost of not having

a benchmark does not arise from inefficient matching between slow traders and high-

cost dealers in equilibrium. Rather, the inefficiency is caused by having slow traders

engage in superfluous search. Indeed, unless the realization of the dealer’s common cost

c is very small, low-cost dealers make offers above the reservation price c+∆, and might

not trade with the first low-cost dealers that they encounter. The following corollary

(proved in Section D.6.3) expresses the welfare gain from introducing a benchmark by

comparing it to the gain that would be achieved if the market were organized as a

centralized exchange with no search costs (that is, if all traders had zero search cost).

Corollary 2. With N = 2 dealers, and for any search cost s in the interval [max{κ(1−
α̂)γ∆, s}, s̄], introducing a benchmark eliminates at least a fraction

(1−G(c+ γ∆)) γ

2− γ + (1−G(c+ γ∆)) γ

of the total loss in social surplus that is induced by search frictions (relative to a setting

with a centralized exchange).
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Appendices C–H Are for Online Publication

C Proofs for Section 3

C.1 Proof of Proposition 1

We fill in the gaps in the derivation of the equilibrium in the benchmark case. We focus
on the non-trivial case c ≤ c < v − s.

As argued in Section 3, regardless of the price distribution that dealers use in a
symmetric equilibrium, slow traders play a reservation-price strategy with some reser-
vation price rc. Fast traders play their weakly dominant strategy of searching the entire
market. (Thus, if the trader is a fast trader, the dealers are essentially participating in
a first-price auction.) Given this strategy of traders, the following Lemma establishes
the properties of the equilibrium response of dealers.

Lemma 3. If slow traders enter with a strictly positive probability, the equilibrium price
distribution cannot have atoms or gaps, and the upper limit of the distribution is equal
to rc.

Proof. Suppose there is an atom at some price p in the distribution of prices Fc( · ) for
some cost level c ∈ (c, v− s). Suppose further that p > c. In this case a dealer quoting
p can profitably deviate to a price p − ε, for some small ε > 0 (because slow traders
play a reservation-price strategy, the probability of trade jumps up discontinuously).
Because dealers never post prices below their costs, we must have p = c. But that is
also impossible, because a dealer could then profitably deviate to rc (clearly, rc ≥ c+ s
in equilibrium). Thus, there are no atoms in the distribution.

Second, suppose that p̄c > rc. In this case the dealer posting p̄c makes no profits, so
she could profitably deviate to rc. On the other hand, if p̄c < rc, a dealer can increase
profits by quoting rc instead of p̄c as this does not effect the probability of selling. Thus
p̄c = rc.

Third, suppose that there is an open gap in the support of the distribution of prices
conditional on some cost level c, that is, an interval (p1, p2) ⊂ [p

c
, p̄c] \ supp (Fc( · )).

Take this interval to be maximal, that is, such that p1 is infimum and p2 is a supremum,
both subject to being in the support of Fc( · ). Then we get a contradiction because the
probability of selling is the same whether the dealer posts p1 or p2.

Given Lemma 3, we know that in a symmetric equilibrium dealers must be indifferent
between prices in the interval [p

c
, p̄c].

28 Using Bayes’ rule, the posterior probability that
a trader is a fast trader conditional on a visit (while fixing the probability of entry by

28Strictly speaking, the above arguments only imply that they need to be indifferent between prices
in some set that is dense in [p

c
, p̄c]. But since any cdf is right-continuous, it is uniquely defined by its

values on a dense set of the support.
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slow traders at λc) is given by q(λc) (as given by equation (3.1)). Thus, the indifference
condition is expressed in equation (3.2) and gives us the equilibrium cdf (3.3). Setting
Fc(pc) = 0 yields p

c
= ϕ(λc)rc + (1− ϕ(λc))c, where

ϕ(λc) =
λc(1− µ)

Nµ+ λc(1− µ)
.

Lemma 4. The expected value of the distribution given by equation (3.3) is (1 −
α(λc))c+ α(λc)rc, where α( · ) is defined by (3.6).

Proof. The proof is also provided in Janssen, Pichler and Weidenholzer (2011), so we
only sketch the argument. We have

ˆ p̄c

p
c

p dFc(p) = c+

ˆ p̄c

p
c

(p− c) dFc(p).

Consider a change of variables z = 1− Fc(p). We then have

(p− c) =
rc − c

1 + Nµ
λc(1−µ)

zN−1
,

and thus ˆ p̄c

p
c

p dFc(p) = c+ (rc − c)
ˆ 1

0

(
1 +

Nµ

λc(1− µ)
zN−1

)−1

dz.

Lemma 4 implies equation (3.5). Finally, equation (3.8) has indeed a unique solution
for c ∈ (v − s, v − s

1−ᾱ) because α(λc) is strictly increasing and continuous in λc.

C.2 Proof of Proposition 2

Because dealers never quote prices below their costs, X provides an upper bound on
the expected payoff of a slow trader after entry. Thus, since s ≥ X, slow traders cannot
enter in any equilibrium.29 The social surplus is at most µX. With the benchmark,
whenever v − c > s, which has positive probability if v − c > s, there is a positive
probability of entry by slow traders, by Proposition 1. Thus, the expected surplus is
strictly higher than µX.

29Even if s = X, we can still show that there are no equilibria with positive entry by slow traders.
Indeed, if the probability of entry is positive, since slow traders have to accept prices below c + s,
dealers will quote prices above c with positive probability.
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C.3 Proof of Lemma 1

Let r?0 be the equilibrium first-round reservation price for slow traders. Note that,
unlike in the benchmark case, r?0 is a number, not a function of c.

We take c < r?0. Such a c exists because r?0 ≥ c + s. Suppose that the upper
limit of the support of the distribution Fc of offer prices, p̄c, is (strictly) larger than
r?0. Since traders follow a reservation-price strategy, and because fast traders visit all
dealers, there can be no atoms in the distribution of prices (otherwise a dealer could
profitably deviate by quoting a price just below the atom). Thus, a dealer setting the
price p̄c never sells in equilibrium, and hence makes zero profit. However, she could
make positive profit by setting a price equal to r?0. Thus, p̄c ≤ r?0. Because we took an
arbitrary c < r?0, it follows that whenever c < r?0, traders do not observe prices above
r?0 on the equilibrium path.

Suppose that r?0 < v. Whenever the realization of c lies above r?0, the offer in
the first round must be rejected by a slow trader (dealers cannot offer prices below
their costs). In particular, a slow trader must reject the price p? ∈ supp (Fc( · )) with
r?0 < p? ≤ inf{p ∈ supp(Fc( · ) : c > r?0} + δ < v, for a sufficiently small δ > 0.30 This
is a contradiction. Indeed, by the previous paragraph, conditional on observing a price
p > r?0 in the first round, the trader believes that c must lie above r?0 with probability
1. But in this case, the price p? is within δ of the best possible price that the trader can
ever be offered, so this offer should be accepted by a slow trader (if δ < s), contrary to
p? > r?0. This shows that r?0 = v.

Finally, suppose that p̄c < v for some c < v. Then a dealer quoting the price p̄c
could profitably deviate by posting a price v (the probability of trade is unaffected).
This justifies the second claim.

C.4 Proof of Proposition 3

Fix a fraction λ of slow traders that enter. By Lemma 1 and the arguments used in the
derivation of equilibrium prices in the benchmark case, the cdf of offered prices must
be

Fc(p) = 1−
[
λ(1− µ)

Nµ

v − p
p− c

] 1
N−1

(C.1)

with support [p
c
, v], where p

c
= ϕ(λ)v + (1− ϕ(λ))c and

ϕ(λ) =
λ(1− µ)

Nµ+ λ(1− µ)
.

We note that the only difference with the equilibrium pricing under the benchmark is
that the reservation price and probability of entry are constants, not functions of c.

30Such p? exists. As long as c < v, in equilibrium dealers must be posting prices below v with
positive probability.
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We can now calculate the expected profits of slow traders if they choose to enter:

π(λ) = −s+

ˆ v

c

[ˆ v

p
c

(v − p) dFc(p)

]
dG(c) = −s+ (1− α(λ))X,

where
X = G(v) [v − E [c| c ≤ v]]

is the expected gains from trade. By reasoning analogous to that in the benchmark
case, we determine that:

• If s ≤ (1− ᾱ)X, there must be full entry by slow traders (λ? = 1).

• If s ≥ X, there cannot be entry by slow traders (λ? = 0).

• If s ∈ ((1 − ᾱ)X, X), then the entry of slow traders is interior, with probability
λ? determined uniquely by the equation (3.10).

C.5 Proof of Proposition 4

Given Proposition 3, in order to prove existence in our setting we need only show that
a slow trader does not want to search after observing a price p ≤ v in the first round.
After observing a price p, the slow trader forms a posterior probability distribution of
c, given by the cdf

G(c | p) =

´ c
c
fy(p) dG(y)´ c̄p

c
fy(p) dG(y)

,

where fc(p) denotes the density of the distribution defined by the cdf (3.11), and

c̄p =
1

1− ϕ(λ?)
p− ϕ(λ?)

1− ϕ(λ?)
v

is the upper limit of the support of the posterior distribution.
With two dealers, it is easy to provide a sufficient and necessary condition for

existence. A price p is accepted in the first round if and only if

v − p ≥ −s+

ˆ c̄p

c

[ˆ p

p
c

(v − ρ)fc(ρ) dρ+ (v − p)(1− Fc(p))

]
dG(c | p),

or

s ≥

´ c̄p
c

´ p
p
c

Fc(ρ)dρ(v − c)(p− c)−2 dG(c)´ c̄p
c

(v − c)(p− c)−2 dG(c)
. (C.2)

Thus, a reservation-price equilibrium with two dealers exists if and only if inequality
(C.2) holds for all p ∈ (p

c
, v).The condition can be easily verified, as the expression on

the right hand side of (C.2) is directly computable.
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With more than two dealers, an additional difficulty arises because it is not easy to
calculate the continuation value when an offer p is rejected in the first round. We can
nevertheless provide a sufficient condition based on the following argument. Suppose
that after observing p and forming the posterior belief about c, the slow trader is
promised to find, in the next search, an offer equal to the lower limit of the price
distribution. This provides an upper bound on the continuation value; thus, if the
trader decides not to search in this case, she would also not search under the actual
continuation value. Thus, a sufficient condition for existence is that

s ≥ (p− v) + (1− ϕ(λ?))

´ c̄p
c

(v − c)2(p− c)−
N
N−1 dG(c)´ c̄p

c
(v − c)(p− c)−

N
N−1 dG(c)

, (C.3)

for all p ∈ (p
c
, v). Again, inequality (C.3) can be directly computed and verified.

The last step in the proof is to show that inequality (C.3) holds for s in some range
below X. To this end, we analyze the behavior of the posterior distribution of costs
G(c | p) after a price p is observed by a slow trader in the first round when probability
of entry λ? is small. As λ? ↘ 0, conditional on p, the upper limit of the support of the
posterior cost distribution, c̄p, converges to p. Thus G(c | p) converges pointwise to 0
for c < p and to 1 for c > p. By one of the (equivalent) definitions of weak? convergence
of probability measures, the posterior distribution converges in distribution to an atom
at p. Thus, in the limit, inequality (C.3) becomes

s ≥ (p− v) + (1− ϕ(0))(v − p) = 0,

and is thus vacuously satisfied. By continuity of the right-hand side of inequality (C.3),
the inequality holds if λ? is smaller than some λ > 0. Recall that λ? is determined
uniquely by equation (3.10). Moreover, it is continuous and strictly decreasing in s for
s ∈ ((1− ᾱ)X, X), and equal to zero at s = X. Thus, there exists s < X such that for
all s > s, λ? is smaller than λ.

C.6 Proof of Theorem 1

We first outline the main steps of the argument, and leave the technical details for the
two lemmas that follow.

In order to make the proof concise, we make a change of variables by defining
x = (v − c)+ ≡ max(v − c, 0) as the realized gain from a trade given the common cost
c.

Note first that conditions (i) and (ii) both imply that s > (1 − ᾱ)X. Since the
case s ≥ X is already covered by Proposition 2, in this proof we focus on the range
(1− ᾱ)X < s < X, within which Proposition 3 implies interior entry in the absence of
the benchmark.
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The total expected surplus in the no-benchmark case is

Wnb ≡ [λ?(1− µ) + µ]X − λ?(1− µ)s.

With the benchmark, we let λ(x) denote the probability of entry by slow traders con-
ditional on a realized gain from trade of x. By Proposition 1,

λ(x)


= 0, if x ≤ s,

solves s = (1− α(λ(x)))x, if s < x < s
1−ᾱ ,

= 1, if x ≥ s
1−ᾱ .

The conditional expected social surplus in the benchmark case conditional on x is

Wb(x) ≡ [λ(x)(1− µ) + µ]x− λ(x)(1− µ)s.

The crucial observation, demonstrated in Lemma 5 below, is that Wb is a convex func-
tion on [0, s/(1− ᾱ)]. Figure 3.1 depicts a typical shape of that function.

Under condition (i), Wb is convex on its entire domain. (This corresponds to cutting
off the part of the domain that upsets convexity, as shown in Figure 3.1.) We can thus
apply Jensen’s Inequality to obtain

E [Wb(x)] ≥ Wb [E (x)] = Wb

(ˆ c̄

c

(v − c)+ dG(c)

)
= Wb(X) = Wnb.

To justify the last equality, one notes that λ? is precisely λ(X), by equations (3.8) and
(3.10). (This inequality is actually strict because G is a non-degenerate distribution
and because λ(x) > 0 with positive probability under G.)

Under condition (ii), Wb may fail to be convex on its entire domain. However, an
inspection of the proof of Jensen’s Inequality shows that all that is required to achieve
the inequality is that the function Wb is subdifferentiable31 at E(x). The slope of Wb

is increasing on [0, s/(1− ᾱ)] and equal to 1 on (s/(1− ᾱ), v − c]. Thus, a sufficient
condition for existence of a supporting hyperplane of Wb at X is that W ′

b(X) ≤ 1. We
thus want to solve the equation W ′

b(x0) = 1 for x0 ∈ (s, s/(1− ᾱ)) and impose X ≤ x0.
(See Figure 3.1.) An explicit solution is not available, so instead we show in Lemma
6 below (by approximating the functions α and λ) that this condition is implied by
s ≥ (1− ψ)X.

Finally, a simple application of the Lebesgue Dominated Convergence Theorem
shows that ᾱ converges (monotonically) to 1 when either N → ∞ or µ → 0. Thus,
condition (i) holds if N is large enough or if µ is small enough.

Lemma 5. Wb(x) and λ(x) are convex functions on [0, s/(1− ᾱ)].

31A function f : [a, b]→ R is said to be subdifferentiable at x0 if there exists a real number ξ such
that, for all x in [a, b], we have f(x)− f(x0) ≥ ξ(x− x0). If Wb is convex, then it is subdifferentiable
on the interior of its domain, by the Separating Hyperplane Theorem.
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Proof. First we prove that λ(x) and Wb(x) are convex on (s, s/(1− ᾱ)]. By the Implicit
Function Theorem λ is twice differentiable on this interval and we have

∂λ

∂x
=

(1− α(λ))

α′(λ)x
> 0,

and

∂2λ

∂x2
=
−α′(λ)(1− α(λ))− (1− α(λ))

[
α′(λ) + α′′(λ) (1−α(λ))

α′(λ)

]
[α′(λ)x]2

.

Hence, ∂2λ
∂x2 ≥ 0 for all x ∈ (s, s/(1− ᾱ)) if and only if, for all λ ∈ (0, 1),

2 [α′(λ)]
2

+ α′′(λ)(1− α(λ)) ≤ 0. (C.4)

Taking β = Nµ/(1− µ), we have

α′(λ) =

ˆ 1

0

βzN−1

(λ+ βzN−1)2 dz,

α′′(λ) = −2

ˆ 1

0

βzN−1

(λ+ βzN−1)3 dz.

The inequality (C.4) can therefore be written as(ˆ 1

0

βzN−1

(λ+ βzN−1)2 dz

)2

≤
(ˆ 1

0

βzN−1

(λ+ βzN−1)3 dz

)(ˆ 1

0

βzN−1

λ+ βzN−1
dz

)
.

Hölder’s Inequality states that for all measurable and square-integrable functions f and
g,

‖fg‖1 ≤ ‖f‖2 ‖g‖2 .

By letting

f(z) =

√
βzN−1

(λ+ βzN−1)3 and g(z) =

√
βzN−1

λ+ βzN−1
,

we have proven inequality (C.4) and thus the convexity of λ(x).
Now it becomes a straightforward to check that Wb(x) is convex on [s, s/(1− ᾱ)].

Notice that Wb(x) and λ(x) are trivially convex on [0, s] (because, on this interval, λ(x)
is identically zero and Wb(x) is affine). Therefore, to finish the proof it is enough to
make sure that λ(x) and Wb(x) are differentiable at s. We can verify this by computing
the left and right derivatives:

∂−Wb ([s]) = µ = ∂+Wb ([s]) ,

∂−λ ([s]) = 0 = ∂+λ ([s]) .
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Lemma 6. If x ≤ s
1−ψ , where ψ = 1

2

[√
(1− ᾱ + ᾱβ)2 + 4ᾱ(1− ᾱ)− (1− ᾱ + ᾱβ)

]
and β = Nµ

1−µ , then W ′
b(x) ≤ 1.

Proof. The claim is true for x ≤ s, and since ψ ≤ ᾱ, we can focus on the region where
λ(x) is defined as the solution to the equation (3.8) which can be written as

α(λ(x)) = 1− s

x
.

Since α( · ) is a strictly increasing function, if we replace α( · ) in the above equation
by a lower bound, any solution of the new equation will be an upper bound on λ(x).
Because Wb(x) is convex in the relevant part of the domain (by Lemma 5), to make
sure that W ′

b(x) ≤ 1, it’s enough to require that x ≤ x0, where x0 solves W ′
b(x0) = 1

(such x0 exists and is unique). We have

W ′
b(x0) = µ+ λ′(x0)(1− µ)(x0 − s) + λ(x0)(1− µ) = 1. (C.5)

We cannot solve this equation explicitly, so we will provide a lower bound on the
solution. Because W ′

b(x) is increasing, we need to bound W ′
b(x) from above. Since

α(λ) ≥ λᾱ, by the above remark, the solution of the equation

ᾱλ̄(x) = 1− s

x

provides an upper bound on λ(x). That is,

λ(x) ≤ λ̄(x) =
1

ᾱ
− s

ᾱ

1

x
.

Moreover,

λ′(x) =
1

α′(λ(x)))

s

x2
,

and we have, for all λ ∈ [0, 1],

α′(λ) =

ˆ 1

0

βzN−1

(λ+ βzN−1)2 dz ≥
1

λ+ β

ˆ 1

0

(
λ+ βzN−1

λ+ βzN−1
− λ

λ+ βzN−1

)
dz

=
1

λ+ β
(1− α(λ)) ≥ 1− ᾱ

λ+ β
.

Plugging all of these estimates into equation (C.5) and rearranging, we obtain

β + 1
ᾱ
− s

ᾱ
1
x0

1− ᾱ
s

x0

(1− s

x0

) +
1

ᾱ

[
1− s

x0

]
= 1.

Denoting y = 1 − s/x0, estimating the left hand side from above one more time, and



C Proofs for Section 3 48

rearranging, we get
y2 + (1− ᾱ + ᾱβ)y − ᾱ(1− ᾱ) = 0.

The relevant solution is ψ.

C.7 Proof of Proposition 5

This result follows directly from Propositions 1 and 3.

C.8 A numerical example for Section 3.3

To illustrate the intuition of Theorem 1 and Proposition 5, Figure C.1 shows how the
surplus and the entry probability of slow traders depend on the search cost s in the
benchmark case (shown with a thick solid line) and in the no-benchmark case (shown
with a thick dotted line). Here, we take the distribution G of dealer costs to be uniform
on [0, 1], a trader asset valuation of v = 1, a fraction µ = 0.25 of slow traders, and
N = 2 dealers. The reservation-price equilibrium in the no-benchmark case exists if
s ≥ 0.063.

The benchmark case dominates the no-benchmark case in terms of social surplus for
all s ≥ 0.12. We note that the unconditional probability of entry is larger without the
benchmark when s ≤ 0.18. In the range s ∈ (0.12, 0.18), the benchmark nevertheless
raises social surplus because it encourages more entry when gains from trade are large.
In the range s ∈ (0.063, 0.12) the pooling effect of not observing the benchmark cost
c overcomes the other benefits of the benchmark, resulting in a higher social surplus
without the benchmark.

C.9 Proof of Proposition 6

Using the same arguments used in the derivation of equilibrium from Proposition 1 we
can show that in the costly-benchmark case there exists a reservation-price equilibrium,
and that equilibrium payoffs are unique. Fixing the probability of entry at λ (and noting
that it is independent of c), we compute the reservation price

rcbc = min

{
v, c+

1

1− α(λ)
s

}
.

A slow trader buys from the first contacted dealer if c ≤ v. The profit of a slow trader
who enters, conditional on c, can be shown to be

πcbc (λ) = max

{
v − 1

1− α(λ)
s− c, −s+ (1− α(λ))(v − c)

}
if c ≤ v, and −s if c > v. When s ≥ X, there can be no entry in equilibrium. If
the equilibrium probability of entry λcb is interior, then it must be determined by the
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Fig. C.1: The dependence of expected social surplus and entry on the slow-trader search
cost s.
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indifference condition, analogous to (3.8) and (3.10), given by

Eπcbc (λcb) = 0. (C.6)

The solution to that equation exists and is unique if X ≥ s ≥ (1− ᾱ)X + φ, where

φ =
ᾱ

1− ᾱ

ˆ v− s
1−ᾱ

c

[(1− ᾱ)(v − c)− s] dG(c) ≥ 0.

When s < (1− ᾱ)X + φ, we must have entry with probability one.
To show that surplus is higher in the costly-benchmark case than in the no-benchmark

case, it is enough to show that entry is higher. Because the function max is convex, we
can apply Jensen’s Inequality to conclude that, for all λ,

Eπcbc (λ) ≥ −s+ (1− α(λ))X = πnb(λ),

that is, the expected profit is always higher in the costly-benchmark setting (and is
strictly higher provided that (1 − ᾱ)X < s < X). It follows that equilibrium entry of
slow traders must also be higher (from equations (3.10) and (C.6)).
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C.10 Proof of Proposition 7

By Theorem 1 we know that when s is higher than (1−ψ)X, surplus under the bench-
mark is higher than in the reservation-price equilibrium of the no-benchmark case.32

It is easy to observe that the difference in surpluses is bounded away from zero as a
function of s (under the assumption that v − c > s > (1 − ψ)X). Given Proposition
6, it suffices to show that the surplus of the costly-benchmark case converges to the
surplus of the no-benchmark case as s goes to X (when s ≥ X, they coincide). It is
enough to prove that λcb, the solution of equation (C.6), converges to λ?, the solution
of equation (3.10), as s → X. Because the solution of equation (C.6) is continuous in
s and equal to 0 at s = X, λcb converges to 0, and so does λ?.

D Proofs and Supporting Content for Section 4

This appendix provides proofs for results in Section 4, and additional results cited in
Section 4.

D.1 Proof of Proposition 8 and equilibrium characterization in
the benchmark case

Because the distribution of costs is i.i.d. across dealers conditional on observing the
benchmark, slow traders must follow a reservation-price strategy with some reservation
price rc. A stationary33 reservation-price strategy of slow traders will now be charac-
terized by three numbers: λc, the probability of entry; rc, the reservation price; and
θ̂c, the probability of rejecting an offer equal to the reservation price rc. Fixing the
strategy of the dealers and the reservation price rc, the rejection probability θ̂c deter-
mines the probability θc that a slow trader rejects an offer from a high-cost dealer, and
vice versa. Given the one-to-one correspondence between θc and θ̂c, for convenience
we will abuse the notation for the strategy of a slow trader, denoting it by the triple
(rc, λc, θc). Again without loss of generality, we can assume that fast traders play their
weakly dominant strategy of always entering and visiting all dealers. We also ignore
the issue of off-equilibrium beliefs, as it is fairly trivial to deal with.

Fixing c and a strategy (rc, λc, θc) we will characterize the equilibrium best-response
of dealers. We start with two technical lemmas.

32Even if the latter equilibrium does not exist, the comparison between surpluses is valid, and that
is all we need for the proof.

33 Requiring stationarity, that is, the same mixing probability at every search round, simplifies
the exposition and is without loss of generality. Without stationarity, there is an indeterminacy in
specifying the probability of rejecting the reservation price in equilibrium. Traders can use different
mixing probabilities in every search round, as long as they lead to the same posterior beliefs of dealers.
This indeterminacy does not change expected equilibrium payoffs, so without loss of generality we get
rid of it by requiring stationarity.



D Proofs and Supporting Content for Section 4 51

Lemma 7. In equilibrium, conditional on c (for c < v), if dealers of a certain type
(high-cost or low-cost) make positive expected profits, then the probability distribution
of price offers for that type is atomless. If high-cost dealers make zero expected profits,
then in equilibrium they must quote a price equal to their cost, provided that c+ ∆ < v.

Proof. The first part of the Lemma can be proven using the argument from the proof
of Lemma 3. To prove the second part, suppose that, for some c < v − ∆, a price
above c + ∆ is in the support of the equilibrium strategy of high-cost dealers. The
probability of selling at that price (or some lower price above c + ∆) must be positive
since with probability (1− γ)N only high-cost dealers are present in the market. Thus,
we get a contradiction with the assumption that high-cost dealers make zero expected
profits.

Lemma 8. In equilibrium, conditional on c (and on the event c < v), for any equilib-
rium price pl of a low-cost dealer, and any equilibrium price ph of a high-cost dealer,
we have pl ≤ ph.

Proof. The claim is true by a standard “revealed-preference” argument. Suppose that
pl > ph. Fix an equilibrium, and let %(p) (for some fixed c ≤ v) be the probability
that a dealer sells the asset when posting the price p. Since dealers are optimizing in
equilibrium, we must have

%(pl)(pl − c) ≥ %(ph)(ph − c), (D.1)

%(ph)(ph − c−∆) ≥ %(pl)(pl − c−∆). (D.2)

We have, if %(ph) 6= 0,

%(ph)(ph − c−∆) < %(ph)(pl − c−∆).

If pl > c+ ∆, then %(ph) > %(pl). From inequality (D.1),

%(pl)(pl − c) + ∆(%(ph)− %(pl)) > %(ph)(ph − c)

or
%(pl)(pl − c−∆) > %(ph)(ph − c−∆)

which contradicts inequality (D.2).
We are left with two cases. First, suppose that pl ≤ c+ ∆. Then ph < c+ ∆ which

is impossible in equilibrium. Second, suppose that %(ph) = 0. Then it must be the case
that %(pl) = 0 as well, which is a contradiction if c < v.

The Lemma simply says that in equilibrium high-cost dealers always post higher
prices than low-cost dealers.

Finally, we prove a lemma about the possibility of gaps in the distribution of prices.
Let pi

c
and p̄ic denote the lower and upper limit of the support of the distribution of

prices for dealer of type i ∈ {l, h}.
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Lemma 9. In equilibrium, conditional on c (for c < v), there can be no gaps in the
distribution of prices except for the case in which the support of the distribution of
prices of low-cost dealers consists of two intervals, [pl

c
, rc] and [p̂lc, min{c+ ∆, v}], and

in which either (i) high-cost dealers post c+ ∆, or (ii) c > v −∆.

Proof. Suppose that there is a gap in the distribution of prices conditional on some cost
level c for some type of dealers, that is, an interval (p1, p2) ⊂ [pi

c
, p̄ic] \ supp (F i

c( · )),
i ∈ {l, h}. We take this interval to be maximal, that is, such that p1 and p2 are in the
support of F i

c( · ). It must be the case that probability of selling is strictly larger at p1

than at p2, and thus, in a reservation-price equilibrium, p1 ≤ rc ≤ p2 (we made use
here of Lemma 8). It cannot be that p1 < rc because then the dealer posting p1 could
profitably deviate to rc. Thus p1 = rc.

By Lemma 8, p̄hc is the highest price that can be observed on equilibrium path, and
it lies above rc. It follows, using Lemma 7, that high-cost dealers make zero expected
profits (if the price distribution for high-cost dealers were atomless, the probability of
selling at the price p̄hc > rc would be zero). Moreover, either (i) high-cost dealers post
c+ ∆, or (ii) c > v −∆. In either case we can conclude that i = l, i.e. the gap occurs
in the price distribution of low-cost dealers.

By the above, if there is a gap, then the support of the distribution for low-cost
dealers consists of two intervals, the first of which must be [pl

c
, rc]. To prove that

p̄lc = min{c + ∆, v}, we use the fact that p̄lc > rc, and thus if p̄lc < min{c + ∆, v}, the
dealer quoting p̄lc would want to deviate to min{c+ ∆, v}.

Using the above observations, we can now show, case by case, that the equilibrium
pricing strategies are uniquely pinned down when there are gains from trade. (We
assume throughout that c < v; the opposite case is trivial.) We let F l

c(p) denote the
cdf of prices for low-cost dealers, and F h

c (p) the cdf of prices for high-cost dealers. In
most cases it is a routine exercise to rule out the possibility of a gap in the distribution,
using Lemma 9. We will therefore only comment on this possibility explicitly in the
two cases when a gap actually occurs in equilibrium.

Case 1: λc = 0. When λc = 0, only fast traders enter. In this case, we have a
standard first-price auction between dealers. There are two subcases.

When c > v −∆, high-cost dealers cannot sell in equilibrium, and the specification
of their strategy is irrelevant (they can choose any price above c + ∆). In this case
low-cost dealers randomize according to a distribution F l

c(p) that solves the equation

[
N−1∑
k=0

(
N − 1

k

)
γk(1− γ)N−1−k (1− F l

c(p)
)k]

(p− c) = (1− γ)N−1(v − c).
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Let us define the function

Φ(z) =
1

1− (1− γ)N−1

N−1∑
k=1

(
N − 1

k

)
zkγk(1− γ)N−1−k, (D.3)

which can be viewed as a generalization of the function zN−1 that appears in the
definition (3.6). It is easy to see that Φ(z) is a (strictly) increasing polynomial with
Φ(0) = 0, Φ(1) = 1, and Φ(z) = zN−1 when γ = 1. Moreover, using the binomial
identity, we can write Φ(z) alternatively as

Φ(z) =
(zγ + 1− γ)N−1 − (1− γ)N−1

1− (1− γ)N−1
. (D.4)

Using definition (D.3), we can write

F l
c(p) = 1− Φ−1

(
(1− γ)N−1

1− (1− γ)N−1

v − p
p− c

)
with upper limit p̄lc = v, and lower limit

pl
c

= (1− γ)N−1v +
(
1− (1− γ)N−1

)
c.

When c ≤ v−∆, high-cost dealers can sell in equilibrium, but a standard result from
auction theory (see for example Fudenberg and Tirole, 1991) says that in the unique
equilibrium they will make zero profit by bidding c + ∆. In this case, the distribution
F l
c(p) solves[

N−1∑
k=0

(
N − 1

k

)
(1− Fl(p| c))k γk(1− γ)N−1−k

]
(p− c) = (1− γ)N−1∆,

and thus we get

F l
c(p) = 1− Φ−1

(
(1− γ)N−1

1− (1− γ)N−1

(c+ ∆)− p
p− c

)
with upper limit p̄lc = c+ ∆, and lower limit

pl
c

= (1− γ)N−1(c+ ∆) +
(
1− (1− γ)N−1

)
c = c+ (1− γ)N−1∆.

Case 2: λc > 0. From now on, we assume λc > 0, that is, slow traders enter with
positive probability. There are again two subcases.

When c > v − ∆ (case 2.1), high-cost dealers cannot sell in equilibrium, and the
specification of their strategy is irrelevant. Low-cost dealers mix according to a contin-
uous distribution F l

c(p) on an interval with upper limit p̄cl = rc, or on a union of two
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intervals as in Lemma 9.
When c ≤ v−∆ (case 2.2), using Lemmas 7, 8, 9, and the argument from the proof

of Lemma 3, we can show that only two subcases are possible:

• If rc ≤ c + ∆, (case 2.2.1), high-cost dealers make zero profit; they post a price
c + ∆ with probability 1, while low-cost dealers mix according to a continuous
distribution on an interval with upper limit p̄lc = rc, or on a union of two intervals
as in Lemma 9.

• If rc > c+ ∆ (case 2.2.2), high-cost dealers make positive profits, and in equilib-
rium both low-cost and high-cost dealers mix according to continuous distribu-
tions with adjacent supports (p̄lc = ph

c
), and with rc being the upper limit of the

distribution of prices of high-cost dealers (p̄hc = rc).

Below we analyze these cases in detail and characterize the optimal search behavior
of slow traders. We first define some key functions that generalize their equivalents
from Section 3 to the case of idiosyncratic component in the costs. Let q(λc, θc) be the
posterior probability that a customer is a fast trader, conditional on a visit, given the
strategy (rc, λc, θc). That is,

q(λc, θc) =
Nµ

Nµ+ 1−θNc (1−γ)N

1−θc(1−γ)
λc(1− µ)

. (D.5)

This definition generalizes formula (3.1). We also generalize the definition of the func-
tion α from equation (3.6), which now becomes a function of two arguments:

α(λc, θc) =

ˆ 1

0

(
1 +

q(λc, θc)
(
1− (1− γ)N−1

)
1− q(λc, θc) (1− (1− γ)N−1)

Φ(z)

)−1

dz, (D.6)

where Φ(z) is defined in formula (D.3). Finally, we let

α̂ = α(1, 1),

which corresponds to formula (3.7).
To emphasize the point that we will now deal with equilibrium rather than just

best response of dealers to some generic strategy of traders, we add star superscripts
to symbols denoting the strategy of traders.

Case 2.1: λ?c > 0, c > v−∆. In this case, we clearly have θ?c = 1. We first suppose
that the support of the distribution for low-cost dealers is an interval. Then F l

c(p) must
satisfy[

1− q(λ?c , 1) + q(λ?c , 1)
N−1∑
k=0

(
N − 1

k

)(
1− F l

c(p)
)k
γk(1− γ)N−1−k

]
(p− c)
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=
[
1− q(λ?c , 1) + q(λ?c , 1)(1− γ)N−1

]
(r?c − c).

Solving for F l
c(p), we obtain

F l
c(p) = 1− Φ−1

(
1− q(λ?c , 1)

(
1− (1− γ)N−1

)
q(λ?c , 1) (1− (1− γ)N−1)

r?c − p
p− c

)

with p̄lc = r?c , and lower limit

pl
c

=
[
1− q(λ?c , 1)

(
1− (1− γ)N−1

)]
r?c +

[
q(λ?c , 1)

(
1− (1− γ)N−1

)]
c.

We can determine r?c in this case from the fact that it must solve the following equation
(specifying that the trader must be indifferent at r?c between buying and searching),
analogous to equation (3.4),

v − r?c = −s+ γ

[
v −
ˆ r?c

pl
c

pdF l
c(p)

]
+ (1− γ)(v − r?c ).

Using a direct generalization of Lemma 4, we can transform this equation into the form

s = γ

[
r?c −

ˆ r?c

pl
c

p dF l
c(p)

]
= (1− α(λ?c , 1))γ(r?c − c).

Thus we have
r?c = c+

s

(1− α(λ?c , 1))γ
.

The last thing to determine is the probability λ?c of entry by slow traders. The profit
of a slow trader conditional on entry is equal to

πc =
(
1− (1− γ)N

)
(v − α(λ?c , 1)r?c − (1− α(λ?c , 1))c)−

(
N∑
k=1

(1− γ)k−1γk + (1− γ)NN

)
s

=
(
1− (1− γ)N

) [
v − c− s

(1− α(λ?c , 1))γ

]
.

When profit is strictly positive, we must have entry with probability one. That is, we
have λ?c = 1 if

c ≤ v − s

(1− α(1, 1))γ
.

When profit is strictly negative, we must have entry with probability zero, meaning
that λ?c = 0 if

c ≥ v − s

(1− α(0, 1))γ
.
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This takes us back to case 1 analyzed before. Finally, if

v − s

(1− α(1, 1))γ
< c < v − s

(1− α(0, 1))γ
,

then we must have interior entry λ?c ∈ (0, 1), where λ?c is the unique solution of the
equation

s = (1− α(λ?c , 1))γ(v − c).

In this case, slow traders have zero profits and we have r?c = v.
To check whether the above strategies constitute an equilibrium, we need to verify

that the support of price offers by low-cost dealers is indeed an interval, that is, these
dealers cannot profitably deviate from posting prices in the range [pl

c
, r?c ]. The only

deviation that we need to check is bidding v in the case r?c < v.34 This leads to the
condition[

µ(1− γ)N−1 + (1− µ)
1− (1− γ)N

Nγ

]
s

(1− α(1, 1))γ
≥ (1− γ)N−1(v − c),

where the left hand side is the expected profit from bidding r?c , and the right hand side
is the expected profit from bidding v (a dealer quoting v can only sell if all other dealers
have high costs). We define

κ =
(1− γ)N−1

µ(1− γ)N−1 + (1− µ)1−(1−γ)N

Nγ

. (D.7)

Thus, we have an equilibrium when

c ≥ v − s

κ(1− α(1, 1))γ
.

Note that κ < 1, and thus

v − s

κ(1− α(1, 1))γ
< v − s

(1− α(1, 1))γ
.

When c < v − s
κ(1−α(1, 1))γ

, by Lemma 9, we must have an equilibrium in which the

support for low-cost dealers consists of two intervals: [pl
c
, r?c ] and [p̂lc, v]. Let ζc be the

conditional probability that a low-cost dealer posts a price in the lower interval. Then,
in particular, the dealer must be indifferent between r?c and v which pins down ζc, in
that [

µ(1− γζc)N−1 + (1− µ)
1− (1− γζc)N

Nγζc

]
(r?c − c) = (1− γ)N−1(v − c). (D.8)

34If there is a profitable deviation, this one is the most profitable.
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We define

ϑ(ζc) =
(1− γ)N−1

µ(1− γζc)N−1 + (1− µ)1−(1−γζc)N
Nγζc

. (D.9)

Note that ϑ(1) = κ. Then, equation (D.8) becomes

r?c = (1− ϑ(ζc))c+ ϑ(ζc)v. (D.10)

We can now determine the exact distribution of prices. In the upper interval we must
have [

N−1∑
k=0

(
N − 1

k

)
γk(1− γ)N−1−k (1− F l

c(p)
)k]

(p− c) = (1− γ)N−1(v − c),

so we get

F l
c(p) = 1− Φ−1

(
(1− γ)N−1

1− (1− γ)N−1

v − p
p− c

)
.

In the lower interval, the distribution must satisfy[
µ
N−1∑
k=0

(
N − 1

k

)
(γζc)

k(1− γζc)N−1−k
(

1− F l
c(p)

ζc

)k
+

1− µ
N

1− (1− γζc)N

γζc

]
(p− c)

=

[
µ(1− γζc)N−1 +

1− µ
N

1− (1− γζc)N

γζc

]
(r?c − c),

which gives

F l
c(p) = ζc − ζcΦ−1

(
(1− γ)N−1

1− (1− γζc)N−1

1

µϑ(ζc)

r?c − p
p− c

; ζc

)
,

where

Φ(z; ζc) =
1

1− (1− γζc)N−1

N−1∑
k=1

(
N − 1

k

)
zk(γζc)

k(1− γζc)N−1−k.

That is, Φ(z; ζc) is the analogue to Φ(z) when replacing γ with γζc.
Finally, the reservation price is determined by

v − r?c = −s+ γζc

[
v −
ˆ r?c

pl
c

p d

(
F l
c(p)

ζc

)]
+ (1− γζc)(v − r?c ). (D.11)

Using the substitution from the proof of Lemma 4, this time substituting z = (ζc − F l
c(p))/ζc,

we obtain ˆ r?c

pl
c

p d

(
F l
c(p)

ζc

)
= c+ (r?c − c)α̃(ζc),
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where

α̃(ζc) =

ˆ 1

0

(
1 +

1− (1− γζc)N−1

(1− γ)N−1
µϑ(ζc)Φ(z; ζc)

)−1

dz.

Note that α̃(1) = α(1, 1). From this we can calculate the optimal reservation price,
determined by equation (D.11), as

r?c = c+
s

(1− α̃(ζc))γζc
. (D.12)

Equations (D.10) and (D.12) together pin down r?c and ζc. Combining them, we get a
single equation that pins down ζc, in the form

s = ϑ(ζc)(1− α̃(ζc))γζc(v − c).

A unique solution ζ?c ∈ (0, 1) exists if and only if 0 < s < κ(1− α(1, 1))γ(v − c) which
is precisely our assumption for that case.

Note that in this range the equilibrium level ζ?c will be close to 1 when s is close to
κ(1− α(1, 1))γ(v − c) and will converge to 0 as s goes to 0.

Case 2.2.1: c ≤ v − ∆, r?c ≤ c + ∆. In this case, high-cost dealers offer the price
c+ ∆. We have two cases to consider, and call them (a) and (b).

Case (a). When r?c < c + ∆, we must have θ?c = 1. Suppose that low-cost dealers mix
on an interval. Then the distribution of prices is

F l
c(p) = 1− Φ−1

(
1− q(λ?c , 1)

(
1− (1− γ)N−1

)
q(λ?c , 1) (1− (1− γ)N−1)

r?c − p
p− c

)
,

just as in the previous case. What differs from the previous case is the profit of a
slow trader conditional on entry. In the event that there are no low-cost dealers in the
market, a trader buys from a high-cost dealer instead of exiting. Accordingly, the profit
now becomes

πc = v − c− (1− γ)N∆−
(
1− (1− γ)N

) s

(1− α(λ?c , 1))γ
.

We can have strictly positive entry by slow traders only if

v ≥ c+ (1− γ)N
[
∆− s

(1− α(λ?c , 1))γ

]
+

s

(1− α(λ?c , 1))γ
. (D.13)

Recall that we have
r?c = c+

s

(1− α(λ?c , 1))γ
.

Thus, given that we assumed r?c < c+ ∆, we have an equilibrium with positive entry if
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inequality (D.13) holds and

∆ >
s

(1− α(λ?c , 1))γ
.

Notice that we have

v − c− (1− γ)N∆−
(
1− (1− γ)N

) s

(1− α(λ?c , 1))γ

> v − c− (1− γ)N∆−
(
1− (1− γ)N

)
∆ = v − c−∆ ≥ 0,

which means that profits are always strictly positive in this case. Thus we must have
full entry, meaning λ?c = 1, and this can be an equilibrium only if s < (1− α(1, 1))γ∆.

Finally, we verify the supposition that low-cost dealers mix on an interval. We need
to check the deviation to (just below) c+∆, analogous to deviation to v in the previous
case. We require[

µ(1− γ)N−1 + (1− µ)
1− (1− γ)N

Nγ

]
s

(1− α(1, 1))γ
≥ (1− γ)N−1∆.

Thus, the above strategies are an equilibrium if

s ≥ κ(1− α(1, 1))γ∆.

In the case s < κ(1 − α(1, 1))γ∆, we will have an equilibrium with low-cost dealers
mixing on two intervals [pl

c
, r?c ] and [p̂lc, c+ ∆]. The analysis is analogous to the one in

the previous case 2.1 so we skip some details. First, the indifference condition between
r?c and c+ ∆35 is

(r?c − c) = ϑ(ζc)∆. (D.14)

The upper part of the distribution is given by

F l
c(p) = 1− Φ−1

(
(1− γ)N−1

1− (1− γ)N−1

c+ ∆− p
p− c

)
,

while the lower part is

F l
c(p) = ζc − ζcΦ−1

(
(1− γ)N−1

1− (1− γζc)N−1

1

µϑ(ζc)

r?c − p
p− c

; ζc

)
.

The reservation price is determined by equation (D.11). Simplifying as before, we obtain

r?c = c+
s

(1− α̃(ζc))γζc
.

35Note that c+ ∆ is the upper limit of the support but prices posted by a low-cost dealer are below
c+ ∆ with probability one. Thus, when we say that the dealer must be indifferent between posting r?c
and c+ ∆, we really mean c+ ∆− ε for arbitrarily small ε→ 0 which leads to the formula below.
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Combining with equation (D.14) ζc is pinned down by the equation

s = ϑ(ζc)(1− α̃(ζc))γζc∆.

The equation does not depend on c, so neither does the solution. That is, ζ?c is inde-
pendent of c and solves

s = ϑ(ζ)(1− α̃(ζ))γζ∆.

This equation has a unique solution in (0, 1) precisely when 0 < s < κ(1−α(1, 1))γ∆,
which was our assumption for this case.

Case (b). We now look at the second possibility: r?c = c + ∆. We can now have
θ?c ∈ (0, 1), and this will matter for equilibrium pricing through the impact on the
posterior beliefs of dealers. The probability F l

c(p) of an offer of p or less by a low-cost
dealer solves[

1− q(λ?c , θ?c ) + q(λ?c , θ
?
c )

N−1∑
k=0

(
N − 1

k

)(
1− F l

c(p)
)k
γk(1− γ)N−1−k

]
(p− c)

=
[
1− q(λ?c , θ?c ) + q(λ?c , θ

?
c )(1− γ)N−1

]
(r?c − c).

The profit of a slow trader is the same as in the previous case. The condition r?c = c+∆
means that we must have

s

(1− α(λ?c , θ
?
c ))γ

= ∆.

This implies that we must again have entry with probability one. Thus, we have an
equilibrium with full entry and the probability of rejecting an offer of r?c given by θ?c
that solves

s = (1− α(1, θ?c ))γ∆.

Note that θ?c = θ? (the equation, and hence the solution, is independent of c). An
interior solution exists if and only if

(1− α(1, 1))γ∆ < s < (1− α(1, 0))γ∆.

Notice that θ? is close to 1 when s is close to (1− α(1, 1))γ∆, and close to 0 when s is
close to (1− α(1, 0))γ∆.

Case 2.2.2: c ≤ v −∆, r?c > c + ∆. This is the case when high-cost dealers make
positive profits and mix according to a continuous distribution F h

c (p) with upper limit
r?c . We must have θ?c = 0. The cdf F h

c (p) solves[
1− q(λ?c , 0) + q(λ?c , 0)(1− γ)N−1(1− F h

c (p))N−1
]

(p−c−∆) = [1− q(λ?c , 0)] (r?c−c−∆).



D Proofs and Supporting Content for Section 4 61

Simplifying, we obtain

F h
c (p) = 1−

(
1− q(λ?c , 0)

q(λ?c , 0)(1− γ)N−1

r?c − p
p− c−∆

) 1
N−1

with upper limit p̄hc = r?c , and lower limit

ph
c

=
1− q(λ?c , 0)

1− q(λ?c , 0) (1− (1− γ)N−1)
r?c +

q(λ?c , 0)(1− γ)N−1

1− q(λ?c , 0) (1− (1− γ)N−1)
(c+ ∆).

To simplify notation, let us denote

φ(λ?c) =
1− q(λ?c , 0)

1− (1− (1− γ)N−1) q(λ?c , 0)
. (D.15)

Next, F l
c(p) must solve[
1− q(λ?c , 0) + q(λ?c , 0)

N−1∑
k=0

(
N − 1

k

)(
1− F l

c(p)
)k
γk(1− γ)N−1−k

]
(p− c)

=
[
1− q(λ?c , 0) + q(λ?c , 0)(1− γ)N−1

]
(ph
c
− c).

Solving for F l
c(p) we get

F l
c(p) = 1− Φ−1

(
1− q(λ?c , 0)

(
1− (1− γ)N−1

)
q(λ?c , 0) (1− (1− γ)N−1)

ph
c
− p

p− c

)
,

with p̄lc = ph
c

and lower limit

pl
c

=
[
1− q(λ?c , 0)

(
1− (1− γ)N−1

)]
ph
c

+
[
q(λ?c , 0)

(
1− (1− γ)N−1

)]
c.

We need to define one more function, analogous to α(λ, θ), and corresponding to the
distribution of prices used by high-cost dealers. Let

αh(λ) =

ˆ 1

0

(
1 +

q(λ, 0)(1− γ)N−1

1− q(λ, 0)
zN−1

)−1

dz.

Then, using the familiar change of variables, we get

ˆ
p dF h

c (p) = (1− αh(λ?c))(c+ ∆) + αh(λ
?
c)r

?
c ,

and ˆ
p dF l

c(p) = (1− α(λ?c , 0))c+ α(λ?c , 0)ph
c
.
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As always, r?c is determined by the indifference condition

v − r?c = −s+ γ

[
v −
ˆ p̄lc

pl
c

p dF l
c(p)

]
+ (1− γ)

[
v −
ˆ p̄hc

ph
c

p dF h
c (p)

]
.

From this we can obtain

r?c = c+ ∆ +
s− (1− α(λ?c , 0))γ∆

γ(1− φ(λ?c)α(λ?c , 0)) + (1− γ)(1− αh(λ?c))
.

Next, we consider entry decision of slow traders. The profit conditional on entry is
simply v − r?c . Thus, we have entry with probability one if and only if

c < v −∆− s− (1− α(1, 0))γ∆

γ(1− φ(1)α(1, 0)) + (1− γ)(1− αh(1))
.

Since we have assumed that r?c > c+ ∆, we additionally require

s > (1− α(1, 0))γ∆.

Interior entry requires λ?c to solve

v = c+ ∆ +
s− (1− α(λ?c , 0))γ∆

γ(1− φ(λ?c)α(λ?c , 0)) + (1− γ)(1− αh(λ?c))
. (D.16)

An interior solution exists if and only if

s− (1− α(0, 0))γ∆

γ(1− φ(0)α(0, 0)) + (1− γ)(1− αh(0))
< v−c−∆ <

s− (1− α(1, 0))γ∆

γ(1− φ(1)α(1, 0)) + (1− γ)(1− αh(1))
.

(D.17)
Noticing that αh(0) = 0 and φ(0) = 0, we can simplify the first inequality to

s− (1− α(0, 0))γ∆ < v − c−∆

Finally, since we have assumed that r?c > c+ ∆, we require

s > (1− α(λ?c , 0))γ∆.

This condition is satisfied vacuously when equation (D.16) holds.
When

s− (1− α(0, 0))γ∆ ≥ v − c−∆,

we must have entry with probability zero which brings us back to case 1.

This concludes the analysis of all cases. By direct inspection, we check that for any
given pair (s, c), there is exactly one equilibrium (up to payoff-irrelevant changes in
equilibrium strategies). Figure D.1 summarizes our conclusions by depicting the
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equilibrium correspondence in the (s, c) space. “Full entry” means that λ?c = 1 in the
relevant range. “Interior entry” means that λ?c ∈ (0, 1). When we say that “only
low-cost dealers sell,” we mean that if there is at least one low-cost dealer in the
market, then all customers trade with low-cost dealers. When we say that “all dealers
sell” or that “high-cost dealers sell with probability θ,” we refer to the probability of
selling to a slow trader upon a visit. Finally, the trapezoidal area denoted by “(gap)”
corresponds to the case in which low-cost dealers have a gap in the support of their
offer distribution.

Fig. D.1: The benchmark case - equilibrium correspondence
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D.2 Proof of Proposition 9

Generalized statement (without assuming A.2): If s ≤ (1− α̂)γmin{∆, v − c},
then equilibrium in the benchmark case leads to efficient matching. That is, slow traders
always enter, and all traders buy from a low-cost dealer, in the event that there is at least
one such dealer present in the market. Additionally, if s ≥ κ(1 − α̂)γmin{∆, v − c},
where κ < 1,36 the equilibrium with the benchmark achieves the second best, in the
sense that each slow trader buys from the first low-cost dealer that she contacts, thus
minimizing search costs subject to matching efficiency.

36κ = (1− γ)N−1/
[
µ(1− γ)N−1 + (1− µ)[1− (1− γ)N ]/(Nγ)

]
.



D Proofs and Supporting Content for Section 4 64

Proof. The theorem follows directly from the derivation above (cases 2.1 and 2.2.1 (a)).
When

κ(1− α̂)γmin{∆, v − c} ≤ s ≤ (1− α̂)γmin{∆, v − c},

we are in the region in which the equilibrium achieves the second best. Slow traders
always enter, and search until they find the first low-cost dealer (low-cost dealers always
post prices below the reservation price, and high-cost dealers always post prices above
the reservation price). If there are no low-cost dealers in the market and c > v−∆, then
traders exit without trading. When c < v−∆, they buy from a high-cost dealer. When
s < κ(1−α̂)γ∆, low-cost dealers post prices below the reservation price with probability
ζ?c ∈ (0, 1). Because high-cost dealers still post prices above the reservation-price (and
above the prices posted by low-cost dealers), the matching of traders to low-cost dealers
is efficient.

D.3 Supporting analysis of the case s < κ(1− α̂)γ∆

Here, we provide the supporting analysis of the case s < κ(1− α̂)γ∆ in the context of
Section 4. We show that a low-cost dealer’s incentive to quote a high price (leading to
higher-than-efficient search by slow traders in equilibrium) disappears as the number
N of dealers gets large, in the sense formalized in Lemma 10.

Lemma 10. Letting s̄(N) = (1− α̂)γ∆ and s(N) = κ(1− α̂)γ∆, we have

lim
N→∞

Ns̄(N) =∞

and
lim
N→∞

Ns(N) = 0,

where the convergence to 0 is exponentially fast.

The quantity Ns is the upper bound on the search costs incurred by a slow trader.
If slow traders adopted the sub-optimal strategy of searching the entire market, we
would get the fully efficient outcome of a centralized exchange, before considering the
search costs. Thus, (1 − µ)Ns is an upper bound on the potential welfare loss in our
setting. Lemma 10 says that the case s < κ(1− α̂)γ∆ in which case the benchmark fails
to achieve the second best can be safely ignored for practical purposes, given that the
(rough) upper bound of possible inefficiency goes to 0 exponentially fast37 with N . On
the other hand, the search-cost range (κ(1−α̂)γ∆, (1−α̂)γ∆) is much more important,
as the potential welfare gains or losses are unbounded in this region (if we allow v to
get large).

To prove the first claim, we show that (1− α̂) converges to zero (as N →∞) more
slowly than log(N)/N . (That (1− α̂) converges to 0 follows from Lebesgue Dominated

37For example, if µ = γ = 1
2 , κ ≈ 0.019 for just N = 10, and κ ≈ 1.5 ∗ 10−6 for N = 25.
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Convergence Theorem.) We have

1− α̂ =

ˆ 1

0

aNΦ(z)

1 + aNΦ(z)
dz,

where

aN =
Nµ

(
1− (1− γ)N−1

)
1−(1−γ)N

γ
(1− µ) +Nµ(1− γ)N−1

.

Clearly,

1− α̂ ≥
ˆ 1

Φ−1( 1
N

)

aNΦ(z)

1 + aNΦ(z)
dz ≥

(
1− Φ−1(

1

N
)

)
aN

N + aN
.

The term aN/(N + aN) has a finite and strictly positive limit. It is therefor enough to
show that

lim
N→∞

N

logN

(
1− Φ−1(

1

N
)

)
> 0.

Using equation (D.4) to invert Φ, and applying d’Hospital rule a few times to simplify
the expression, we obtain

lim
N→∞

N

logN

(
1− Φ−1(

1

N
)

)
= lim

N→∞

N

logN

((
1

N

) 1
N

− 1

)

= lim
N→∞

N

logN

(
exp

(
logN

N

)
− 1

)
= lim

K→∞
K
(
e

1
K − 1

)
= 1.

To prove the second claim, recall that

Nκ =
N(1− γ)N−1

µ(1− γ)N−1 + (1− µ)1−(1−γ)N

Nγ

=
1

µ
N

+ (1− µ) 1−(1−γ)N

N2γ(1−γ)N−1

.

The above expression goes to 0 as quickly as N2(1− γ)N−1, that is, exponentially.
We note that we did not use assumption A.2. Thus the result is true in the gener-

alized setting without assuming A.2.

D.4 Proof of Proposition 10

Generalized statement (not assuming A.2): In the absence of a benchmark, if
min{v, c̄} > c+ ∆, there does not exist an equilibrium achieving the second best.

Proof. In an equilibrium in which the second-best is achieved under the condition s <
γ∆, high-cost dealers can only sell when there are no low-cost dealers in the market,
and the slow trader searched the entire market. Thus, if an equilibrium like this exists,
high-cost dealers quote prices as if they participated in an auction with all other high-
cost dealers. A standard result in auction theory says that in this case they must bid
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their costs, that is, they must offer to sell for c+ ∆.
Consider a situation when a slow trader enters and the first dealer has low costs,

for some c < v. If the second-best is achieved, that offer needs to be accepted by a
slow trader. Under the assumption of the Proposition, we can find a c? that satisfies
v > c? > c + ∆. By the above observation, (almost) all prices in the support of the
distribution of the low-cost dealer at c = c? must be accepted by a slow trader in the
first search round. This leads to a contradiction. Since high-cost dealers post a price
of c+ ∆ conditional on c, they make zero profits. They can profitably deviate at c = c
by quoting a price in the support of the distribution of a low-cost dealer at c = c?.

D.5 Generalized statement of Theorem 2 (not assuming A.2)

Theorem: If (i) κ(1−α̂)γmin{∆, v−c} ≤ s ≤ (1−α̂)γmin{∆, v−c̄} and (ii) c̄ > c+∆
both hold, then the equilibrium in the benchmark case yields a strictly higher social
surplus that any equilibrium in the no-benchmark case.

D.6 Proofs for Section B.2

D.6.1 Proof of Lemma 2

Outline for the main steps of the proof. The proof is long and tedious, unlike
the proof of Lemma 1. We outline the main steps below. First, we characterize the
equilibrium response of dealers as a function of the first-round reservation price r?. We
obtain four regions of cost c with different qualitative pricing strategy of dealers (see
Figure B.1). When costs are low, both low-cost and high-cost dealers post price offers
according to continuous distributions with adjacent supports below the reservation price
r? and make positive profits. When c is in the lower-middle region, low-cost dealers
continue to mix below r?, while high-cost dealers bid c+ ∆ > r? and make zero profits.
In the upper-middle region, the support of the distribution of low-cost dealers consists
of two disjoint intervals, [pl

c
, r?] and [p̂lc, c + ∆), where p̂lc > r?. Finally, when costs

are highest, low-cost dealers bid exclusively in the upper interval that lies above r?.
Second, we analyze the optimal search policy of slow traders. The proof proceeds by
finding a contradiction when r? /∈ {v, c+∆}. Clearly, r? cannot be larger than v. When
r? ∈ (c+∆, v), we show that the posterior distribution of costs conditional on observing
a price p converges to an atom at r?−∆ as p converges to r?. Because search behavior
of traders is different on the two sides of r?, there is a discontinuity in expected price
as c crosses the level r? −∆ (the price distribution is impacted through the posterior
probability of a fast trader). As a result, the benefits from search for a slow trader
jump down discontinuously at r?, a contradiction. Finally, when r? < c + ∆, we can
show that upon observing a price just above r?, a slow trader believes with probability
one that this is (nearly) the best price that she can get, and thus wants to accept, a
contradiction.
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The proof. Let the reservation price (in the first round of search) be r? and probability
of entry be λ?.38 We first characterize the equilibrium response of dealers. We focus
on the case c < v −∆, as the other case requiring only minor modifications.39 As the
derivation of dealers’ strategies is similar to the benchmark case, we skip some of the
details. We also summarize the conclusions in Lemma 11 and Figure B.1 below for the
convenience of the reader.

First, consider c < r? −∆. In that case high-cost dealers make positive profits and
we have a situation analogous to case 2.2.2 with the benchmark. The cdf F h

c (p) for
high-cost dealers must satisfy[

1− q(λ?, 0) + q(λ?, 0)(1− γ)(1− F h
c (p))

]
(p− c−∆) = [1− q(λ?, 0)] (r? − c−∆).

Solving, we obtain

F h
c (p) = 1−

(
λ?(1− µ)

2µ(1− γ)

r? − p
p− c−∆

)
,

with upper limit p̄hc = r?, and lower limit

ph
c

=
λ?(1− µ)

2µ(1− γ) + λ?(1− µ)
r? +

2µ(1− γ)

2µ(1− γ) + λ(1− µ)
(c+ ∆).

Then, F l
c(p) must satisfy[

λ?(1− µ) + 2µ
[
(1− γ) +

(
1− F l

c(p)
)
γ
]]

(p− c) = [λ(1− µ) + 2µ(1− γ)] (ph
c
− c).

Solving for F l
c(p) we get

F l
c(p) = 1− λ?(1− µ) + 2µ(1− γ)

2γµ

ph
c
− p

p− c
,

with upper limit p̄lc = ph
c

and lower limit

pl
c

=
λ?(1− µ) + 2µ(1− γ)

λ?(1− µ) + 2µ
ph
c

+
2γµ

λ?(1− µ) + 2µ
c.

Second, consider the case c > r? −∆. Now high-cost dealers cannot make positive
profits, so they post a deterministic offer price equal to c+ ∆. It is easy to show (using
arguments familiar from previous derivations) that the upper limit of the distribution
of prices for low-cost dealers must be either r? or c + ∆. Thus, the support of the
distribution is either (i) an interval with upper limit r?, (ii) an interval above r? with
upper limit c + ∆, or (iii) a sum of intervals from (i) and (ii). We analyze these

38When the benchmark is not present, there is no need to consider the parameter θ that was a
relevant part of the strategy in the benchmark case.

39The main difference is that when c > v − ∆, the upper limit of the distribution of prices for
low-cost dealers will be v in all cases when it was c+ ∆.
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possibilities below.
If low cost dealers bid on an interval with upper limit r?, then the distribution F l

c(p)
must solve [

1− q(λ?, 1) + q(λ?, 1)
[
(1− γ) +

(
1− F l

c(p)
)
γ
]]

(p− c)

= [1− q(λ?, 1) + q(λ?, 1)(1− γ)] (r? − c),

and is thus given by

F l
c(p) = 1− λ?(2− γ)(1− µ) + 2µ(1− γ)

2γµ

r? − p
p− c

,

with upper limit p̄lc = r?, and lower limit

pl
c

=
λ?(2− γ)(1− µ) + 2µ(1− γ)

λ?(2− γ)(1− µ) + 2µ
r? +

2γµ

λ?(2− γ)(1− µ) + 2µ
c.

The profit of a low-cost dealer conditional on a contact is

λ?(2− γ)(1− µ) + 2µ(1− γ)

λ?(2− γ)(1− µ) + 2µ
(r? − c).

To verify optimality of the pricing strategy, we need to check that a low-cost dealer
cannot improve upon the above profit by bidding just below c + ∆ (this is the most
profitable deviation). The expected profit (conditional on a visit) under that deviation
can get arbitrarily close to

2(1− γ)(µ+ λ?(1− µ))

λ?(2− γ)(1− µ) + 2µ
∆.

Comparing the two expressions, we conclude that the above price distribution consti-
tutes an equilibrium if and only if

c < r? − 2(1− γ)(µ+ λ?(1− µ))

λ?(2− γ)(1− µ) + 2µ(1− γ)
∆.

We will denote40

κ =
2(1− γ)(µ+ λ?(1− µ))

λ?(2− γ)(1− µ) + 2µ(1− γ)
.

Clearly, r? − κ∆ > r? −∆.
When the cost c is above r? − κ∆, we must have one of the cases (ii) or (iii). We

explore the possibility of case (iii) below.
The two intervals in the support of the price distribution of low-cost dealers will be

40This coincides with the previous definition of κ when λ? = 1.
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denoted by [pl
c
, r?] and [p̂lc, c + ∆). Let ζc be the probability of bidding in the lower

of the two intervals. Note that under such price distribution we need to adjust the
posterior probability that a visiting trader is a slow trader. Moreover, the fact of being
visited is informative of the price posted by a competing dealer.

If the support consists of two intervals, then the dealer must be indifferent between
posting r? and c+ ∆− ε (for ε→ 0) which gives us the condition[

µ(1− γζc) + λ?(1− µ)(
1

2
+

1

2
(1− γζc))

]
(r? − c) = (1− γ)(µ+ λ?(1− µ))∆.

Solving for ζc we obtain

ζc =
2µ+ 2λ?(1− µ)

2µ+ λ?(1− µ)

[
1− 1− γ

γ

c+ ∆− r?

r? − c

]
.

Because ζc must lie in [0, 1], we can determine the maximal interval of costs for which
the conjectured price distribution might arise in equilibrium. Simple calculation shows
that this interval is [r?−κ∆, r?− (1−γ)∆]. (The interval is always non-empty because
κ > 1− γ.)

Given the structure of the support, the upper part of the distribution F l
c(p) must

satisfy [
1− γ + γ(1− F l

c(p))
]

(p− c) = (1− γ)∆,

for all p ∈ [p̂lc, c+ ∆), so that

F l
c(p) = 1− 1− γ

γ

c+ ∆− p
p− c

.

To determine the cutoff p̂lc, we use the fact that F l
c(p̂

l
c) = ζc to obtain the equation

1− 1− γ
γ

c+ ∆− p̂lc
p̂lc − c

= ζc,

which gives

p̂lc = c+
1− γ

1− γ + γ(1− ζc)
∆.

Note that when c = r? − κ∆, so that ζc = 1, we get p̂lc = c + ∆ = r? + (1 − κ)∆. On
the other hand, when c = r? − (1− γ)∆, we have ζc = 0, and p̂lc = r?. As c increases,
the lower limit of the upper interval converges to r? from above. This observation will
be important in a later part of the proof.

To solve for the lower part of the distribution F l
c(p), we write down the indifference

condition between bids in [pl
c
, r?]:

[2(1− γ) + (2− ζc)λ?(1− µ)γ + 2µγ(1− Fl(p))] (p− c)
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= [2µ(1− γζc) + (2− ζcγ)λ?(1− µ)] (r? − c).

This gives us

F l
c(p) = ζc −

2µ(1− γζc) + λ?(1− µ)(2− ζcγ)

2µγ

r? − p
p− c

,

with the lower limit

pl
c

=
(λ?(1− µ) + 2µ)(1− γ)∆

2µ(r? − c) + λ?(1− µ)(1− γ)∆
r? +

2µ(r? − c)− 2µ(1− γ)∆

2µ(r? − c) + λ?(1− µ)(1− γ)∆
c.

Finally, we consider the case c > r?− (1−γ)∆. Since we have shown that neither of
cases (i) and (iii) is possible, we explore case (ii), that is, we solve for the distribution
F l
c(p) with support that lies above r?. The usual indifference condition is[

1− γ + γ(1− F l
c(p))

]
(p− c) = (1− γ)∆,

so we get

F l
c(p) = 1− 1− γ

γ

c+ ∆− p
p− c

,

with lower limit
pl
c

= c+ (1− γ)∆.

By comparing the profit of a low-cost dealer under this price distribution to the profit
from a deviation to r? (which is the most profitable deviation), we conclude that we
have an equilibrium best response precisely when c ≥ r? − (1− γ)∆.

This concludes the characterization of the best-response of dealers to a reservation-
price strategy r?. We summarize the most important observations in the Lemma below.
Figure B.1 depicts the qualitative features of the supports for different cost ranges.

Lemma 11. The equilibrium response of dealers to slow traders playing a reservation-
price strategy (r?, λ?) is payoff-unique. When c < r?−∆, low-cost and high-cost dealers
use continuous distributions of price offers with adjacent supports that lie below r?.
When c > r? − ∆, high-cost dealers offer c + ∆, and low-cost dealers offer according
to a continuous distribution. When c ∈ (r? − ∆, r? − κ∆) the support is [pl

c
, r?].

For c ∈ (r? − κ∆, r? − (1 − γ)∆) the support is [pl
c
, r?] ∪ [p̂lc, c + ∆]. Finally, for

c > r? − (1− γ)∆ the support is [pl
c
, c+ ∆] with pl

c
> r?.

Having determined the equilibrium pricing policy of dealers, we can turn to the
analysis of the search behavior of slow traders. Our goal is to exclude the possibility
that r? /∈ {c+ ∆, v}.

The posterior distribution of cost c conditional on observing a price p in the first
search is

G(c | p) =

´ c
c

[
γf ly(p) + (1− γ)fhy (p)

]
dG(y)´ c̄

c

[
γf ly(p) + (1− γ)fhy (p)

]
dG(y)

,
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where f ic(p) denotes the density corresponding to F i
c(p), for i ∈ {l, h}. Here, whenever

F h
c (p) is a step function with jump at c+ ∆, fhc (p) = δc+∆(p), that is, we interpret the

density as a dirac delta measure at c+∆. As in Section B.2, we define Ψ(p; r?) to be the
benefit from search after observing price p. The second argument r? emphasizes that
the whole function changes with r? because the distribution of prices changes. Since
there are only two dealers, we can calculate Ψ(p; r?) explicitly:

Ψ(p; r?) =

ˆ c̄

c

[ˆ p

pl
c

(v − p)
[
γf lc(p) + (1− γ)fh(p)

]
dp

]
dG(c | p)

−(v − p)
ˆ c̄

c

[
γF l

c(p) + (1− γ)F h
c (p)

]
dG(c | p).

Because the function Ψ(p; r?) does not need to be continuous in general, we can no
longer without loss of generality use the condition that Ψ(r?; r?) = s, that is, the indif-
ference of a slow trader between buying and searching at p = r?. Rather, a necessary
and sufficient condition for a reservation-price strategy r? to be optimal is that

s ≥ Ψ(p; r?), p ≤ r?,

s ≤ Ψ(p; r?), p ≥ r?. (D.18)

The strategy for the rest of the proof is to show that the condition (D.18) fails when
r? /∈ {c+ ∆, v}.

Clearly, we cannot have r? > v. The lemma below deals with the case r? ∈ (c+∆, v).

Lemma 12. When r? ∈ (c+∆, v), the posterior distribution of costs G( · | p) converges
to an atom at r? −∆ as p converges to r?.

Proof. First, suppose that p converges to r? from the left. By the above derivation, the
support of the posterior distribution must be contained in [r? − ∆, r? − (1 − γ)∆] in
the limit. We have

lim
p→r?

G(c | p) = lim
p→r?

´ c
c

[
γf ly(p) + (1− γ)fhy (p)

]
dG(y)´ c̄

c

[
γf ly(p) + (1− γ)fhy (p)

]
dG(y)

. (D.19)

Letting

φ(p) =
p− φ(λ?)r?

1− φ(λ?)
−∆

and

φ(λ?) =
λ?(1− µ)

2µ(1− γ) + λ?(1− µ)
,
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we note that the integral

ˆ c̄

c

fhy (p) dG(y) =
λ?(1− µ)

2µ(1− γ)

ˆ φ(p)

c

r? − y −∆

(p− y −∆)2
dG(y),

diverges to ∞ as p↗ r?. Thus, the numerator in expression (D.19) is going to ∞. For
any ε > 0, the integral

ˆ c̄

r?−∆+ε

[
γf ly(p) + (1− γ)fhy (p)

]
dG(y)

is finite. Therefore, G(c | p)→ 1{c≥r?−∆}.
The intuition for this result is simple: As c gets closer to r?−∆, the distribution of

prices for high-cost dealer gets “squeezed” on a very small interval below r?, and the
density explodes. This is never the case for low-cost dealers. Thus, upon observing a
price offer p just below r?, a trader believes that it is much more likely that it has been
posted by a high-cost dealer in which case the cost must be close to p−∆ (and exactly
r? −∆ in the limit).

Second, consider the case when p converges to r? from the right. In this case, if
the offer is posted by a high-cost dealer, then the cost must be equal to p − ∆. The
numerator in expression (D.19) is finite and bounded away from zero. Moreover, we
have, for any ε > 0,

ˆ c̄

c

f ly(p) dG(y) =

ˆ r?−(1−γ)∆−ε

r?−∆

f ly(p) dG(y)︸ ︷︷ ︸
I1

+

ˆ r?−(1−γ)∆+ε

r?−(1−γ)∆−ε
f ly(p) dG(y)︸ ︷︷ ︸

I2

+

ˆ c̄

r?−(1−γ)∆+ε

f ly(p) dG(y)︸ ︷︷ ︸
I3

. (D.20)

As p ↘ r?, integrals I1 and I3 become zero at some point, because p falls out of the
support of f lc(p). And because f lc(p) (as a function of c) is bounded in the neighborhood
of r? − (1 − γ)∆, integral I2 can be made arbitrarily small. It follows once again that
G(c | p)→ 1{c≥r?−∆}.

The intuition this time is a little more tricky. The key observation is that (i) prices
just above r? are in the support of the distribution of low-cost dealers only when c is
close to r? − (1 − γ)∆, and (ii) even when c = r? − (1 − γ)∆, prices very close to r?

are unlikely (density is bounded). For high-cost dealers, prices just above r? are in the
support only when c is close to r? −∆, but conditional on c = r? −∆, the price is r?

with probability one.

Lemma 13. When r? ∈ (c+ ∆, v), Ψ(p; r?) jumps down discontinuously at p = r?.

Proof. By Lemma 12, as the observed price p converges to r?, the posterior distribution
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of costs converges to an atom at r? − ∆. Moreover, by the inspection of the proof,
when p converges to r? from the left, the probability mass converges to an atom at
r? −∆ from the left, and when p converges to r? from the right, the probability mass
converges to an atom at r? − ∆ from the right.41 The price distribution of high-cost
dealers is continuous (for example, in the Lévy-Prokhorov metric) in c. The lemma will
be thus proven if we can show that the price distribution of low-cost dealers changes
discontinuously at c = r? −∆ in such a way that expected benefits from search jump
down at p = r?. By the above derivation and direct calculation, we show that F l

c(p) for
c in the right neighborhood of r?−∆ strictly first-order stochastically dominates F l

c(p)
for c in the left-neighborhood of r?−∆, and the difference between the cdfs is bounded
away from zero. This means that expected continuation value of search jumps down at
c = r? −∆.

The intuition behind Lemma 13 is as follows. When c < r?−∆, high-cost dealers sell
when contacted by a slow trader. Thus, low-cost dealers attach a higher probability
to the trader being a fast trader and as a result they quote smaller prices. When
c > r? −∆, high-cost dealers do not sell when they are visited by a slow trader. Thus,
slow traders search more, the posterior probability of a fast trader falls, and low-cost
dealers quote higher prices. Thus, there is a discontinuity in expected price, which
jumps up at c = r? −∆. When a slow trader sees p just below r?, she thinks that c is
just below r?−∆ and prices are low. When a slow trader sees a price just above r?, she
thinks that c is just above r? −∆ and prices are high. The value of taking the offer is
almost the same in both cases, but the value of search is clearly more attractive in the
first. Thus, if a slow traders does not want to search at p below r?, she definitely does
not want to search for p just above r?. As a result, condition (D.18) must fail, that is,
we cannot have an equilibrium for r? ∈ (c+ ∆, v).

Now we deal with the case r? < c+∆. Because r? < c+∆ for all c, all prices p below
r? observed on equilibrium path must be posted by low-cost dealers (in equilibrium
there has to be positive probability of observing a price below r?). Moreover, by the
characterization above, prices p ∈ (r?, r?+ε) for small ε < c+∆−r? can only be quoted
by low-cost dealers when c is close to r? − (1 − γ)∆. In other words, upon observing
p = r? + ε for small ε > 0, a slow trader believes that c is within ε of r?− (1−γ)∆. But
in this case, price p is within ε of the best possible price given the beliefs. Therefore,
the benefit from search drops to zero as p crosses r? from left to right. Clearly, this
contradicts existence of an equilibrium.

We have thus shown that r? = c+ ∆ or r? = v in a reservation-price equilibrium.
To conclude the proof of Lemma 2, we argue that when s < (1 − α(1, 0))γ∆,

we cannot have an equilibrium with r? = v. We prove this by showing that in this
case a slow trader wants to search when observing a price offer at or slightly below
v. By the argument used in Lemma 12, we show that the posterior cost distribution

41We do not formalize what we mean by “probability mass converges from the left/ right” although
this could be done easily. The point is that the probability mass is centered around p−∆ for p close
to r?.
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converges to an atom at v −∆ as p converges to v. We can then calculate the benefit
from search explicitly using the price distribution derived above. We obtain Ψ(v; v) =
(1 − α(1, 0))γ∆, which is also the right limit of Ψ(p; v) as p ↗ v. This produces a
contradiction with condition (D.18).

D.6.2 Proof of Proposition 12

The proposition follows directly from what has been shown above. We know that when
s < (1 − α(1, 0))γ∆, we cannot have an equilibrium with r? = v. Thus, we can only
have r? = c + ∆. The condition s ∈ [s, s̄] is equivalent to condition (D.18). High-cost
dealers quote c+∆, and low-cost dealers use a continuous distribution corresponding to
the cases c ∈ [r?−∆, r?−κ∆], c ∈ [r?−κ∆, r?− (1− γ)∆], and c ∈ [r?− (1− γ)∆, c̄].
Entry can be analyzed in the same way as in previous equilibrium constructions (it can
be shown that slow traders enter with probability one under the assumptions that we
have imposed).

When r? = c + ∆, continuity of Ψ(p; r?) at all points p in the support other than
r? is easy to show by direct inspection. We prove that Ψ(p; r?) jumps up at p = r?.

When p converges to r? from the right, the posterior distribution of costs converges
to an atom at r? − ∆ = c. In that case, we can calculate limp↘r? Ψ(p; r?) explicitly.
We have

lim
p↘r?

Ψ(p; r?) = (1− α(1, 1))γ∆.

This means that s̄ ≤ (1− α(1, 1))γ∆.
When p converges to r? from the left, the benefit from search must converge to a

number that is strictly lower than (1− α(1, 1))γ∆. The reason is that in this case the
trader believes that the offer has been posted by a low-cost dealer, and thus the posterior
distribution of costs will be atomless with support [c, r? − (1 − γ)∆]. Since prices are
increasing with costs, the trader expects that prices are higher than in the case in which
the cost c is equal to c. Unfortunately, a closed form solution for limp↗r? Ψ(p; r?) is
hard to obtain because the expected price becomes non-linear in c for c ∈ [r?−κ∆, r?−
(1− γ)∆].

D.6.3 Proof of Corollary 2

Under the assumption s ≥ κ(1 − α̂)γ∆, the equilibrium with the benchmark achieves
the second best. In the no-benchmark case, when s ∈ [s, s̄], we have a reservation-
price equilibrium with r?0 = c + ∆. By the derivation of equilibrium pricing strategies
from the proof of Lemma 2, whenever c > c+ γ∆, low-cost dealers quote prices above
c+∆. With probability γ a slow trader visits a low-cost dealer in the first search round.
Therefore, the expected surplus loss in the no-benchmark case relative to the second
best is at least

(1−G(c+ γ∆))(1− µ)γs. (D.21)

On the other hand, the surplus gain from moving from the second best to centralized



E Supporting Contents for Section 5 75

exchange is (1− µ)(2− γ)s. Dividing (D.21) by the sum of (D.21) and (1− µ)(2− γ)s
we conclude the proof of the Corollary.

E Supporting Contents for Section 5

E.1 Proof of Theorem 3

The proof of Theorem 3 is very similar to the proof of Theorem 1, so we skip some of
the details. Denote the expected profits of a dealer in the benchmark case conditional
on x (where x = (v − c)+) by χb(x) and in the case with no benchmark by χnb. Recall
from Propositions 1 and 3 that

χb(x) =
λ(x)(1− µ)

N

s

1− α(λ(x))

and χnb = Xλ?(1− µ)/N .
Assume that condition (i) holds. Then, using the fact that λ(x) is given by s =

(1−α(λ(x)))x in the relevant range, we can write χb(x) = (1− µ)λ(x)x/N. By Lemma
5, λ(x) is increasing and convex, so χb(x) is also convex. Therefore, applying Jensen’s
Inequality we get

E [χb(x)] ≥ χb (E [x]) = χb(X) = χnb.

Now assume that condition (ii) holds. As in the proof of Theorem 1 we want to find
a condition on X that would guarantee that the profit function χb is subdifferentiable
at X. Using the reasoning from the proof of Theorem 1, we can establish existence of
a constant η ∈ (0, α̂), that depends only on µ and N , and such that X ≤ s/(1− η)
guarantees existence of a supporting hyperplane atX (thus allowing us to apply Jensen’s
Inequality).

E.2 A numerical example for Section 5.1

We revisit the numerical example of Section C.8. We recall that the reservation-price
equilibrium in the no-benchmark case exists if s ≥ 0.063, and that social surplus is
higher in the benchmark case for s ≥ 0.12. Figure E.1 depicts the total profit of a dealer
as a function of the search cost s in the benchmark case (with a thick solid line) and
in the no-benchmark case (with a thick dotted line). The profits of dealers are higher
in the benchmark case if s ≥ 0.15. For search costs in the interval (0.12, 0.15), social
surplus rises with the introduction of a benchmark, but dealers’ profits are reduced.

E.3 Completion of the analysis of Section 5.1—What changes if
dealers’ costs are heterogeneous?

If γ ∈ (0, 1), a reservation-price equilibrium with r? = v exists in the no-benchmark
setting if search costs are sufficiently large. (See the discussion under Lemma 2 in
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Fig. E.1: The dependence of dealers’ expected profits on the slow-trader search cost s.
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Section B.2.) Here, we might use this equilibrium to ask if it is possible that the intro-
duction of the benchmark benefits one type of the dealers but not the other (through
the entry channel, that is, when search costs are relatively high).

The answer turns out to be generally no.42 When the benchmark increases entry
sufficiently, both types of dealers benefit. When the benchmark fails to encourage
entry (for example because we have already full entry without the benchmark), profits
of both types of dealers are harmed. This is intuitive. Under parameter restrictions
that guarantee full entry and existence, reservation-price equilibria will have no search
in both cases, so the volumes of trade remain the same for both types of dealers. Prices
generally decrease. Thus, if entry does not increase, introducing a benchmark acts as
a transfer of surplus from dealers to traders.

There is however one case in which high-cost dealers would opt for a benchmark
while low-cost dealers would not. Just as in the homogeneous-cost case, dealers prefer
to trade under the benchmark if the search cost of slow traders exceeds a certain cutoff.
The threshold for high-cost dealers will be slightly lower that for low-cost dealers. To
understand this observation, recall from Section 3 that the benchmark has the effect of
increasing entry especially in the case when gains from trade are large. Also in this case
(that is, when gains from trade are large) high-cost dealers trade in equilibrium. In the
opposite case (when c > v −∆), high-cost dealers cannot trade anyway, and are thus
not harmed by relatively smaller entry in the benchmark case for high cost realizations.

Figure E.2 illustrates the above point. We take the same numerical example as in

42For a formal result, see Appendix G.
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Section 4. When search costs are relatively small, the profits of dealers are larger when
there is no benchmark. When s gets bigger, the positive effect of benchmarks on entry
gets strong enough for dealers to benefit from increased volume of trade. Once s crosses
0.32, high-cost dealers would like to introduce the benchmark. For low-cost dealers, the
corresponding threshold is slightly above 0.33.

Fig. E.2: The profits of low-cost and high-cost dealers (in reservation-price equilibria
for intermediate and large s)
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E.4 Proof of Theorem 4

To prove the Theorem, we first describe the equilibrium path, and then show the
optimality of dealers’ strategies under a sufficiently high ∆.

If the environment is efficient, the benchmark is introduced, only low-cost dealers
enter and we have a reservation-price equilibrium in the trading-stage subgame de-
scribed in Section 3.1 (with the exception that N is now replaced by M, which is equal
to L in equilibrium). Because s < (1 − ᾱ)(v − c̄), we have full entry in this case, and
the reservation price of slow-traders is

r?c = c+
s

1− ᾱL
,

where the subscript L in ᾱL indicates that N is replaced by L in the definition of ᾱ
given by equation (3.7).
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If the environment is inefficient (all dealers have high costs), the benchmark is not
introduced, and high-cost dealers enter if and only if X∆ > s. To see this, note that in
this case, we can apply the analysis of Section 3.2 with the exception that c is replaced
by c+ ∆ (correspondingly, X is replaced by X∆). In particular, high-cost dealers make
strictly positive expected profits if and only if X∆ > s because this condition guarantees
that there is positive probability of entry by slow traders, according to Proposition 3.
Existence follows from Proposition 4 for all ∆ ≥ ∆?

1 for some ∆?
1 with X∆?

1
> s. Indeed,

the inspection of the proof shows that a sufficient condition is that X∆−s is sufficiently
small which we can achieve by taking high enough ∆.

On the equilibrium path in the pre-play stage, low-cost dealers vote in favor of
the benchmark, and enter if the benchmark is introduced or if the benchmark is not
introduced and X∆ > s. High-cost dealers vote against the benchmark and enter if and
only if the benchmark is not introduced and X∆ > s.

We now verify the optimality of these dealer strategies.
Set ∆?

0 = s/(1− ᾱ), and suppose that ∆ ≥ ∆?
0 so that s < (1− ᾱ)∆.

First, we show that a high-cost dealer does not want to deviate and enter when the
benchmark is introduced. Indeed, when the benchmark is observed, slow traders follow
a reservation-price strategy with

r?c = c+
s

1− ᾱM
≤ c+

s

1− ᾱ
,

using the fact that ᾱM is increasing in M .43 Since s ≤ (1 − ᾱ)∆ for ∆ ≥ ∆?
0, we

conclude that c + ∆ ≥ r?c . Thus, using familiar arguments from previous sections, we
show that a high-cost dealer cannot make positive profits after entering the market,
regardless of the identities of other dealers in the market.44

Second, we show that a high-cost dealer does not want to deviate and stay out of
the market when the benchmark is not introduced and X∆ > s. By the remark above,
high-cost dealers make strictly positive profits on the equilibrium path in that case.

Third, low-cost dealers cannot deviate by changing their entry decision because, by
the specification of their strategy, they enter if and only if their expected profits are
strictly positive.

Fourth, we show that any coalition of high-cost dealers does not want to deviate by
voting in favor of the benchmark. By what we established above, if the benchmark is
introduced, a high-cost dealer finds it optimal not to enter and hence earns no profits.
Thus, this cannot be a strictly profitable deviation.

Fifth, we show that any coalition of low-cost dealers does not want to deviate by
voting against the benchmark. Note that L ≥ 2 is common knowledge among low-cost
dealers. In equilibrium, the benchmark is introduced, high-cost dealers stay out, and

43This is shown in Janssen and Moraga-González (2004).
44Note that off-equilibrium path traders may observe offers above their reservation price, something

that never happens on equilibrium path. We specify off-equilibrium beliefs of traders by saying that
this off-equilibrium event does not change the belief of any trader about the types of active dealers.
This is consistent with a perfect Bayesian equilibrium.
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the low cost dealer’s expected profit is equal to

1− µ
L

s

1− ᾱL
> 0,

which does not depend on ∆. If the benchmark is not introduced, slow traders believe
with probability one that only high-cost dealers are present in the market. By taking
∆ high enough we can make X∆ − s arbitrarily small, so the equilibrium probability
of entry by slow traders is arbitrarily small without the benchmark (see the analysis
in Section 3.2). Because L ≥ 2 the expected profits of low-cost dealers in this case
converge to zero as the posterior probability of meeting a slow trader approaches zero.
Because the profit on equilibrium path is bounded away from zero, low-cost dealers do
not want to deviate in this way if ∆ is above some cutoff level ∆?

2.
We conclude the proof by defining ∆? = max{∆?

0, ∆?
1, ∆?

2}.
Note that ∆?

1 and ∆?
2 can be chosen so that X∆ > s if ∆ is close to max{∆?

1, ∆?
2}.

If additionally s is sufficiently small, we can guarantee that X∆ > s for all ∆ in some
right neighborhood of ∆?.

F Supporting Contents for Section 6

In this subsection we provide the supporting arguments for the analysis in Section 6.
For simplicity, we assume that γ = 1 throughout (the results can be generalized to the
heterogeneous case in a straightforward way).

Suppose that customers “trust” the announced benchmark and do not anticipate
manipulation by the dealers. Then we have the following result.

Proposition 13. In the equilibrium setting with a benchmark described in Proposition
1, if customers do not anticipate manipulation, the best deviation for dealers is to
announce that the benchmark outcome is ĉ = v − s/(1 − ᾱ) regardless of the actual
outcome of the benchmark c.

Proof. The proof follows directly from Proposition 1. Assuming that customers do not
anticipate manipulation and simply play their equilibrium strategy believing that the
outcome of c is ĉ, the expected profits of dealers can be shown to be

λĉ(1− µ)

N
(rĉ − c) .

(Dealers use the offer price distribution that arises when slow traders follow a reservation-
price strategy with reservation price r?ĉ and when the true cost is c). Maximizing the
above expression over ĉ conditional on c, we obtain the conclusion of the proposition.

The Proposition states that if dealers can collude and announce any desired level
ĉ as the supposed benchmark, they would announce ĉ = v − s/(1 − ᾱ), regardless of
the true c. Although dealers want to report the same benchmark outcome ĉ regardless
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of c, the nature of manipulation is quite different depending on whether the actual
common-cost benchmark c is larger or smaller than v− s/(1− ᾱ). If c < v− s/(1− ᾱ),
the manipulation is aimed at increasing profit margins. If the announced benchmark
were the correct common cost component c, slow traders would not accept prices above
r?c < v. With the false benchmark, they incorrectly believe that costs are higher, and
accept all prices below v. When c > v−s/(1− ᾱ), the manipulation is instead aimed at
encouraging entry. Announcing ĉ = v− s/(1− ᾱ) guarantees full entry of slow traders.
Somewhat surprisingly, this is welfare-enhancing, but slow traders make negative profits
on average.

Specifying and solving an equilibrium model of manipulation with correct beliefs
by traders concerning the manipulation, while desirable, is beyond the scope of this
paper. Instead, we close our discussion of manipulation by considering the following
mechanism design problem.

Suppose that there exists a benchmark administrator who can design an arbitrary
“benchmark announcement” mechanism with transfers. Here, a mechanism is a pair
(M, g), where M = (M1 × · · · ×MN) is the product of the message spaces of the N
respective dealers, and where g : M → [c, c̄] × RN . The function g maps the dealers’
messages (m1, . . . , mN) to an announced benchmark c̃ and to transfers t1, . . . , tN from
the respective dealers to the mechanism designer. Each mechanism induces a game
in which dealers first submit messages. The second stage of the game is the trading
game presented in Section 2 of this paper, in which traders assume that the announced
benchmark c̃ is a truthful report of the actual cost c.

In this setting, “Nash implementability” means that there exists a mechanism whose
associated game has a Nash equilibrium in which the announced benchmark c̃ is the true
cost c. “Full implementability” adds the requirement that this is the unique equilibrium
of the mechanism-induced game.

Proposition 14. Truthful revelation of c is Nash implementable, but is not fully Nash-
implementable.

Proof. To prove the first part of the Proposition, consider the following direct revelation
mechanism, in which the message space of every dealer is the support of the distribution
of c. The mechanism designer asks each dealer to report the true market-wide cost c.
Conditional on the report ĉi of dealer i, and the reports of other dealers ĉ−i, the transfer
from dealer i to the mechanism designer is

ti(ĉi, ĉ−i) =

{
0 if ĉi = 1

N−1

∑
j 6=i ĉj

t otherwise.

Then, reporting the true cost c is a Nash equilibrium if t is large enough (the benefit
from misreporting is bounded). Given truthful reporting by dealers, the mechanism
designer can reveal c to customers by announcing N−1

∑N
i=1 ĉi.

The second part follows from the fact that choice rule to be implemented is not
monotonic. (See Maskin 1999 for the definition of monotonicity and the relevant result.)
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The proposition states that each dealer wants to report a message supporting the
announcement of a benchmark that is the true cost c, provided that he believes that all
other dealers report in this manner. However, for the mechanism that we construct in
the proof of this result, there is also an equilibrium in which all dealers report the same,
but a false, common cost level, say ĉ = v − s/(1− ᾱ). The second part of Proposition
14 asserts that this cannot be avoided. That is, there does not exist a mechanism that
leads to truthful revelation of c as a unique Nash equilibrium. Informally, this means
that the benchmark is not robust to collusion.

Coulter and Shapiro (2014) solve a mechanism design problem with transfers in a
setting that incorporates important incentives to manipulate that are absent from our
model. They reach a similar conclusion in that it is possible to implement a truthful
benchmark, but their mechanism can also be “rigged” for false reporting through col-
lusion by dealers. Duffie and Dworczak (2014) consider a different model of benchmark
design and manipulation, showing that, without transfers, an optimizing mechanism
designer will not in general implement truthful reporting. Instead, considering a re-
stricted class of mechanisms, they characterize a robust benchmark that minimizes the
variance of the “garbling,” meaning the difference between the announced benchmark
and the true cost level.

G Generalization of Theorems 1 and 3

This appendix generalizes Theorems 1 and 3 by relaxing the assumption that γ = 1.

Theorem 5. Consider the model with heterogeneous dealers’ costs.45 Suppose that (i)

s ≥ γ∆ and (ii)

s− (1− α(1, 0))γ∆

γ (1− φ(1)α(1, 0)) + (1− γ) (1− αh(1))
≥ v − c−∆.

Then, a reservation-price equilibrium in the no-benchmark case (if it exists) yields a

lower social surplus than in the setting with the benchmark. Moreover, if c̄ ≤ v − ∆,

then the expected profits of both high-cost and low-cost dealers are higher in the setting

with the benchmark. Condition (ii) holds if there are sufficiently many dealers or if the

fraction µ of fast traders is small enough.

Remark. Notice that when γ → 1, condition (ii) boils down to

s

(1− α(1, 0))
≥ v − c.

45That is, γ ∈ (0, 1), ∆ > 0.
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Because α(1, 0) = ᾱ, this is exactly condition (i) from Theorem 1 and Theorem 3.

Proof. Because the logic of the proof is the same as in the case of homogeneous deal-
ers’ costs, we sketch the main arguments and omit most calculations. Unless stated
otherwise, the symbols that we use have the same meaning as in the proof of Theorem
1. We begin by describing the welfare and profits in the two settings. Without loss of
generality we assume that c̄ ≤ v.46

Benchmark setting. By the equilibrium characterization from the proof of Propo-
sition 8 in Appendix D (cases 1 and 2.2.2), under the parameter restrictions of the
Theorem we can have two types of equilibria with the benchmark. When

s− (1− α(0, 0))γ∆ ≥ x−∆,

we have no entry of slow traders (that is, λ(x) = 0). Therefore, social welfare is equal
to µ

(
x− (1− γ)N∆

)
. High-cost dealers make no profits, and low-cost dealers have

expected profits equal to (1− γ)N−1 min{∆, x}. When

s− (1− α(0, 0))γ∆ < x−∆, (G.1)

there is interior entry of slow traders, determined by the equation

s = γ [(1− φ (λ)α (λ, 0))x− α (λ, 0) (1− φ (λ)) ∆] + (1− γ) [(1− αh (λ)) (x−∆)] ,
(G.2)

suppressing from the notation the argument x of λ(x). Because slow traders buy from
the first dealer, social welfare (as a function of gains from trade) is

Wb(x) = µ
(
x− (1− γ)N∆

)
+ λ(x)(1− µ) (x− (1− γ)∆− s) . (G.3)

(We note that by equation (G.1), c ≤ v −∆). The expected profits of low-cost dealers
are

χlb(x) =

[
λ(x)(1− µ)

N
+ µ(1− γ)N−1

]
[φ (λ(x)) (x−∆) + ∆] . (G.4)

The expected profits of high-cost dealers are

χhb (x) =
λ(x)(1− µ)

N
(x−∆). (G.5)

No-benchmark setting. In the no-benchmark setting we concentrate on the reservation-
price equilibrium with a reservation price (of slow traders) equal to v. (See the comment
below Lemma 2 in Section B.2 for details.47) This equilibrium exists if search costs are

46In the opposite case, the comparison can only be even more favorable for the benchmark case.
47As explained in Section B.2, although N = 2 is assumed throughout that subsection, the charac-

terization of equilibrium with r? = v is valid for an arbitrary N .
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sufficiently large. Under the parameter restrictions of the Theorem we can have two
types of equilibria without the benchmark.

First, consider the case c < v − ∆, in which we have an equilibrium analogous to
that under the benchmark. In particular, conditional on cost realization x > ∆, social
surplus is

Wnb(x) = µ
(
x− (1− γ)N∆

)
+ λ?(1− µ) (x− (1− γ)∆− s) ,

where λ? denotes the equilibrium probability of entry of slow traders (in this case a
constant, not a function of x). Low-cost dealers make conditional expected profits

χlnb(x) =

[
λ?(1− µ)

N
+ µ(1− γ)N−1

]
[φ (λ?) (x−∆) + ∆] ,

and high-cost dealers earn

χhnb(x) =
λ?(1− µ)

N
(x−∆).

Second, consider c ≥ v−∆. Now high-cost dealers cannot make positive profits, so they
post a deterministic price equal to c+ ∆. Social surplus conditional on x is given by

Wnb(x) = µ
(
1− (1− γ)N

)
x+ λ?(1− µ)(γx− s).

Low-cost dealers have a conditional expected profit of

χlnb(x) =

[
λ?(1− µ)

N
+ µ(1− γ)N−1

]
x.

We now turn our attention to traders. When x > ∆, conditional on x and entry, a slow
trader has an expected profit of

−s+ γ [(1− φ(λ?)α(λ?, 0))x− α(λ?, 0)(1− φ(λ?))∆] + (1− γ) [(1− αh(λ?)) (x−∆)] .

When x ≤ ∆, the corresponding expected profit is

−s+ γ(1− α(λ?, 0))x.

Because slow traders do not observe c when there is no benchmark, their entry decision
is determined by taking an expectation with respect to the distribution of x. Thus, λ?

solves

s = G(v−∆)E [Λ(λ?, x) |x > ∆]+(1−G(v −∆))E [γ(1− α(λ?, 0))x |x ≤ ∆] , (G.6)
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where

Λ(λ?, x) = γ [(1− φ(λ?)α(λ?, 0))x− α(λ?, 0)(1− φ(λ?))∆]+(1−γ) [(1− αh(λ?)) (x−∆)] .

A few steps to simplify the problem. First, we notice that the comparison of welfare
can only be more favorable for the no-benchmark case when we condition on c ≤ v−∆.
As for the profits of dealers, we have c̄ ≤ v −∆ by assumption. Thus from now on, we
assume without loss of generality that c̄ ≤ v − ∆. This simplifies the formulas in the
no-benchmark setting. Unconditional expected welfare can now be written as

Wnb = µ
(
X − (1− γ)N∆

)
+ λ?(1− µ) (X − (1− γ)∆− s) . (G.7)

The expected profit of low-cost dealers is

χlnb =

[
λ?(1− µ)

N
+ µ(1− γ)N−1

]
[φ (λ?) (X −∆) + ∆] . (G.8)

The expected profit of high-cost dealers is

χhnb =
λ?(1− µ)

N
(X −∆). (G.9)

Finally, the key equation (G.6) determining entry in the no-benchmark setting simplifies
to

s = γ [(1− φ(λ?)α(λ?, 0))X − α(λ?, 0)(1− φ(λ?))∆] + (1− γ) [(1− αh(λ?)) (X −∆)] .
(G.10)

Note that, by equations (G.2) and (G.10), λ(X) = λ?.
The crucial (and most tedious) step in the proof is to show the following lemma,

which generalizes Lemma 5.

Lemma 14. The function λ(x) is convex (for x in the range permitted by the assump-
tions of the Theorem).

Before we show the proof of Lemma 14, we analyze its consequences. It is easy to
observe that if λ(x) is convex, then also Wb(x), χlb(x) and χhb (x) are convex.48 Hence, we
can apply Jensen’s Inequality to these three functions (just as in the proofs of Theorem
1 and Theorem 3). The observation made above that λ(X) = λ?, and direct inspection
of formulas (G.3) and (G.7), (G.4) and (G.8), (G.5) and (G.9), complete the proof.

Proof of Lemma 14. The full proof is long and tedious, and thus some of the details
are omitted.

48In case of χlb(x) this requires some calculation that we omit.
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We rewrite equation (G.2), suppressing from the notation the dependence of λ on
x, as

s ≡ γ [(1− αl(λ))x− (1− α̃l(λ))∆] + (1− γ) [(1− αh(λ))x− (1− αh(λ))∆] , (G.11)

where
αl(λ) = φ(λ)α(λ, 0)

and
α̃l(λ) = 1− α(λ, 0)(1− φ(λ)).

A real-valued function f(x) is strictly increasing and convex if and only if f−1(x) is
strictly increasing and concave. Thus, to show that the solution λ(x) of equation
(G.11) is convex, it is enough to prove that the function λ 7→ x(λ), defined by

x(λ) =
s+ (γ(1− α̃l(λ)) + (1− γ)(1− αh(λ))) ∆

γ(1− αl(λ)) + (1− γ)(1− αh(λ))
,

is concave. We have

x(λ) =
s

γ(1− αl(λ)) + (1− γ)(1− αh(λ))
+ ∆ +

αl(λ)− α̃l(λ)

γ(1− αl(λ)) + (1− γ)(1− αh(λ))
γ∆

=
s− γ∆

γ(1− αl(λ)) + (1− γ)(1− αh(λ))
+ ∆ +

1 + αl(λ)− α̃l(λ)

γ(1− αl(λ)) + (1− γ)(1− αh(λ))
γ∆.

Because a sum of concave functions is concave, and due to s ≥ γ∆, a sufficient condition
for concavity of x(λ) is that

1

γ(1− αl(λ)) + (1− γ)(1− αh(λ))
(G.12)

and
1 + αl(λ)− α̃l(λ)

γ(1− αl(λ)) + (1− γ)(1− αh(λ))
(G.13)

are both concave in λ. We show formally the concavity of the first of these functions
and omit a similar proof of concavity of the second one.

Because the function (G.12) is twice continuously differentiable, concavity is implied
by the second derivative being non-positive. The second derivative of the function
(G.12) is non-positive if and only if (omitting for simplicity the notational dependence
on λ)

[γα′′l + (1− γ)α′′h] (γ(1− αl) + (1− γ)(1− αh)) + 2 (γα′l + (1− γ)α′h)
2 ≤ 0.

Expanding this inequality, we can obtain a sufficient condition by requiring that each
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of the terms multiplied by γ2, γ(1− γ), and (1− γ)2, accordingly, is non-positive:

α′′l (1− αl) + 2 (α′l)
2 ≤ 0, (G.14)

α′′h(1− αh) + 2 (α′h)
2 ≤ 0, (G.15)

α′′l (1− αh) + α′′h(1− αl) + 4α′lα
′
h ≤ 0. (G.16)

Inequalities (G.14) and (G.15) are proven in exactly the same way as inequality (C.4) in
the proof of Lemma 5. We show how to prove inequality (G.16). Using the definitions of
functions αl and αh, and after a tedious calculation of the first and second derivatives,
we can express the inequality equivalently as

2

(ˆ 1

0

β(1− γ)N−1 + β
(
1− (1− γ)N−1

)
Φ(z)

(λ+ β(1− γ)N−1 + β (1− (1− γ)N−1) Φ(z))2 dz

)(ˆ 1

0

β(1− γ)N−1zN−1

(λ+ β(1− γ)N−1zN−1)2 dz

)

≤

(ˆ 1

0

β(1− γ)N−1 + β
(
1− (1− γ)N−1

)
Φ(z)

(λ+ β(1− γ)N−1 + β (1− (1− γ)N−1) Φ(z))3 dz

)
︸ ︷︷ ︸

a

(ˆ 1

0

β(1− γ)N−1zN−1

λ+ β(1− γ)N−1zN−1
dz

)
︸ ︷︷ ︸

b

+

(ˆ 1

0

β(1− γ)N−1zN−1

(λ+ β(1− γ)N−1zN−1)3 dz

)
︸ ︷︷ ︸

c

(ˆ 1

0

β(1− γ)N−1 + β
(
1− (1− γ)N−1

)
Φ(z)

λ+ β(1− γ)N−1 + β (1− (1− γ)N−1) Φ(z)
dz

)
︸ ︷︷ ︸

d

.

By Hölder’s Inequality applied twice to the two integrals on the left-hand side, we get

2

(ˆ 1

0

β(1− γ)N−1 + β
(
1− (1− γ)N−1

)
Φ(z)

(λ+ β(1− γ)N−1 + β (1− (1− γ)N−1) Φ(z))2 dz

)(ˆ 1

0

β(1− γ)N−1zN−1

(λ+ β(1− γ)N−1zN−1)2 dz

)

≤ 2
√
ad
√
bc.

Thus, we have to prove that for any positive constants a, b, c and d, we have

2
√
ad
√
bc ≤ ab+ cd.

This follows immediately from the fact that (ab− cd)2 ≥ 0.
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H Glossary of symbols

Symbol Definition Remarks

Primitive parameters
N number of dealers N ≥ 2

c common cost component of dealers

G cdf of common dealer cost c with support [c, c̄]

∆
cost differential between high-cost and

low-cost dealers
idiosyncratic cost εi is 0 or ∆

γ ex-ante probability of a low-cost dealer P (εi = 0) = γ

µ fraction of fast traders µ ∈ (0, 1)

s search cost of slow traders s > 0

v traders’ asset valuation a constant

Γ
probability of at least 2 low-cost

dealers
Section 5 only

Derived quantities

λ slow-trader entry probability An additional subscript ‘c’ indicates

that the quantity depends on c (in the

benchmark case); the superscript ?

denotes the quantity in equilibrium.

r reservation price of slow traders

θ
probability that a slow trader buys

from a high-cost dealer

F ic cdf of dealer offers, i ∈ {l, h} lower limit: pi
c
; upper limit: p̄ic

q(λ, θ)
Nµ

Nµ+
1−θN (1−γ)N

1−θ(1−γ)
λ(1−µ)

probability that a contacting trader is

fast

α(λ, θ)
´ 1

0

(
1 +

q(λ, θ)(1−(1−γ)N−1)
1−q(λ, θ)(1−(1−γ)N−1)

Φ(z)

)−1

dz
values between 0 and 1, strictly

increasing in both arguments

Φ(z)
∑N−1
k=1 (N−1

k )zkγk(1−γ)N−1−k

1−(1−γ)N−1

strictly increasing polynomial,

Φ(0) = 0, Φ(1) = 1.

α̂ α(1, 1)
upper bound on α(λ, θ); strictly

below 1

κ
(1−γ)N−1(µ+λ?(1−µ))

µ(1−γ)N−1+λ?(1−µ)
1−(1−γ)N

Nγ

Special cases:
(1−γ)N−1

µ(1−γ)N−1+(1−µ) 1−(1−γ)N
Nγ

when λ? = 1,

2(1−γ)(µ+λ?(1−µ))
λ?(2−γ)(1−µ)+2µ(1−γ) when N = 2.

Special case of homogeneous dealers’ cost (γ = 1)

q(λ)
Nµ

Nµ+λ(1−µ) equal to q(λ, 0)

α(λ)
´ 1

0

(
1 + Nµ

λ(1−µ)z
N−1

)−1
dz equal to α(λ, 0)

ᾱ α(1) upper bound on α(λ); strictly below 1

X G(v) [v − E [c| c ≤ v]] expected gain from trade

ϕ(λ)
λ(1−µ)

Nµ+λ(1−µ) -



H Glossary of symbols 88

Symbols used only in appendices

ζ

probability that a low-cost dealer

quotes an offer above the reservation

price of slow traders

An additional subscript ‘c’ indicates

that the quantity depends on c (in the

benchmark case); the superscript ?

denotes the quantity in equilibrium.

X∆ G(v −∆)E (v − c−∆| c ≤ v −∆)
Expected gain from trade when only

high-cost dealers are present

ϑ(ζ)
(1−γ)N−1

µ(1−γζ)N−1+(1−µ)
1−(1−γζ)N

Nγζ

ϑ(1) = κ

α̃(ζ)
´ 1

0

(
1 + 1−(1−γζ)N−1

(1−γ)N−1 µϑ(ζ)Φ(z; ζ)
)−1

dz α̃(1) = α(1, 1)

Φ(z; ζ)
∑N−1
k=1 (N−1

k )zk(γζ)k(1−γζ)N−1−k

1−(1−γζ)N−1

strictly increasing polynomial,

Φ(0; ζ) = 0, Φ(1; ζ) = 1

αh(λ)
´ 1

0

(
1 + q(λ, 0)(1−γ)N−1

1−q(λ, 0) zN−1
)−1

dz αh(0) = 0

φ(λ)
1−q(λ, 0)

1−(1−(1−γ)N−1)q(λ, 0) φ(0) = 0
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