Financial Restructuring and Resolution of Banks

Jean-Edouard Colliard and Denis Gromb

HEC Paris

ACPR Chair “Regulation and Systemic Risk” Workshop
March 21, 2018
Roadmap

Introduction

Model

Private restructuring

Restructuring with government involvement

Conclusion
Bank resolution and restructuring

- Bank resolution regimes:
 - Forced restructuring of liabilities (bail-out/bail-in)
 - US Dodd-Frank Act
 - EU Bank Recovery and Resolution Directive

- Aims:
 - Minimize costs to the taxpayer (bail-outs)
 - Avoid adverse consequences of disorderly failures

- Banks also restructure privately
 - Claimants renegotiate liabilities
 - E.g. European banks’ Liability Management Exercises
 - But this process can be less than smooth
Monte dei Paschi di Siena

- Share price
- 5Yr CDS
- 1Yr CDS

Graph showing changes in share price, 5Yr CDS, and 1Yr CDS from 01/09/16 to 02/01/17.
The main idea

How does resolution affect private restructuring?

1. Why are private restructurings long and inefficient?
 ▶ Asymmetric information over assets ⇒ delay as a signal
 ▶ Renegotiation benefits the government ⇒ externality

2. Impact of tougher resolution regimes (i.e. lower bailouts)?
 ▶ Surplus effect ⇒ delay ↙
 ▶ Signaling effect ⇒ delay ↗

3. Implications for resolution design?
 ▶ Optimal bail-out trades off both effects (tougher ≠ better)
 ▶ Direct government involvement in negotiations?
Recent models of resolution: Landier and Ueda (2009), Keister and Mitkov (2016), Walther and White (2016), Bolton and Oehmke (2016).

Roadmap

Introduction

Model

Private restructuring

Restructuring with government involvement

Conclusion
The bank

- **Assets:**
 - With probability p, payoff $Z > 0$ (payoff $= 0$ otherwise)
 - Only the bank manager knows quality p

- **Liabilities:**
 - Insured deposits D
 - Uninsured debt R_0

- **Monitoring:**
 - The manager (= shareholders) can incur cost $c > 0$
 \[\Rightarrow p \text{ increases to } (p + m) \]

- **Debt overhang problem:**
 - Denote $X = Z - D$
 \[mX > c \quad \text{but} \quad m(X - R_0) < c \]
 \[\Rightarrow \text{Gains from restructuring} \]
Restructuring/Resolution

Restructuring

- The manager chooses:
 - Debt write-down offer: from R_0 to R
 - Time of offer $t \in [0, +\infty)$

- Creditors accept if payoff exceeds statu quo

- In each period dt, the game stops with proba. βdt

Resolution

- The bank defaults with proba. $(1 - p)$ or $(1 - p - m)$
- Insured deposits D paid in full from insurance fund
- **Uninsured creditors R incur a haircut h** ⇒ Gvt. pays $(1 - h)R$
- Shareholders get 0
Roadmap

Introduction

Model

Private restructuring

Restructuring with government involvement

Conclusion
Payoffs

- In status quo, shareholders and creditors obtain:

\[S_0(p) = p(X - R_0) \]
\[C_0(p) = pR_0 + (1 - p)(1 - h)R_0 \]

- Asymmetric information \implies Creditors’ belief \(\hat{p} \) is important

- For a given belief \(\hat{p} \), creditors accept \(R(\hat{p}) \) such that:

\[C_0(\hat{p}) = (\hat{p} + m)R(\hat{p}) + (1 - \hat{p} - m)(1 - h)R(\hat{p}) \]
\[\Leftrightarrow \quad R_0 - R(\hat{p}) = \frac{mh}{1 - (1 - \hat{p} - m)h} \]

Manager wants to convey that \(p \) is low to get a write-down
Post-restructuring payoffs:

\[
S(\hat{p}, p) = (p + m)[X - R(\hat{p})] - c
\]
\[
C(\hat{p}, p) = [1 - (1 - p - m)h]R(\hat{p})
\]

Delay as a signal: higher asset quality \(p \) ⇒ default is less likely ⇒ write-down more valuable ⇒ delay is more costly
Separating equilibrium: bank of type p makes an offer $R(p)$ after delay $\Delta(p)$.

Bank shareholders’ payoff:

$$U(t, p) = \left[1 - e^{-\beta t} \right] S_0(p) + e^{-\beta t} S(\Delta^{-1}(t), p).$$

Equilibrium condition: for any type p, shareholders’ payoff is maximized in $t = \Delta(p)$:

$$U_1(t, p) = e^{-\beta t} \left[(\Delta^{-1})'(t) S_1(\Delta^{-1}(t), p) - \beta [S(\Delta^{-1}(t), p) - B_0(p)] \right] .$$

$$U_1(\Delta(p), p) = 0 \iff \dot{\Delta}(p) = \frac{S_1(p, p)}{\beta [S(p, p) + C(p, p) - S_0(p) - C_0(p)]} .$$
Equilibrium delay

\[\Delta(p) = \int_{p}^{1-m} \frac{-S_1(x, x)}{\beta[S(x, x) + C(x, x) - S_0(x) - C_0(x)]} \, dx \]

- Delay decreases in \(p \)

- **Signaling effect**
 - Delay increases in \(|S_1| \)
 - Larger gain from conveying \(p \) is low \(\Rightarrow \) longer \(\Delta \) to signal

- **Surplus effect**
 - Delay decreases with total bargaining surplus
 \[S(x, x) + C(x, x) - S_0(x) - C_0(x) \]
 - Higher cost of breakdown \(\Rightarrow \) shorter \(\Delta \)
Haircut’s impact on delays

- **Surplus effect:**
 - Less bailout \Rightarrow lower total payoff w/ and w/o restructuring
 - But larger effect w/o restructuring as default proba. is higher
 \Rightarrow higher bargaining surplus $\Rightarrow \Delta \downarrow$

- **Signaling effect**
 - Less bailout \Rightarrow creditors lose more w/o restructuring
 - Willing to concede larger write-downs
 \Rightarrow higher gain from pretending p is low $\Rightarrow \Delta \uparrow$

Corollary

As the haircut h increases, the delay $\Delta(p)$ first decreases and then increases for low enough asset quality p, and always increases otherwise.
\[\Delta(p) \]

- \(p=0 \)
- \(p=0.1875 \)
- \(p=0.375 \)
- \(p=0.5625 \)
Optimal haircut

- Creditor losses have a social cost η (e.g., systemic risk)
- Conditionally on default, the government’s loss is:

$$D + (1 - h)R + \eta hR$$

- Optimal haircut trades-off ex-post/ex-ante forces:
 - Avoid creditor losses under resolution
 - Favor quicker private restructuring to avoid resolution

Proposition

- If $\eta \leq 1$, optimal haircut \geq delay-minimizing haircut
- If the bank relies more on deposits, the optimal haircut is closer to the delay-minimizing haircut
Delay-minimizing and optimal haircuts

\[h = h^*(p), \eta = 1, D = 1 \]
\[h**(p), \eta = 1, D = 0.5 \]
\[h**(p), \eta = 1.5, D = 1 \]
Roadmap

Introduction

Model

Private restructuring

Restructuring with government involvement

Conclusion
The problem is partly the externality on the government.

The government could subsidize the bank to restructure debt, which reduces Δ (surplus effect).

The bank manager makes the following offer:

- Creditors: new debt repayment R
- Government: transfer T to the shareholders

If the offer is rejected, the government can make a counter-offer, etc.
Impact of government involvement

Corollary

For high asset quality p, government involvement has no effect. For lower asset quality p, it can increase or decrease the delay.

Intuition:

- **Surplus effect**: gvt. involvement makes the manager internalize the impact on the deposit insurance fund ⇒ shorter Δ

- **Signaling effect**: even more incentives to pretend the bank’s quality is low to extract larger subsidies ⇒ longer Δ
Example

\[\Delta G(p) \]

\[\Delta(p) \]
Take-away

- The government may be better off committing not to participate in the negotiations.
- Lower bail-outs may weaken the government’s position.
Roadmap

Introduction

Model

Private restructuring

Restructuring with government involvement

Conclusion
Conclusion - 1

- First step towards analyzing the complex negotiations in distressed banks

- Very stylized model, highlighting two general effects:
 - Surplus effect: more to gain fosters negotiations
 - Signaling effect: information-sensitivity \Rightarrow slower negotiations

- Optimal resolution framework must trade-off these two effects as well as ex-post efficiency
Conclusion - 2

- Invitation to apply insights from bargaining theory to financial distress problems

- Without frictions, renegotiation always happens (Haugen and Senbet (1978))

- This result fails in the presence of:
 - **Externalities** (e.g., Jehiel and Moldovanu (1995)): renegotiation is good for the government
 - **Asymmetric information** (e.g., Cramton (1984)): bank managers are more informed about the bank’s soundness

- Both issues seem particularly relevant for banks, but not only (Alitalia, Greece)
Thank you!

References II

