Measuring Regulatory Complexity

Jean-Edouard Colliard (HEC),
Co-Pierre Georg (UCT/Bundesbank)

Workshop Chaire ACPR
March 24, 2016
Roadmap

Introduction

Regulation and algorithms

Psychological complexity

Logical complexity

Computational complexity
Motivation

- Perceived increase in the complexity of financial regulation. For instance:
 - Dodd-Frank Act, 2010: 848 pages.

- Calls for simpler regulations, for instance a leverage ratio (Haldane, 2012).

- Persuasive rhetoric against complexity (e.g., comparison with the 10 commandments), but:
 - How can we measure regulatory complexity?
 - Complexity will be neglected in the trade-off if it cannot be measured.
Usual measures of complexity

Quick quiz:

▶ What sector in the U.S. is supervised by 47,000 Federal employees?

▶ Which U.K. regulatory agency has over 11,200 employees?

▶ What French industry needs 1,000 on-site inspectors?

▶ Which French law code has 3,477 pages? (with comments)

▶ What international set of standards has 338 titles?
Usual measures of complexity

Quick quiz:

- What sector in the U.S. is supervised by 47,000 Federal employees?
 - Civil Aviation, FAA. Fed system 17,000, + 13,000 FDIC, OTS, OCC.

- Which U.K. regulatory agency has over 11,200 employees?
 - Environment agency. FSA had 3,800.

- What French industry needs 1,000 on-site inspectors?
 - Slaughterhouses. ≃ SSM headcount at ECB.

- Which French law code has 3,477 pages? (with comments)

- What international set of standards has 338 titles?

We need more than the “it’s a lot” rhetoric.
Our idea

▶ Similarities between regulation and algorithms:
 ▶ Take a bank as input.
 ▶ Apply a set of instructions and operations.
 ▶ Output is a regulatory action.

▶ Adapt the well-developed literature on algorithmic complexity. Two families:
 ▶ Psychological complexity: how difficult is it to understand the regulation / to write the regulatory text without “bugs”.
 ▶ Computational complexity: how long does it take to “test” a given bank (supervision). How much data needs to be stored?
Why is it important?

- Complexity can be strategically exploited by sophisticated agents (e.g., Carlin 2009).

- Complexity creates asymmetric information, Arora, Barak, Brunnermeier, and Ge (2009).

- Risk of capture by sophistication (Hellwig / Hakenes and Schnabel, 2013).

- Opacity to outsiders gives discretion to supervisors (Rochet, 2010).

- Further theoretical work on this issue hindered by lack of measures.
Today

- **Work in progress:**
 - General framework.
 - Some possible measures.
 - Simple examples.
 - Questions for future research.
 - No full-scale application to actual regulations yet.

- **Looking for feedback** from academics, supervisors, practitioners...
Roadmap

Introduction

Regulation and algorithms

Psychological complexity

Logical complexity

Computational complexity
Definition

A regulation f is a function from a set of regulated entities E to a set of actions A: $f : A \rightarrow A$.

- An element of E is a list of relevant characteristics, e.g., balance sheet items.
- A includes “doing nothing”, “closing the bank”, “imposing a fine”, etc.
Definition

A representation \(\tilde{f} \) of regulation \(f \) is a list of instructions that implement \(f \) for any \(e \in \mathcal{E} \).

Definition

Supervision of a given entity \(e \) is the fact of following the instructions \(\tilde{f} \) in order to implement \(f \) at a given \(e \in \mathcal{E} \).

- There are several ways to represent the same regulation, some more complex than others.
- Supervision may be long/complex even if the associated regulation is short/simple.
Definiton
A measure \(\mu \) of complexity of a regulation \(f \) is defined as a mapping \(\mu : f \rightarrow \mathbb{R} \).
A measure of complexity of a representation \(\tilde{f} \) of a regulation \(f \) is a mapping \(\tilde{\mu} : \tilde{f} \rightarrow \mathbb{R} \).

- \(\mu \) and \(\tilde{\mu} \) correspond to different questions.
- We can require traditional properties of a measure, e.g., monotonicity (additivity more problematic).
Roadmap

Introduction

Regulation and algorithms

Psychological complexity

Logical complexity

Computational complexity
Objective

- Measure the difficulty of understanding a regulation.
- Proxy for opacity to outsiders (hence capture), potential for misunderstandings, loopholes in the regulation.
- In computer science: link with the time it takes to code a program and the expected number of bugs.
Halstead measures

- Define an algorithm as a list of operands and operators:
 - Operands: variables, constants...
 - Operators: $+$, $-$, $=$, if, end, etc.

- Applied to regulation, two possibilities:
 - Adapt: assigning a risk-weight can be seen as an operator.
 - Apply: represent regulation as an algorithm.

- Denote N_1 the number of operators, N_2 the number of operands, η_1 the number of unique operators, η_2 the number of unique operands.
Volume

- Typical measure: lines of code. 600,000 for the Apollo program; 200 mln for Windows 7.

- Problem: depends on the language and the character set used.

- **Volume** $V = \text{lines of code with the “best” character set:}$

 $$V = (N_1^* + N_2^*) \log_2(\eta_1^* + \eta_2^*)$$

- **Potential volume** $V^* = \text{volume in the best programming language:}$

 $$V^* = (2 + \eta_2^*) \log_2(2 + \eta_2^*)$$

- V^* depends only on the number of inputs and outputs, independent of the representation f.
Level of a program is:

\[L = \frac{V^*}{V} \approx \frac{\eta_1^*}{\eta_1} \times \frac{\eta_2}{N_2} \]

- Inversely proportional to the number of repetitions of operands \(\frac{\eta_2}{N_2} \).
- Inversely proportional to unnecessary operators \(\frac{\eta_1^*}{\eta_1} \).

In the context of regulation:
- High \(L \) corresponds to *efficient but specialized language*: complex operators and operands not defined based on more elementary ones.
- Measure can be part of a trade-off between transparency and length.
Difficulty and effort

- **Difficulty** of a program:

 \[D = \frac{\eta_1}{\eta_2} \times N_2. \]

- **Effort** of a program:

 \[E = V \times D. \]

- Intuitively, \(E \) is a measure of how long it takes to write a program, using a basic search model of program writing.

- Offers a measure of regulatory complexity that takes into account repetitions and richness of the vocabulary.
Bank reduced to a **detailed balance sheet**:

- n asset types and m types of capital, possibly with a “attributes” worth 0 or 1.

- E.g., sovereign debt, OECD or non-OECD country, maturity < 1 year or not ($a = 2$).

- Risk-weight RW associated to a type of asset, regulatory capital RC for a liability.

- Regulation: scan the balance sheet, compute total RWAs and total RC, compute the ratio and compare to 8%.
for $x = 1$ to n
if $type = x$ and $attribute_{x1} = 1$ then $RW = w_{x1}$
if $type = x$ and $attribute_{x1} = 0$ then $RW = w_{x0}$

for $y = 1$ to m
if $type = y$ and $attribute_{y1} = 1$ then $RC = w_{c1}$
if $type = y$ and $attribute_{y1} = 0$ then $RC = w_{c0}$

$RWA = \sum_{x=1}^{n} RW(x) \times volume_{x}$
$RC = \sum_{y=1}^{m} RC(y) \times volume_{y}$

if $RWA/RC \geq \alpha$ then $pass = 1$
else $pass = 0$

We can compute the different measures as a function of n, m, a.

Example - Capital regulation, $a = 1$
Number of balance sheet item types
Number of attributes

- E
- L
Conjectures

- IRB vs. SA: reduction in volume, but increase in level, hence decrease in transparency.

- Liquidity regulation in Basel III: “more of the same”, increase in effort only proportional to number of new measures introduced.
Roadmap

Introduction

Regulation and algorithms

Psychological complexity

Logical complexity

Computational complexity
Goal and measurement

- Number of conditional statements and loops.

- Very long regulation might still be “linear” and not very complex in terms of structure.

- McCabe (1976): model an algorithm as a control-flow chart, complexity given by the number V of possible paths.

$$V = \#edges - \#nodes + 2\#components$$
Example

\[V = (8 + 2m + 2n) - (9 + m + n) + 2 = 1 + m + n \]
Remarks

- Risk-bucket approach very additive in nature.

- **Macroprudential regulation** can in principle be significantly more complex:
 - Conditions on one bank can depend on the entire system.
 - Different banks can be seen as different components, now linked with each other.
Roadmap

Introduction

Regulation and algorithms

Psychological complexity

Logical complexity

Computational complexity
Goal

- How costly is it to **supervise a particular bank**?
- Depends not only on the regulation $f(.)$, but also on the entity e to which it is applied.
- Can potentially be measured in monetary terms.
Time complexity

- **Number of elementary operations** necessary to perform a supervision task.

- “Millions” of computations for a large bank (Haldane, 2011).

- But computing power is higher than in 1988.

- Probably more relevant: number of work hours necessary for different tasks.

- Exercise that requires data from supervisors.
Space complexity

- Number of elements that need to be kept in memory while performing the computation.
- Used to be very important for computer programs (RAM).
- May still reflect an important dimension of complexity for banks: managers need to keep track of more variables in their decision-making process.
Huge increase in time complexity with internal models (but maybe decrease in psychological complexity).

Macroprudential regulation can also have a large impact, e.g., network-based capital requirements (Alter, Craig and Raupach, 2014).

Liquidity regulation represents a large increase in space complexity.
Conclusion

- Work in progress. Only a framework for future research.

- New avenues for measuring several dimensions of regulatory complexity.

- Next step is to test the measures on actual regulatory texts (done for Basel I).

- Two possible uses in the future:
 - Test existing theories, and stimulate new ones by generating new stylized facts.
 - Offer a tool for drafting new regulations, measure the increase and complexity and trade it off against other objectives.
Thank you!